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Abstract 

One of the key ideas for reducing downlink channel acquisition overhead for FDD mas-
sive MIMO systems is to exploit a combination of two assumptions: (i) the dimension 
of channel models in propagation domain may be much smaller than the next-gener-
ation base-station array sizes (e.g., 64 or more antennas), and (ii) uplink and downlink 
channels may share the same low-dimensional propagation domain. Our channel 
measurements demonstrate that the two assumptions may not always hold, thereby 
impacting the predicted performance of methods that rely on the above assump-
tions. In this paper, we analyze the error in modeling the downlink channel using 
uplink measurements, caused by the mismatch from the above two assumptions. We 
investigate how modeling error varies with base-station array size and provide both 
numerical and experimental results. We observe that modeling error increases with the 
number of base-station antennas, and channels with larger angular spreads have larger 
modeling error. Utilizing our modeling error analysis, we then investigate the result-
ing beamforming performance rate loss. Accordingly, we observe that the rate loss 
increases with the number of base-station antennas, and channels with larger angular 
spreads suffer from higher rate loss.

Keywords:  Massive MIMO, FDD, Channel estimation, Propagation domain

1  Introduction
Massive multi-input and multi-output (MIMO) [1–5] uses many antennas at the base-
station to improve communication in diverse ways [6–13]. However, due to the large 
number of antennas, the key challenge in enabling FDD1 massive MIMO is that the 
downlink channel acquisition overhead scales with the base-station array size. Several 
recent works have proposed methods to exploit lower dimensionality of the channel with 
propagation domain channel characterizations to address this channel estimation chal-
lenge [14–25]. The proposed schemes leverage two key assumptions: (i) the cardinality 
of the alternate channel characterizations is much smaller than and independent of the 
number of base-station antennas, and (ii) uplink and downlink channels share the same 
low-dimensional propagation characteristics. With the two assumptions, the downlink 
channel can be parameterized by a few coefficients and an estimate of these coefficients 
can be obtained from uplink channel.

*Correspondence:   
ee.xing.zhang@gmail.com

Department of Electrical 
and Computer Engineering, Rice 
University, Houston, USA

1  Frequency-division Duplex

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13638-022-02199-z&domain=pdf
http://orcid.org/0000-0001-8594-8279


Page 2 of 18Zhang and Sabharwal ﻿J Wireless Com Network         (2023) 2023:29 

However, our recent channel measurement-based work [26] demonstrated that the 
two assumptions may not hold exactly. Our two main findings based on measured 
channels were: (i) dominant angles do not capture all the channel power, even though 
a significant fraction can be captured, and (ii) uplink and downlink dominant angles 
are not exactly the same, even though the angle correlation can be high. In short, the 
two assumptions can be good assumptions but not guaranteed to hold unilaterally. 
In the same paper [26], we had also proposed a directional training scheme, where 
the base-station trains downlink channel with estimated uplink dominant angles and, 
in essence, relies on approximation and reciprocity of channel in the propagation 
domain. However, the mismatch between the assumed channel model and the actual 
channel model can lead to downlink beamforming performance loss. Therefore, to 
quantify the possible performance gaps of training downlink channel in the propaga-
tion domain using uplink channel measurements, it is important to revisit the two 
key assumptions on FDD massive MIMO channels and quantify the loss in perfor-
mance due to each of these assumptions.

In this paper, we focus on the fundamentals to analyze the modeling error in 
approximating downlink channel with uplink dominant angles in the propagation 
domain for FDD massive MIMO channels. With the proposed error analysis, we aim 
to answer two questions: 

Q1	 How does the modeling error scale with the number of base-station antennas?
Q2	 How does the modeling error vary in different propagation environments?

Answering Question  1 is important to quantify the performance scalability in the 
large-array regime, which will have implications as the number of antennas is scaled 
in upcoming generations of massive MIMO systems. Similarly, answering Question 2 
is important to understand the performance dependency on different channel scenar-
ios. In particular, we will show that the channel angle spread is the important channel 
parameter that impacts modeling error.

Based on the modeling error analysis, we investigate the impact of downlink beam-
forming performance in training downlink channel with estimated uplink dominant 
angles. We quantify the downlink beamforming rate loss and study scalability with 
the base-station array size and dependency on the channel angle spread for the rate 
loss. Overall, our main contributions in this paper are as follows: 

1	 We define the modeling error to quantify the normalized error of approximating 
downlink channel with uplink dominant angles. There are two factors that affect 
modeling error. First is that dominant angles do not capture all the channel power; 
we label this error as approximation error. Second is that uplink and downlink domi-
nant angles are not exactly the same; we label this as mismatch error. The two errors 
contribute additively toward the overall modeling error.

2	 We employ the 3GPP spatial channel model [27] to investigate scalability with the 
base-station array size and dependency on the channel angle spread for modeling 
error. Using the channel model, we conduct extensive numerical simulations to 
examine modeling error in the finite array regime. We observe that modeling error 
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increases with the number of base-station antennas, and a larger channel angle 
spread yields a larger modeling error.

3	 We further validate our numerical observations utilizing our measured channels. 
The main finding is that our experimental results match the observations from the 
numerical results. We find that modeling error increases with the number of base-
station antennas, from 2% as the average modeling error when the base-station is 
equipped with 4 antennas, to 28% as the average modeling error when the base-sta-
tion is equipped with 64 antennas for non-line-of-sight channels. The other obser-
vation is that larger angle spread in angle of arrivals leads to larger modeling error, 
with average modeling error as 28% for non-line-of-sight channels, compared to the 
average modeling error as 13% for line-of-sight channels when the base-station is 
equipped with 64 antennas.

4	 To investigate the performance impact of modeling error, we also quantify the result-
ing downlink beamforming rate loss. Similar to modeling error, we provide both 
numerical and experimental results. From both numerical and experimental results, 
we observe that the rate loss increases with the number of base-station antennas, 
and more distributed power channel will bring in larger rate loss. Also, even though 
the rate loss increases with the number of base-station antennas, we find out resulted 
beamforming rate still increases with array size. So we conclude that beamforming 
based on scalable channel estimation schemes that exploit the propagation domain, 
e.g.,  directional training [26], still benefits from the array gain in FDD massive 
MIMO.

As a future extension, the proposed approach can be used to understand the impact of 
modeling error on other methods [14–25].

The rest of the paper is outlined as follows. Section 2 formulates the research prob-
lem and defines the model error to analyze channel estimation errors in FDD massive 
MIMO. Section 3 provides both numerical and experimental results of modeling error 
and evaluates the performance impact of modeling error. Finally, Sect. 4 concludes this 
paper.

2 � Methods
2.1 � System model

We consider a single-cell FDD massive MIMO system where an M-antenna base-station 
serves K single-antenna users through downlink beamforming. With downlink channel 
as H ∈ C

K×M and beamforming weights matrix as W ∈ C
M×K  , the received signals at 

the mobile user can be written as

where x ∈ C
K  is the transmitted signals and n ∈ C

K  is the additive noises that follow 
standard complex Gaussian distribution.

To design beamforming weights W for effective downlink multi-user beamforming, 
e.g., conjugate beamforming or zero-forcing beamforming, the key step is to estimate 
downlink channel state information at the base-station side. Therefore, next, we first 
present details of FDD massive MIMO channels, including propagation domain channel 

(1)y = HWx + n,
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model and measured channels, and then show potential errors of existing scalable chan-
nel estimation schemes in FDD massive MIMO.

2.2 � FDD massive MIMO channels

2.2.1 � Propagation domain channels

We adopt the popular geometrical ray-tracing approach and employ the 3GPP spatial 
channel model [27] to model FDD massive channels in the propagation domain. Note 
that the main propagation mechanisms include line-of-sight, reflection, diffraction, and 
scattering of the transmitted electromagnetic signals. In FDD mode, even though uplink 
and downlink transmit at different frequency bands, the frequency gap between uplink 
and downlink is relatively small in many cases, e.g., less than 100 MHz in sub-6 GHz 
FDD bands. As a result, with the proximity of the wavelengths, uplink and downlink can 
be approximated to undergo through the same propagation paths and have the same 
amplitude for each corresponding path. However, since the phase is very sensitive to 
wavelength difference, the phases are often modeled as uniform i.i.d. random, U [0, 2π).

Therefore, consider the system where the base-station is equipped with an M anten-
nas uniform plane array, consisting of Mr rows and Mc columns. We use the geometrical 
ray-tracing approach as illustrated in Fig. 1. First, the downlink channel with frequency 
fD between the M-antenna base-station and a single-antenna user can be modeled as

where the channel consists of I clusters and the ith cluster consists of Ji paths; the jth 
path of ith cluster has power gij , independent phase φDij ∼ U [0, 2π) and angle with ele-
vation as θij and azimuth as ϕij . The array response vector af (θ ,ϕ) corresponding to the 
Mr rows and Mc columns uniform plane array is defined as

(2)hD =
I

i=1

Ji

j=1

gije
jφDijafD θij ,ϕij ,

Massive MIMO Base-station

User

Scatter Scatter

Cluster Cluster

Fig. 1  Propagation paths between a massive MIMO base-station and a single-antenna user
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where f is the received signal frequency; � is the signal wavelength; d is the antenna spac-
ing; θ is the elevation angle; and ϕ is the azimuth angle.

Then, accordingly, using the geometrical ray-tracing approach, the corresponding 
uplink channel operated at a different frequency band fU of the same base-station 
user pair can be modeled as

For small frequency differences, uplink and downlink channel will have the same num-
ber of clusters I and same number of paths Ji in the ith cluster. The jth path of ith cluster 
has the same power gij and same angles (θij , ϕij) as downlink channel. The only different 
channel parameter is the phase component, with value i.i.d. in U [0, 2π), respectively.

2.2.2 � Measured channels

The measured FDD massive MIMO channels are presented in our previous work 
[26], with all the details explained therein. Overall, the channel dataset includes 
FDD massive MIMO channels corresponding to 21 non-line-of-sight and 4 line-of-
sight user locations. For each user location, two 20 MHz wide-band channels, each 
with 52 OFDM subcarriers and separated by about 72 MHz, are measured across 
around 5000 time frames. Further, the base-station is equipped with an 8-row 8-col-
umn uniform plane array, as shown in Fig. 2 with plots from [26]. Overall, the entire 
dataset includes 52 (subcarriers) × 52 (subcarriers) × 25 (user locations)= 67600 
FDD massive MIMO uplink/downlink channel instance pairs, including 56784 non-
line-of-sight ones and 10816 line-of-sight ones.

(3)af (θ ,ϕ) =









1

ej
2π
�
d sin θ cosϕ

...

ej
2π
�
d((Mr−1) cos θ+(Mc−1) sin θ cosϕ)









,

(4)hU =
I∑

i=1

Ji∑

j=1

√
gije

jφUijafU
(
θij ,ϕij

)
.

Fig. 2  Channel measurements setup with large-array base-station. The plot comes from [26]
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2.3 � Scalable channel estimation in FDD massive MIMO

To investigate the potential error of downlink channel estimation, here we focus on 
the single-user case only. Without loss of generality, the user downlink channel is 
denoted as hD ∈ C

M . Based on the propagation domain channel model, as shown in 
Eq. 2, downlink channel model can be rewritten as

where

denotes full propagation domain and

coefficients in the propagation domain.
In scalable channel estimation schemes that exploit channel low-dimensional 

domain, there are two main steps. First, estimate the low-dimensional propagation 
domain Ŝ ∈ C

M×L, L < M for downlink training, where L is the number of train-
ing vectors in the estimated domain. Second, estimate domain coefficients b̂ ∈ C

L 
via downlink training and uplink feedback. After that, the downlink channel can be 
reconstructed as

Previous works focus on domain coefficients estimation as in the second step only and 
assume perfect knowledge of the channel propagation domain. However, the error in 
propagation domain estimation Ŝ also contributes to channel estimation error. There-
fore, it is important to investigate the impact of propagation domain estimation error.

Since we aim to quantify the propagation domain modeling error—normalized 
error of approximating downlink channel with uplink dominant angles, next we ask 
and answer two questions on propagation domain estimation corresponding to the 
imperfectness of the two aforementioned assumptions that will affect the normalized 
error: 

1	 What will be the normalized error if utilizing dominant angles in the propagation 
domain instead of all angles to approximate the downlink channel?

2	 What will be the extra normalized error if utilizing uplink dominant angles instead of 
downlink ones to approximate the downlink channel?

The answers to the questions depend on channel properties only. Therefore, to answer 
the questions, we seek to start from the fundamentals, i.e., FDD massive MIMO 
channels, to investigate the normalized error of approximating downlink channel 
with uplink dominant angles. We use a combination of a numerical and experimen-
tal approach. For the numerical approach, we employ the spatial channel model to 

(5)hD =
I∑

i=1

Ji∑

j=1

√
gije

jφDija
(
θij ,ϕij

)
= Sb,

(6)S =
[
a(θ11,ϕ11) · · · a

(
θ1J1 ,ϕ1J1

)
· · · a(θI1,ϕI1) · · · a

(
θIJI ,ϕIJI

)]

(7)b =
[√

g11e
jφD11 · · · √

g1J1e
jφD1J1 · · · √

gI1e
jφDI1 · · · √

gIJI e
jφDIJI

]T

(8)ĥD = Ŝb̂.
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formulate modeling error and examine the scalability with the base-station array size 
and dependency on the channel angle spread; for the experimental approach, we fur-
ther validate the observations of modeling error based on measured channels.

2.4 � Modeling error definition

In this section, we characterize the normalized error of approximating downlink chan-
nel with uplink dominant propagation domain, defined as modeling error, by answering 
the two questions brought up in Sect. 2.3. Each question corresponds to one source of 
error, with the first one denoted as approximation error and the second one denoted as 
mismatch error.

For single-user case, the resulting rate with conjugate beamforming based on esti-
mated channel ĥD ∈ C

M is

where P denotes the downlink transmission power for the user. From Eq. (9), maximiz-
ing rate is same as minimizing the following normalized error

Note E ∈ [0, 1] , where E = 0 occurs when there is no channel estimation error and 
E = 1 occurs when the estimated channel is orthogonal to the actual channel, a worst-
case scenario. Thus, smaller E is better.

We focus on propagation domain estimation and assume genie-aided domain coeffi-
cients training. Consider estimated propagation domain Ŝ ∈ C

M×L, L < M , the genie-
aided estimated domain coefficients will be

based on least-square estimator, where Ŝ† stands for the pseudo-inverse matrix of Ŝ . To 
evaluate estimated propagation domain Ŝ , based on Eq. 10, we consider the normalized 
error of estimated downlink channel utilizing the estimated propagation domain, which 
is formulated as

(9)

R
�

ĥD,hD

�

= E

�

log

�

1+ P
�ĥHDhD�2

�ĥD�2

��

= E




log




1+ P �hD�2

� �� �

Pchannel

�ĥHDhD�2

�ĥD�2�hD�2











(10)E = 1− �ĥHDhD�
�ĥD��hD�

.

(11)b̂ = Ŝ†hD

(12)

E(Ŝ) = 1− �ĥHDhD�
�ĥD��hD�

= 1− �(Ŝb̂)HhD�
�Ŝb̂��hD�

= 1− �(ŜŜ†hD)HhD�
�ŜŜ†hD��hD�

.
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We aim to quantify modeling error—the normalized error of approximating downlink 
channel with uplink dominant propagation domain. To analyze modeling error, we need 
to obtain both downlink domain of low dimensionality and uplink one. In propagation 
domain, the low dimensionality part is constructed from array response vectors cor-
responding to dominant channel angles. Therefore, first, we try to construct downlink 
dominant propagation domain Sd ∈ C

M×Ld , Ld ≪ M , where M is the number of anten-
nas at the base-station and Ld is the number of dominant angles. The downlink domi-
nant angle set is defined as

where Ad =
[
a(θ1,ϕ1) · · · a

(
θLd ,ϕLd

)]
 and A†

d stands for the pseudo-inverse matrix of 
Ad . We extract downlink dominant angles from full downlink CSI hD ∈ C

M utilizing 
maximum likelihood estimator [26]. Then, the downlink dominant propagation domain 
based on dominant angles is constructed as

where a is the array response vector defined in Eq. (3).
Second, to construct uplink dominant propagation domain Su ∈ C

M×Ld , similarly, 
we extract uplink dominant angles 

{
(θu1,ϕu1), ...,

(
θuLd ,ϕuLd

)}
 from full uplink CSI 

hU ∈ C
M . Then, the uplink dominant propagation domain is constructed as

Corresponding to the two questions brought up in Sect. 2.3, there are two factors that 
affect modeling error. First, to keep the low dimensionality of propagation domain under 
channel training overhead constraints, only Ld dominant angles-based response vectors 
constructed propagation domain Sd ∈ C

M×Ld is utilized for downlink channel approxi-
mation. As a result, there will still be certain channel estimation error due to the approx-
imation; we denote this normalized channel estimation error as approximation error. 
Following the definition of normalized channel estimation error in Eq. 10, approxima-
tion error is formulated as

where Sd ∈ C
M×Ld is the downlink dominant propagation domain as illustrated in 

Eq.  14. As evident from the above equation, approximation error will be in the range 
from 0 to 1. When the downlink dominant propagation domain Sd ∈ C

M×Ld gets closer 
to downlink channel in antenna domain, approximation error will decrease and get 
closer to 0.

Second, since downlink propagation domain information is not available before any 
downlink channel training, uplink channel-inferred dominant propagation domain 
instead of actual downlink channel dominant propagation domain is utilized for down-
link channel training. Consequently, there will be extra normalized channel estimation 

(13)
{
(θd1,ϕd1), ...,

(
θdLd ,ϕdLd

)}
= arg minimize{

(θ1,ϕ1),...,
(

θLd ,ϕLd

)}

∥
∥hD − AdA

†
dhD

∥
∥
2
,

(14)Sd =
[
a(θd1,ϕd1) a(θd2,ϕd2) · · · a

(
θdLd ,ϕdLd

)]
,

(15)Su =
[
a(θu1,ϕu1) a(θu2,ϕu2) · · · a

(
θuLd ,ϕuLd

)]
.

(16)

Eapproximation = E(Sd)

= 1−
�(SdS†dhD)HhD�
�SdS†dhD��hD�

,
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error due to the uplink and downlink dominant propagation domain mismatch; we 
denote this normalized channel estimation error as mismatch error, which is formulated 
as

where Su ∈ C
M×Ld is the uplink dominant propagation domain as illustrated in Eq. 15. 

As evident from the above equation, mismatch error will also be in the range from 0 
to 1. When the uplink channel-inferred dominant propagation domain Su ∈ C

M×Ld gets 
closer to actual downlink channel one Sd ∈ C

M×Ld , mismatch error will decrease and get 
closer to 0.

Combining approximation error and mismatch error, the total normalized error 
of approximating downlink channel with uplink dominant propagation domain 
Su ∈ C

M×Ld , i.e., modeling error, is formulated as

As evident from the above equation, modeling error will be in the range from 0 to 1. 
When the uplink channel-inferred dominant propagation domain Su gets closer to 
downlink channel in antenna domain, the modeling error will get closer to 1.

Here, we focus on modeling error in the propagation domain, while similar error anal-
ysis can be applied to other domain-based channel characterization. Also, we want to 
emphasize that modeling error is determined by FDD massive MIMO channel proper-
ties only and thus scheme-independent. But, modeling error is an important and nec-
essary part to analyze and evaluate the performance of scalable FDD massive MIMO 
channel estimation schemes.

2.5 � Performance impact

Modeling error quantifies the normalized estimation error of approximating downlink 
channel with uplink dominant angle response vectors. As expected, the modeling error 
will result in beamforming performance impact due to channel estimation error. To 
understand the performance impact of modeling error, here we first derive the beam-
forming rate loss corresponding to modeling error.

To quantify the beamforming performance impact of modeling error, as illustrated 
in Section 2.4, we focus on the single-user case and evaluate single-user beamforming 
achievable rate with conjugate beamforming. When the base-station has the perfect 
downlink CSI hD available, the achievable rate with conjugate beamforming will be

(17)

Emismatch = E(Su)− E(Sd)

=
�(SdS†dhD)HhD�
�SdS†dhD��hD�

− �(SuS†uhD)HhD�
�SuS†uhD��hD�

,

(18)

Emodeling = Eapproximation + Emismatch

= E(Su)

= 1− �(SuS†uhD)HhD�
�SuS†uhD��hD�

.

(19)R(hD,hD) = E

[

log
(

1+ P�hD�2
)]

.
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And utilizing approximated downlink channel with uplink dominant angles huD defined 
as

where Su includes uplink dominant angle response vectors as shown in Eq. 15. With con-
jugate beamforming, the achievable rate will be

Then, the rate gap between beamforming based on perfect downlink CSI hD and beam-
forming based on approximated downlink channel huD , denoted as rate loss, is formu-
lated as

As evident from the above equation, the modeling error will affect the rate loss and 
larger modeling error will lead to larger rate loss.

3 � Results and discussion
3.1 � Modeling error: numerical results

To find out how the modeling error varies with the base-station array size, we employ 
the spatial channel model to investigate modeling error for the case where the base-sta-
tion is equipped with a finite number of antennas. We conduct numerical simulations 
to observe how the modeling error varies with the number of base-station antennas and 
the channel angle spread. To facilitate the simulations, we set propagation domain chan-
nel parameters as follows:

•	 For each channel instance, both the number of clusters and the number of dominant 
angles for approximation are set as 4.

•	 Uniform distribution for the central angle of each cluster with elevation 
θi ∼ U [0o, 180o] and azimuth ϕi ∼ U [0o, 180o].

•	 All clusters have the same channel angle spread � for both azimuth and elevation. 
In one cluster, the number of path is determined by the angle spread � , with all path 
angles uniformly sampled in elevation range [ϕ −�/2,ϕ +�/2] and azimuth range 
[θ −�/2, θ +�/2] with angle density as 1o.

•	 All clusters have the same total power, with uniform power distribution across all the 
paths in each cluster: gpr = gp

Rp
.

We first examine the simulation results on modeling error, as shown in Fig.  3. We 
investigate both the scalability with base-station array size and the dependency on chan-
nel angle spread for modeling error. Then, we examine the decomposed modeling error 
components, including approximation error and mismatch error, with simulation results 
on average error, as presented in Fig.  5. We also investigate both the scalability with 

(20)huD = SuS
†
uhD,

(21)R(huD,hD) = E

[

log

(

1+ P�hD�2
�hHuDhD�2

�huD�2�hD�2

)]

.

(22)

�R = R(hD,hD)− R(huD,hD)

= E

[

log

(

1+ P�hD�2

1+ P�hD�2
(
1− Emodeling

)2

)]

.



Page 11 of 18Zhang and Sabharwal ﻿J Wireless Com Network         (2023) 2023:29 	

base-station array size and the dependency on channel angle spread for both approxima-
tion error and mismatch error. All the numerical results are based on 10, 000 simulated 
independent channel instances.

Observation 1—Modeling Error Increases with Both Base-station Array Size and Chan-
nel Angle Spread: In terms of the scalability with base-station array size, we observe 
that the average modeling error increases with the number of base-station antennas, 
from Fig. 3. For example, when the channel angle spread is 2-degree, the average mod-
eling error increases from 0.02 with 16 antennas, to 0.06 with 64 antennas, and to 0.65 
with 10,  000 antennas. The same trend is also observed in Fig.  4 with the cumulative 
distribution function of modeling error, which shows that more base-station antennas 
lead to larger modeling error. In terms of the dependency on channel angle spread, we 
observe that larger angle spread will result in larger average modeling error, from Fig. 3. 
For example, when the base-station is equipped with 64 antennas, the average modeling 
error increases from 0 with 0-degree angle spread, to 0.06 with 2-degree angle spread 
and to 0.23 with 8-degree angle spread. The same trend is also observed in Fig. 4 with 
the cumulative distribution function of modeling error, which shows that larger channel 
angle spread results in larger modeling error.

Fig. 3  Average modeling error changes with the number of base-station antennas. The plot is based on 
simulated channels with different angle spreads, respectively

Fig. 4  The cumulative distribution function of modeling error with two different array sizes. The plot is based 
on simulated channels with different angle spreads, respectively
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Explanation for Observation 1: Modeling error quantifies the normalized error 
of approximating downlink channel with a fixed number of uplink dominant angle 
response vectors. For the scalability with base-station array size, since the array 
beamwidth is inversely proportional to the number of base-station antennas, the cap-
tured relative channel power with a fixed number of dominant angle response vectors 
will get smaller when the base-station is equipped with more antennas. As a result, 
modeling error increases with the base-station array size. For the dependency on 
channel angle spread, since larger channel angle spread indicates more distributed 
channel power, a fixed number of dominant angle response vectors will capture less 
channel power when the channel angle spread gets larger. Consequently, modeling 
error increases with the channel angle spread.

Observation 2—Approximation Error Increases with Both Base-station Array Size 
and Channel Angle Spread: As shown in Fig.  5, the average approximation error 
increases with the number of base-station antennas. For example, when the channel 
angle spread is 2-degree, the average approximation error increases from 0.01 with 
16 antennas, to 0.02 with 64 antennas and to 0.6 with 10, 000 antennas. And larger 
angle spread will result in more approximation error, from 0.02 when angle spread is 
2-degree to 0.09 when angle spread is 8-degree with 64-antenna at the base-station.

Explanation for Observation 2 Approximation error quantifies the normalized error 
of approximating downlink channel with a fixed number of dominant angle response 
vectors instead of all angle response vectors. For both the scalability with base-station 
array size and the dependency on channel angle spread, the reasons are the same ones 
as in the explanation for Observation 1.

Observation 3—Mismatch Error First Increases Then Decreases with Base-station 
Array Size and Larger Channel Angle Spread Leads to More Mismatch Error As shown 
in Fig. 5, the average mismatch error first increases and then decreases with the num-
ber of base-station antennas. For example, when the channel angle spread is 8-degree, 
the average mismatch error increases from 0.04 with 16 antennas, to 0.3 with 400 
antennas, and then drops to 0.08 with 10,  000 antennas. Also, larger channel angle 
spread will result in larger mismatch error, from 0.04 when angle spread is 2-degree 
to 0.14 when angle spread is 8-degree with 64-antenna at the base-station.

Fig. 5  Modeling error decomposed to approximation error and mismatch error changing with base-station 
array size. The plot is based on simulated channels with different angle spreads, respectively
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Explanation for Observation 3 Mismatch error quantifies the normalized error gap 
between approximated downlink channel with uplink dominant angle response vectors 
and approximated downlink channel with downlink dominant angle response vectors. 
For the scalability with the base-station array size, due to uplink/downlink dominant 
angles difference resulting from channel phase parameters difference, the captured nor-
malized channel power by uplink dominant angle response vectors decreases at a larger 
rate than that by downlink dominant angle response vectors when the number of base-
station antennas increases. As a result, mismatch error first increases and then decreases 
with the base-station array size. For the dependency on channel angle spread, the reason 
is the same one as in the explanation for Observation 1.

3.2 � Modeling error: experimental results

To further validate the observations on modeling error from numerical results, here we 
investigate modeling error based on measured FDD massive MIMO channels as detailed 
in Sect. 2.2. We take the measured FDD massive MIMO channels as input to evaluate 
modeling error. Similar to numerical results, we examine the scalability with base-sta-
tion array size and the dependency on channel angle spread for modeling error, and the 
results are shown in Figs. 6 and 7.

Finding 1—Modeling error Increases with Base-station Array Size and Non-Line-of-sight 
Channels Yield Larger Modeling error Than Line-of-sight Channels In terms of the scalability 
with base-station array size, we find out that the average modeling error increases with the 
number of base-station antennas from Fig. 6. For example, for non-line-of-sight channels, 
the average modeling error increases from 0.02 with 4 antennas, to 0.18 with 16 antennas, 
and to 0.28 with 64 antennas. The same trend is also observed in Fig. 7 with the cumulative 
distribution function of modeling error, which shows that more base-station antennas always 
lead to smaller modeling error. When comparing line-of-sight channels with non-line-of-
sight channels, we find out that non-line-of-sight channels result in larger average modeling 
error than line-of-sight channels from Fig. 6. For example, when the base-station is equipped 
with 64 antennas, the average modeling error of non-line-of-sight channels is 0.28, which is 
larger than the average modeling error 0.13 of line-of-sight channels. The same finding is also 
obtained from Fig. 7 with the cumulative distribution function of modeling error.

M = 16

M = 64
M = 36

M = 4

Fig. 6  Average modeling error changing with the number of base-station antennas. The plot is based on 
measured line-of-sight and non-line-of-sight channels, respectively
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Explanation for Finding 1: For the scalability with base-station array size, the finding 
matches numerical Observation 1. For the comparison between line-of-sight channels 
and non-line-of-sight channels, since non-line-of-sight channels exhibit more distrib-
uted channel power over angles than line-of-sight channels, a fixed number of dominant 
angles will capture less channel power for non-line-of-sight channels. When comparing 
measured channels to simulated channels, line-of-sight channels have a smaller channel 
angle spread than non-line-of-sight channels. Therefore, for the dependency on channel 
angle spread, the experimental finding also matches numerical Observation 3.

3.3 � Performance impact: numerical results

To understand the performance impact of modeling error, we first employ the spatial 
channel model to investigate rate loss. Here as illustrated in Sect. 2.4, we focus on the 
single-user case and evaluate single-user beamforming achievable rate with conjugate 
beamforming. We conduct numerical simulations to observe how the rate loss varies 
with the number of base-station antennas and the channel angle spread.

Observation 4—Rate Loss Increases with Both Base-station Array Size and Channel 
Angle Spread The simulation results on rate loss are shown in Fig. 8. In terms of the scal-
ability with base-station array size, we observe that rate loss increases with the number 
of base-station antennas, from Fig. 8. For example, when the channel spread is 2 degrees, 
rate loss increases from 0.1 bps/Hz with 4 antennas, to 0.25 bps/Hz with 64 antennas, 
and to 3 bps/Hz with 10, 000 antennas. In terms of the dependency on channel angle 
spread, we observe that larger angle spread will result in larger rate loss, from Fig. 8. For 
example, when the base-station is equipped with 64 antennas, rate loss increases from 0 
bps/Hz with 0-degree angle spread, to 0.25 bps/Hz with 2-degree angle spread, and to 1 
bps/Hz with 8-degree angle spread.

Explanation for Observation 4: We explain the observation based on the relationship 
between rate loss and modeling error as shown in Eq. 22. Since modeling error decreases 
with the base-station array size, as shown in Observation 1, accordingly, rate loss power 
decreases with the base-station array size. And since larger channel angle spread leads to 
smaller modeling error, accordingly, rate loss decreases with the channel angle spread.

Fig. 7  Cumulative distribution function of modeling error with two different array sizes. The plot is based on 
measured line-of-sight and non-line-of-sight channels, respectively
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3.3.1 � Performance impact: experimental results

To further validate the observation of rate loss from numerical results, we also inves-
tigate the rate loss based on measured FDD massive MIMO channels. Again, we focus 
on the single-user case and evaluate single-user beamforming achievable rate with con-
jugate beamforming. Similar to numerical results, we examine the scalability with the 
base-station array size and the dependency on the channel angle spread for the rate loss.

Finding 2—Rate Loss Increases with Base-station Array Size and Line-of-sight Chan-
nels Yield Smaller Rate Loss Than Non-line-of-sight Channels The experimental results 
on rate loss are shown in Fig. 10. In terms of the scalability with base-station array size, 
we observe that rate loss increases with the number of base-station antennas, from 
Fig. 11. For example, for line-of-sight channels, rate loss increases from 0.03 bps/Hz with 
4 antennas to 0.4 bps/Hz with 64 antennas. When comparing line-of-sight channels with 
non-line-of-sight channels, we find out that line-of-sight channels result in smaller rate 
loss than non-line-of-sight channels from Fig.  6a. For example, when the base-station 
is equipped with 64 antennas, rate loss of line-of-sight channels is 0.4 bps/Hz, which is 
smaller than rate loss 1 bps/Hz of non-line-of-sight channels.

Explanation for Finding 2 For the scalability with base-station array size, the finding 
matches numerical Observation 4. For the comparison between line-of-sight channels 
and non-line-of-sight channels, since non-line-of-sight channels exhibit more distrib-
uted channel power over angles than line-of-sight channels, a fixed number of dominant 
angles will capture less channel power for non-line-of-sight channels. When compar-
ing measured channels with simulated channels, line-of-sight channels have a smaller 
channel angle spread than non-line-of-sight channels. Therefore, for the dependency on 
channel angle spread, the experimental finding also matches numerical Observation 4.

Combining the numerical observation with the experimental finding, we find out 
that even though modeling error leads to rate loss that increases with the number 
of base-station antennas, more base-station antennas still bring in more beamform-
ing performance improvement with estimated downlink channel, as shown in both 
Fig.  9 and Fig.  11. Therefore, we can conclude that taking the modeling error into 
account, scalable channel estimation schemes that exploit the propagation domain, 

Fig. 8  Rate loss changing with base-station array size. The plot is based on simulated channels with different 
angle spreads
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Fig. 9  Beamforming rate with approximated downlink channel changing with base-station array size. The 
plot is based on simulated channels with different angle spreads

M = 16
M = 36

M = 4

M = 64

Fig. 10  Rate loss changing with base-station array size. The plot is based on measured channels

M = 16

M = 4

M = 36

M = 64

Fig. 11  Beamforming rate with approximated downlink channel changing with base-station array size. The 
plot is based on measured channels
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e.g., directional training in [26], can still benefit from the array gain and bring in 
beamforming performance improvement in the massive MIMO regime.

4 � Conclusion
Inspired by the experimental findings on channel propagation domain properties, 
we first formulate modeling error to quantify the normalized estimation error of 
approximating downlink channel with uplink dominant angles. From our analysis and 
numerical results, we observe that modeling error increases with the number of base-
station antennas, and more distributed power channels lead to larger modeling error. 
We also validate the observation by experimental results.

Then, we investigate the performance impact of modeling error and quantify the 
resulting downlink beamforming rate loss of approximating downlink channel with 
uplink dominant angles. From both numerical and experimental results, we observe 
that the rate loss increases with the number of base-station antennas, and more dis-
tributed power channels will result in larger rate loss. Also, even though the rate loss 
increases with the number of base-station antennas, we find out the beamforming 
rate still increases with array size. Based on the observation, we conclude that beam-
forming based on scalable channel estimation schemes that exploit the propagation 
domain, e.g., directional training in [26], benefits from the array gain in FDD massive 
MIMO.

In this paper, we mainly focus on channel in the propagation domain with angle 
response vectors characterization and investigate the corresponding modeling error, 
along with the beamforming performance impact. However, similar error analysis can 
be conducted for alternate channel characterizations. Also, our analysis will be an 
important part to help improve FDD channel estimation schemes and other related 
applications. A detailed example is to optimize time resources allocated to downlink 
channel training during channel estimation, where there is a trade-off between train-
ing overhead and channel estimation error.
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MIMO	� Multi-input multi-output
CSI	� Channel state information
OFDM	� Orthogonal frequency-division multiplexing
3GPP	� Third-generation partnership project

Acknowledgements
Not applicable.

Author Contributions
The authors contributed equally. Both the authors have read and approved the final version of the manuscript.

Funding
The authors were partially supported by NSF grant 1518916 and support from Qualcomm, Inc.

Availability of data and materials
Not applicable.

Declarations

Competing interests
The authors declare that they have no competing interests.



Page 18 of 18Zhang and Sabharwal ﻿J Wireless Com Network         (2023) 2023:29 

Received: 21 April 2021   Accepted: 30 November 2022

References
	1.	 T.L. Marzetta, Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Trans. Wirel. 

Commun. 9(11), 3590–3600 (2010)
	2.	 E.G. Larsson, O. Edfors, F. Tufvesson, T.L. Marzetta. Massive MIMO for next generation wireless systems. arXiv:​1304.​

6690 (2013)
	3.	 F. Rusek, D. Persson, B.K. Lau, E.G. Larsson, T.L. Marzetta, O. Edfors, F. Tufvesson, Scaling up MIMO: opportunities and 

challenges with very large arrays. IEEE Signal Process. Mag. 30(1), 40–60 (2013)
	4.	 H.Q. Ngo, E.G. Larsson, T.L. Marzetta, Energy and spectral efficiency of very large multiuser MIMO systems. IEEE Trans. 

Commun. 61(4), 1436–1449 (2013)
	5.	 C. Shepard, H. Yu, N. Anand, E. Li, T. Marzetta, R. Yang, L. Zhong. Argos: Practical many-antenna base stations, in 

Proceedings of the 18th Annual International Conference on Mobile Computing and Networking, pp. 53–64 (2012). 
ACM

	6.	 C.-S. Lee, M.-C. Lee, C.-J. Huang, T.-S. Lee. Sectorization with beam pattern design using 3D beamforming tech-
niques, in 2013 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, pp. 1–5 
(2013). IEEE

	7.	 X. Cheng, B. Yu, L. Yang, J. Zhang, G. Liu, Y. Wu, L. Wan, Communicating in the real world: 3D MIMO. IEEE Wirel. Com-
mun. 21(4), 136–144 (2014)

	8.	 L. You, X. Gao, X.-G. Xia, N. Ma, Y. Peng, Pilot reuse for massive MIMO transmission over spatially correlated rayleigh 
fading channels. IEEE Trans. Wirel. Commun. 14(6), 3352–3366 (2015)

	9.	 H. Xie, F. Gao, S. Zhang, S. Jin, A unified transmission strategy for TDD/FDD massive MIMO systems with spatial basis 
expansion model. IEEE Trans. Veh. Technol. 66(4), 3170–3184 (2016)

	10.	 P. Patcharamaneepakorn, S. Wu, C.-X. Wang, M.M. Alwakeel, X. Ge, M. Di Renzo, Spectral, energy, and economic effi-
ciency of 5G multicell massive MIMO systems with generalized spatial modulation. IEEE Trans. Veh. Technol. 65(12), 
9715–9731 (2016)

	11.	 N. Garcia, H. Wymeersch, E.G. Larsson, A.M. Haimovich, M. Coulon, Direct localization for massive MIMO. IEEE Trans. 
Signal Process. 65(10), 2475–2487 (2017)

	12.	 X. Du, A. Sabharwal. Shared angles-of-departure in massive MIMO channels: Correlation analysis and performance 
impact. submitted to IEEE Transactions on Wireless Communications (2019)

	13.	 X. Du, Y. Sun, N. Shroff, A. Sabharwal, Balance queueing and retransmission: Latency-optimal massive MIMO design. 
arXiv:​1902.​07676 (2019)

	14.	 A. Adhikary, J. Nam, J.-Y. Ahn, G. Caire, Joint spatial division and multiplexing-the large-scale array regime. IEEE Trans. 
Inform. Theory 59(10), 6441–6463 (2013)

	15.	 W. Shen, L. Dai, B. Shim, S. Mumtaz, Z. Wang, Joint CSIT acquisition based on low-rank matrix completion for FDD 
massive MIMO systems. IEEE Commun. Lett. 19(12), 2178–2181 (2015)

	16.	 Z. Gao, L. Dai, Z. Wang, S. Chen, Spatially common sparsity based adaptive channel estimation and feedback for FDD 
massive MIMO. IEEE Trans. Signal Process. 63(23), 6169–6183 (2015)

	17.	 X. Zhang, J. Tadrous, E. Everett, F. Xue, A. Sabharwal, Angle-of-arrival based beamforming for FDD massive MIMO, in 
2015 49th Asilomar Conference on Signals, Systems and Computers, pp. 704–708 (2015). IEEE

	18.	 Z. Jiang, A.F. Molisch, G. Caire, Z. Niu, Achievable rates of FDD massive MIMO systems with spatial channel correla-
tion. IEEE Trans. Wirel. Commun. 14(5), 2868–2882 (2015)

	19.	 J. Fang, X. Li, H. Li, F. Gao, Low-rank covariance-assisted downlink training and channel estimation for FDD massive 
MIMO systems. IEEE Trans. Wirel. Commun. 16(3), 1935–1947 (2017)

	20.	 D. Fan, F. Gao, G. Wang, Z. Zhong, A. Nallanathan, Angle domain signal processing-aided channel estimation for 
indoor 60-ghz TDD/FDD massive MIMO systems. IEEE J. Sel. Areas Commun. 35(9), 1948–1961 (2017)

	21.	 H. Xie, F. Gao, S. Jin, J. Fang, Y.-C. Liang, Channel estimation for TDD/FDD massive MIMO systems with channel 
covariance computing. IEEE Trans. Wirel. Commun. 17(6), 4206–4218 (2018)

	22.	 M.B. Khalilsarai, S. Haghighatshoar, X. Yi, G. Caire, FDD massive MIMO via UL/DL channel covariance extrapolation 
and active channel sparsification. IEEE Trans. Wirel. Commun. 18(1), 121–135 (2018)

	23.	 Y. Han, Q. Liu, C.-K. Wen, M. Matthaiou, X. Ma, Tracking fdd massive mimo downlink channels by exploiting delay and 
angular reciprocity. IEEE J. Sel. Top. Signal Process. 13(5), 1062–1076 (2019)

	24.	 F. Rottenberg, T. Choi, P. Luo, C.J. Zhang, A.F. Molisch, Performance analysis of channel extrapolation in fdd massive 
mimo systems. IEEE Trans. Wirel. Commun. 19(4), 2728–2741 (2020)

	25.	 B. Banerjee, R.C. Elliott, W.A. Krzymień, H. Farmanbar, Towards fdd massive mimo: Downlink channel covariance 
matrix estimation using conditional generative adversarial networks, in 2021 IEEE 32nd Annual International Sym-
posium on Personal, Indoor and Mobile Radio Communications (PIMRC), pp. 940–946 (2021). IEEE

	26.	 X. Zhang, L. Zhong, A. Sabharwal, Directional training for FDD massive MIMO. IEEE Transactions on Wireless Com-
munications (2018)

	27.	 3GPP: Study on 3D channel model for LTE. TR 36.873, 3rd Generation Partnership Project (3GPP) (2015). http://​www.​
3gpp.​org/​dynar​eport/​36873.​htm

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/1304.6690
http://arxiv.org/abs/1304.6690
http://arxiv.org/abs/1902.07676
http://www.3gpp.org/dynareport/36873.htm
http://www.3gpp.org/dynareport/36873.htm

	Analysis of scalable channel estimation in FDD massive MIMO
	Abstract 
	1 Introduction
	2 Methods
	2.1 System model
	2.2 FDD massive MIMO channels
	2.2.1 Propagation domain channels
	2.2.2 Measured channels

	2.3 Scalable channel estimation in FDD massive MIMO
	2.4 Modeling error definition
	2.5 Performance impact

	3 Results and discussion
	3.1 Modeling error: numerical results
	3.2 Modeling error: experimental results
	3.3 Performance impact: numerical results
	3.3.1 Performance impact: experimental results


	4 Conclusion
	Acknowledgements
	References


