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1  Introduction
Multicarrier systems rely on transmitting data over several subcarrier signals, offering 
significant advantages compared to single-carrier systems [1, 2]. For example, multi-
carrier modulation (MCM) splits a wideband channel into overlapping narrowband 
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and reinforcement learning. Lastly, we discuss current challenges and point out future 
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subcarriers, yielding high spectral efficiency and throughput. In addition, these systems 
are resilient to multipath fading channels, impulsive noise interference, and intersymbol 
interference (ISI) [2, 3]. Due to the development of digital signal processing, the MCM 
has been implemented in different wireless communication systems. For instance, the 
orthogonal frequency division multiplexing (OFDM) modulation has been applied to the 
long-term evolution (LTE) system air interface [4]. Likewise, the 3GPP fifth-generation 
(5G) network technical specifications adopted the OFDM modulation in the new radio 
(NR) air interface for early deployment [1]. Concurrently, other multicarrier systems 
are also proposed for the beyond 5G (B5G) and sixth-generation (6G) mobile networks, 
such as filter bank multicarrier (FBMC), generalized frequency division multiplexing 
(GFDM), and universal filtered multicarrier (UFMC) [2, 5, 6].

The OFDM applies inverse fast Fourier transform (IFFT) and Fourier transform (FFT) 
to, respectively, modulate and demodulate a given signal with low complexity [1]. The 
conventional OFDM also adds a cyclic prefix (CP) to its symbol to mitigate ISI. Some 
OFDM waveform disadvantages comprise high peak-to-average power ratio (PAPR), fre-
quency offset sensibility, and out-of-band leakage characteristics [1–3]. However, some 
techniques are introduced to OFDM systems to mitigate those drawbacks giving rise to 
some OFDM waveform variations, for example, wavelet OFDM, discrete Fourier trans-
form spread OFDM, windowed OFDM, and resource block filtered [3, 7, 8].

The FBMC waveform uses non-orthogonal subcarriers generated based on distinct fil-
tered pulses [9–11]. According to the filter design, a given subcarrier suffers intercarrier 
interference (ICI) only related to its adjacent subcarriers. Therefore, the FBMC improves 
spectral efficiency by removing the frequency guard band and drastically reducing the 
out-of-band leakage [9]. However, FBMC still has some disadvantages, like suffering 
from high PAPR. Cosine modulated multitone, filtered multitone, and discrete Fourier 
transform spread approaches are some techniques that reduce the PAPR, introducing 
FBMC waveform variations [3, 10].

GFDM and UFMC are seen as a variation of OFDM. The GFDM is a generalized con-
ventional OFDM that maps different services into flexible subcarriers and CP by deploy-
ing different filters [3, 12]. GFDM is also robust to frequency offset and has low PAPR 
with a high ICI sensibility. On the other hand, the UFMC has been proposed to mitigate 
the ICI in OFDM systems by filtering a group of subcarriers to reduce the out-of-band 
leakage [13, 14]. It allows for relaxing the CP and carrier synchronization constraints.

The multicarrier signals are sensitive to carrier frequency offsets introduced by a mis-
match between the local transmitter and receiver oscillators or due to high-mobility 
receivers in wireless communication systems [15]. The high-mobility receivers boost 
the Doppler effect phenomenon, which leads to ICI and system performance degrada-
tion. Multicarrier signals also suffer from other types of distortion, including channel 
noise sources and long- and short-term fading. Hence, the channel-imposed impair-
ments must be evaluated and compensated at the receiver for data recovery. This pro-
cess is accomplished through channel estimation and equalization techniques, involving 
a mathematical model that includes a channel matrix reflecting the relationship between 
the transmitted and the received signal [2, 16–19].

Traditional channel estimation techniques for multicarrier systems are classified 
into two main categories based on the sent signal knowledge at the receiver: blind- and 
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non-blind-based approaches [2, 17–19]. Blind-based channel estimation extracts statis-
tical properties from the received signals to avoid transmitting data training sequences 
during communication. Regardless, it requires a large amount of received data, result-
ing in performance degradation over fast-fading channels. Non-blind strategies rely on 
transmitting data known at the receiver for channel estimation, called pilot symbols. 
They outperform blind techniques at the cost of reducing spectral efficiency due to the 
pilots’ symbols transmission [19, 20]. A hybrid method between blind and non-blind 
procedures is called semi-blind channel estimation. It comprises sending training data to 
initialize the estimator, followed by blind detection techniques.

Radio channel estimations are challenging due to the rise of time-varying and fre-
quency selectivity introduced by the high randomness and environment-dependent sta-
tistical features driven by multipath propagation, transmitter and receiver mobility, and 
local scattering [2, 19, 20]. Consequently, the conventional model-based channel estima-
tion techniques have performance limitations under complex channel conditions, such 
as fast time-varying, multipath fading, and nonlinear deep fading conditions [21–23]. 
These environments challenge accurate mathematical channel estimation modeling, 
which might not fully encompass the channel features. This impairment lowers a mul-
ticarrier system’s performance due to the loss of channel estimation accuracy. However, 
AI-based learning algorithms can overcome those conditions by cramming the rela-
tionship among different system variables using either a model-driven or model-free 
approach.

AI enables devices to make decisions on their own based on past learning experiences. 
Instead of requiring hand-tuning, devices adapt their parameters to fluctuating environ-
ments to achieve the best operational state. Furthermore, the learning algorithms exploit 
the channel complexity without making unrealistic assumptions to outperform the 
conventional techniques under similar channels. Consequently, AI algorithms discard 
the need for accurate mathematical models for channel estimation, allowing for track-
ing parameter fluctuations over complex environments, undoubtedly encompassing 
those well-modeled channels. Thereby, AI-based channel estimation renews the channel 
estimation techniques and creates new ones. As a result, AI-based channel estimation 
approaches surpass the limitations of conventional methods, providing a high degree of 
estimation accuracy and improving communication systems performance [24].

AI-aided channel estimation studies are relevant to B5G/6G communications since 
AI itself is considered one of the foundations of future 6G networks [25, 26]. Moreo-
ver, B5G/6G networks are expected to operate in millimeter and terahertz frequencies 
to overcome bandwidth limitations and provide higher throughput. Hence, future radio 
communication systems will meet channels with grown complexity due to the increased 
attenuation (including the rain attenuation) and the high atmospheric absorption rates 
[25–29]. Beyond that, other required key technologies for B5G/6G, such as massive 
MIMO (mMIMO) and channel bandwidth improvement, will enlarge the transceiver’s 
complex architecture and introduce new challenges to channel estimation [24, 29–31].

Wideband channels can be frequency-selective compared to narrowband ones since 
the frequency components will face distinctive fading [29]. While multicarrier systems 
mitigate this effect, channel estimation techniques must be able to acquire the chan-
nel state information (CSI) under different system architectures and environments. For 
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instance, the mMIMO architecture requires a large number of antennas while demand-
ing a great number of pilot symbols [29, 30]. On the other hand, the worldwide spectrum 
availability in millimeter and terahertz frequencies can boost the adoption of frequency 
division duplex, dropping out the reciprocity between the downlink and uplink channel 
and raising the need for periodic CSI feedback [24, 30, 31].

Channel estimation techniques will undoubtedly face a renewed set of complex chan-
nel conditions in these new frequency bands, including some early mentioned ones. 
Therefore, the studies circumventing the extended application of AI capabilities to boost 
well-known channel estimation approaches and introduce new techniques are crucial to 
the physical layer of future communication systems. Moreover, it contributes directly 
to reshaping and building an intelligent physical layer to optimize the system decision 
through virtualized tools [22, 24, 30–33]. In this regard, this work is devoted to compre-
hensively and thoroughly discussing how AI algorithms play a critical role in the field of 
channel estimation techniques.

1.1 � Related works

Several surveys and reviews are in the multicarrier systems channel estimation field [2, 
5, 16–20, 34–38]. They mainly discuss the conventional channel estimation techniques 
without mentioning AI integration. Also, dedicated works about channel estimation for 
OFDM systems provide a comprehensive review of the state of the art by the time it was 
published [16–20, 35–38]. Other authors addressed the channel estimation techniques 
within a comprehensive review of OFDM systems [37]. An extensive review of chan-
nel estimation for waveforms of next-generation networks, including OFDM, FBMC, 
GFDM, and UFMC schemes, is found in [2]. Recently, channel estimation techniques 
have been discussed for 5G and millimeter-wave communication systems, including but 
not limited to OFDM systems [5, 29].

The AI-based channel estimation approach was considered for intelligent wireless 
communication systems for 5G/6G future networks [21, 24, 30, 32, 33, 39–46]. The 
channel estimation process was presented as a physical layer application employing AI 
algorithms to improve the CSI acquisition accuracy [21, 39, 45, 46]. There are already 
machine learning (ML) techniques overviews for solving different challenges in a wire-
less network, with a discussion concerning the ML categories and pointing out several 
applications [32, 33]. For instance, a regression-aided technique was indicated for chan-
nel estimation in high-mobility and nonlinear deep fading scenarios. A comprehen-
sive survey about ML in the vehicular network context is found in [43], reviewing and 
discussing the AI-based channel estimation techniques in the context of high-mobility 
OFDM systems.

Massive MIMO channel techniques for modeling and estimation were the focus of 
[30, 40], which briefly exploited channel estimation in OFDM systems. In [30], the chan-
nel characteristics were handled as an image processing problem in the context of deep 
learning (DL) networks. Meanwhile, DL application in mobile and wireless networks 
was conducted concerning the channel estimation techniques in the role of signal-driven 
processing [41], similar to the discussion in [44]. However, the channel estimation sub-
ject was not comprehensively reviewed, nor were the multicarrier systems included. The 
authors in [42] presented the channel estimation subject as a general approach without 
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focusing on multicarrier systems, investigating DL in terms of the model-based block 
architecture and algorithm design. A comparison between DL-based and conventional 
channel estimation methods has been provided in [24]. Moreover, performance analysis 
of ML-based channel estimation was carried out in [47], while recurrent neural network 
(RNN) channel estimation was studied in [48]. Finally, a short review of DL for channel 
estimation was provided in [49] without focusing on multicarrier systems.

Several works have been carried out DL for physical layer applications [22, 23, 31, 50, 
51]. A comprehensive overview of model-driven DL for physical layer communication 
was provided in [50]. It briefly concerned the model-driven advantages over the data-
driven to leverage low complexity algorithms for channel estimation in OFDM and 
MIMO-OFDM systems. DL-based block-structured functions for the physical layer were 
approached in [31], which investigated joining channel estimation and signal detection 
in the context of data-driven. In [23], the authors summarized the DL-based physical 
layer applications in 5G wireless, demonstrating how DL could assist the channel esti-
mation process. DL use-cases for physical layer applications for 6G communication sys-
tems are found in [22]. It discussed, in a general manner, the essential requirements and 
challenges on the physical layer in 6G future communication systems, highlighting the 
deployment strategies and key enabling technologies to employ DL. Some works in the 
channel estimation field were also cited, discussing their findings.

1.2 � Motivation and contributions

The analysis of the surveys, magazines, and review papers regarding AI for channel esti-
mation has shown a direct approach to demonstrate the ML and DL application in the 
5G and 6G physical layer communication systems, as summarized in Table 1. However, 
a few papers have covered AI for channel estimation research, and they are limited to 
specific scenarios, like high-mobility systems [43] or partially enfolding the subject [51]. 
Other papers supplied a tutorial introduction to AI-aided channel estimation, address-
ing the performance of a specific technique or comparing the most recent ones.

Motivated by the research growth of AI-based channel estimation in multicarrier sys-
tems, this work offers a comprehensive survey that covers the recent discoveries in the 
field, discusses them, and addresses future research directions. Therefore, this paper’s 
main contributions are as follows:

•	 An overview of channel estimation techniques for multicarrier systems comprising 
non-blind-, blind-, semi-blind-, and AI-based approaches, with the latter as a new 
group.

•	 A tutorial discussion on different approaches to implement channel estimation based 
on AI. It covers the concepts and implementations impairments of the AI-aided 
model-based block-type, AI-aided block-type, and AI-aided block-type channel esti-
mation joining function methods.

•	 A comprehensive survey and discussion about the recent findings in AI-based chan-
nel estimation and its complexity, considering the classical learning techniques such 
as regression, evolutionary algorithm, dimensionality reduction, and Bayesian learn-
ing.
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Table 1  Summary of existing surveys, magazines, and review papers related to artificial intelligence 
for channel estimation in multicarrier systems

Ref. Summary and focus Muticarrier systems Dedicated to 
AI-based channel 
estimation?

AI-based channel 
estimation discussion

Brief Moderate Extensive

[21] A discussion about 
the motivations 
for employing 
AI-enabled cellular 
networks.

OFDM No �

[22] A discussion about 
key requirements, 
challenges, deploy-
ment strategies, and 
enabling tech-
nologies for applying 
deep learning in 6G 
future communica-
tion systems physical 
layer.

OFDM No �

[23] A summary of deep 
learning-based physi-
cal layer application 
in 5G wireless com-
munication systems.

OFDM No �

[24] A comparison of 
deep learning-based 
channel estimation 
with conventional 
methods.

OFDM Yes �

[39] An overview of deep 
learning usage in a 
wireless networks, 
comprising different 
layers.

OFDM No �

[40] A survey on massive 
MIMO channel tech-
niques for modeling 
and estimation.

OFDM No �

[41] An extensive survey 
on deep learning in 
mobile and wireless 
networks.

OFDM No �

[32] A machine learning 
techniques overview 
to solve different 
challenges in wireless 
networks.

OFDM No �

[33] A review of applica-
tions of machine 
learning techniques 
for the next-genera-
tion wireless network.

OFDM No �

[30] A discussion about 
mMIMO channel esti-
mation techniques 
using deep learning.

OFDM No �

[42] A discussion about 
deep learning in 
terms of model-
based block architec-
ture and algorithm 
design for wireless 
communication.

OFDM No �
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Table 1  (continued)

Ref. Summary and focus Muticarrier systems Dedicated to 
AI-based channel 
estimation?

AI-based channel 
estimation discussion

Brief Moderate Extensive

[43] A comprehensive 
survey on machine 
learning applica-
tions in the vehicular 
network context.

OFDM No �

[44] A survey of four 
intelligent signal pro-
cessing topics for the 
wireless physical layer 
of MIMO systems: 
modulation classifica-
tion, signal detection, 
beamforming, and 
channel estimation.

OFDM No �

[45] A discussion about 
several novel deep 
learning applications 
for the physical layer.

– No �

[46] A physical layer 
review of the chal-
lenges of machine 
learning in wireless 
communication.

OFDM No �

[47] Performance analysis 
of machine learning 
applied to channel 
estimation.

OFDM Yes �

[48] A tutorial on recur-
rent neural networks 
for channel predic-
tion.

OFDM Yes �

[49] A brief review of 
deep learning 
channel estimation 
techniques for wire-
less systems.

OFDM Yes �

[50] A comprehensive 
overview of model-
driven deep learning 
in physical layer com-
munications.

OFDM No �

[31] A discussion about 
deep learning-based 
block-structured 
functions for the 
physical layer and 
deep learning-based 
end-to-end commu-
nication systems.

OFDM No �

[51] An overview of deep 
learning wireless 
communication 
systems applied to 
the physical layer.

OFDM No �
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•	 A comprehensive survey and discussion about the relevant neural network algo-
rithms for channel estimation and their complexity, including feed-forward neural 
network, extreme learning machine, recurrent neural network, deep neural network, 
and autoencoder.

•	 A discussion about the recent applications of reinforcement learning in channel esti-
mation and their complexity.

•	 A collection of open issues and future research opportunities to unwind the channel 
estimation for MCM communications systems, with an extension to single-carrier 
systems.

1.3 � Organization of the paper

The research on the paper subject has shown extensive interest by the academic com-
munity in devoting ML algorithms to channel estimation techniques for OFDM and 
mMIMO-OFDM. This statement is mainly driven by the natural adoption of MCM for 
4G and 5G mobile networks and other wireless systems. Hence, the authors have carried 
out OFDM principles to provide the fundamentals for guiding research after first con-
tact with the technology. Despite the lack of research field extension, a few works were 
uncovered carrying out the AI-based channel estimation for FBMC, GFDM, and UFMC 
modulation techniques. These findings were also included in the paper discussion, pre-
senting a complete state-of-the-art review.

Therefore, this survey is organized as shown in Fig. 1. A brief review of the OFDM 
principles is found in Sect.  2. Conventional, non-using AI channel estimation tech-
niques for multicarrier systems are reviewed in Sect. 3, providing a background for 
further understanding of AI-aided techniques. The AI-aided channel estimation 
approach is discussed as a new set of techniques identifying their main aspects. 
Henceforth, classical learning-aided channel estimation techniques are reviewed in 
Sect.  4. Regression, evolutionary algorithm, dimensionality reduction, and Bayes-
ian learning are covered in the context of supporting conventional channel estima-
tion techniques. The neural network (NN)-aided channel estimation techniques are 
discussed in Sect. 5, mainly including feed-forward neural network (FFNN), extreme 
learning machine (ELM), RNN, and deep neural network (DNN). The relevant 

Table 1  (continued)

Ref. Summary and focus Muticarrier systems Dedicated to 
AI-based channel 
estimation?

AI-based channel 
estimation discussion

Brief Moderate Extensive

This work A comprehensive 
survey of AI-based 
channel estima-
tion techniques for 
multicarrier systems 
comprising classical 
machine learning 
techniques and 
neural networks.

OFDM, GFDM, FBMC, 
UMFC

Yes �



Page 9 of 63Vilas Boas et al. J Wireless Com Network        (2022) 2022:116 	

networks are compared concerning the AI-aided channel estimation characteris-
tic presented in Sect.  3. End-to-end communication is also included and discussed 
in Sect.  5 since channel estimation is an intrinsic process learned by the autoen-
coder network, with the channel as a hidden layer. Finally, reinforcement learning 
techniques are addressed in Sect.  6. This emerging branch of AI has been recently 

Fig. 1  Organization of the paper
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investigated in the channel estimation context. Practical issues and open research 
topics are discussed in Sect. 7, and a conclusion is provided in Sect. 8.

2 � OFDM principles
Due to the prevailing OFDM channel estimation techniques during the research, 
this section presents the OFDM fundamentals to provide a look inside this modula-
tion technique and insights into the following sections. Regardless, we recommend 
looking inside the content in [2, 3, 9, 11, 12, 52] and the references therein for those 
also interested in reviewing the fundamentals of the FBMC, GFDM, and UFMC 
modulations.

Figure 2 depicts a general OFDM system structure, where the first and last blocks 
are similar, being only arranged inversely [20, 35, 37]. The first block comprises 
the serial-to-parallel converter (S/P) and the mapping functions, while the last one 
includes the demapping and parallel-to-serial converter (P/S) blocks. The S/P and P/S 
blocks are responsible for converting the bits into parallel groups or serial streams, 
respectively. The mapping and demapping blocks convert the bits into quadrature 
and in-phase components and the opposite, respectively, according to the modulation 
scheme adopted by each subcarrier.

OFDM divides the available channel bandwidth into N different overlapping nar-
rowband sub-channels. Instead of having one modulated single-carrier, N subcarri-
ers are modulated to be the data bearers. In the time domain, single-carrier symbols 
of duration Ts are converted into symbols of duration T = NTs . In the frequency 
domain, each sub-channel is utilized by a different subcarrier so that all subcarriers 
are orthogonal. The following subcarrier frequency spacing equation achieves the 
orthogonality,

(1)|fi − fk | =
n

T
,

Fig. 2  General OFDM system structure
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in which fi and fk are the ith and kth subcarrier frequencies, 1 ≤ i, k ≤ N  , with i  = k , 
respectively, and n a positive integer number. The OFDM symbol is formed by summing 
up all of the modulated subcarriers.

In practice, the OFDM symbol to be transmitted is obtained using an inverse discrete 
Fourier transform (IDFT). The transmitter applies the IDFT to the in-phase and quadrature 
components of all subcarrier modulating symbols. Thus, the transmitted signal is repre-
sented by

in which {ci} = {Ii + jQi} with Ii and Qi being the in-phase and quadrature components 
of the modulating symbols, respectively, 1 ≤ i ≤ N  . At the receiver, discrete Fourier 
transform (DFT) is applied to the received OFDM symbol to separate each subcarrier 
signal.

Although the OFDM modulation does not present ICI, the symbols can interfere with 
one another, leading to interblock interference (IBI) [3, 7, 9]. This issue is handled using the 
CP, a copy of the OFDM’s symbol end inserted at its beginning [19, 37]. Concerning the 
time-domain, the CP adds a guard time between OFDM symbols that avoids IBI as long as 
the time guard introduced by the CP is longer than the channel-imposed delay. Although 
CP combats IBI in OFDM systems, it affects the orthogonality among the OFDM mod-
ulated subcarriers. Hence, the receiver extracts the CP from the incoming signal before 
applying the DFT to separate each subcarrier signal at the receiver.

After using the DFT to obtain each subcarrier signal at the receiver ( yi ), there are 
expected differences compared to each sent symbol ( ci ). The channel influence and recep-
tor noise mainly own this contrast. Nevertheless, these phenomena have been extensively 
studied and found to be stochastic, meaning that their impact cannot be precisely calcu-
lated but assessed in terms of probability. Hence, the channel influence and the receptor 
noise over the sent signal will likely change as the communication system operates.

The channel affects the modulated transmitted symbol in a multiplicative manner. In 
other words, it introduces a complex gain over the symbol that can increase or decrease 
its magnitude and phase. The additive white Gaussian noise (AWGN), intrinsic to every 
communication system, is added to the received symbol. Therefore, each received sub-
carrier symbol sample is represented by

in which, hi and ni represent the channel frequency response (CFR) and the AWGN at 
each subcarrier, respectively.

The channel estimation block employs different techniques to estimate each hi value 
and feed the equalize block. If those techniques are robust enough, the output of the 
equalization block assumes the form

meaning that perfect estimation was achieved. When the channel estimation is imper-
fect, many issues arise, such as high bit error rate (BER), spectral inefficiency, an increase 
in the outage probability, and so forth [3, 7, 9, 19, 37].

(2)s(t) = F−1{ci},

(3)yi = hi × ci + ni,

(4)yiEqualized = ci +
ni

hi
,
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The main focus of this paper is on the techniques employed to estimate the channel 
in a multicarrier system. Hence, the following sections address traditional and recently 
proposed techniques. The former is a collection of immutable methods of system func-
tioning that are well known in the literature. The latter comprehends self-adjustable 
algorithms that have the potential to surpass traditional methods.

3 � Channel estimation techniques for multicarrier systems
This section overviews different conventional channel estimation techniques for mul-
ticarrier systems. It classifies them into blind, non-blind, and semi-blind approaches, 
as shown in Fig. 3. The blind methods are divided into two main subgroups: statistical 
and deterministic. The non-blind techniques are subclassified as data-aided and deci-
sion-directed channel estimation (DDCE). The former only uses the training sequence 
or pilot symbols for channel estimation, while the latter also employs the detected data 
symbol. Combining non-blind and blind methods results in a set of techniques called 
semi-blind. Applying AI-based techniques to the channel estimation field gives rise to 
a fourth group that uses ML, including DL algorithms. Since this work is dedicated to 
exploring the application of AI-based methods in the channel estimation area for multi-
carrier systems, we discuss its general characteristics and definitions herein.

3.1 � Blind‑based channel estimation techniques

Blind-based channel estimation techniques are classified as statistical and determinis-
tic. Statistical techniques explore the cyclic statistical properties of the received signal in 
the channel estimation process. As a result, it underperforms beneath shorter data sam-
ple sequences due to the statistical dependence of data. On the other hand, determin-
istic methods rely on quantities of both received signal and channel coefficients. Still, 
the computational complexity for deterministic methods is higher than the statistic ones 

Fig. 3  Classification of channel estimation techniques
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and increases as the constellation order grows at the transmitter side. However, deter-
ministic methods converge faster than statistical methods.

Statistical blind-based channel estimation methods are based on either the second-
order statistics (SOS) or higher-order statistics (HOS) of the received signal [53, 54]. The 
SOS approach requires signals with cyclostationary characteristics or channel diversity 
with single-input single-output (SISO) [55, 56]. Also, it demands less amount of data 
to obtain reliable statistical estimates related to the HOS approach. Indeed, the HOS 
has the advantage of providing system phase information without the need for channel 
diversity at the cost of a large amount of data sampling and computational capacity [53, 
54].

HOS applications mainly rely on single-carrier and MIMO systems [53, 54, 57, 58]. 
They leverage the functional properties of the impulse response channel matrix through 
third- or fourth-order cumulants. Meanwhile, earlier SOS algorithms have been applied 
to multicarrier systems, such as OFDM [53, 59]. The transmitter-induced cyclostation-
arity inserted by adding the CP evaluation of the received signal autocorrelation matrix 
using SOS [53, 59–62]. Transmitter-induced cyclostationarity techniques rely on filter-
banks and non-redundant linear precoding [53, 63–66]. These techniques are inserted 
before the MCM systems, enabling blind channel estimation at the system output 
through cross-correlation operations.

Blind channel estimation without the use of any statistics has also been proposed. 
The authors in [67] have shown that the channel matrix null space defines the chan-
nel parameters, forming the basis for the subspace blind channel estimation algorithm. 
These algorithms handle the orthogonality of the noise and the correlation matrix sub-
spaces of the received signal to estimate the channel coefficient. The correlation matrix 
is also estimated through time-averaging over received samples. This technique outper-
forms several statistic-based methods, especially under a limited number of data. The 
concept of subspace-based techniques has been investigated in multicarrier direct-
sequence code-division multiple-access (DS-CDMA) and multicarrier code-division 
multiple-access (MC-CDMA) systems to obtain timing and channel coefficient to deploy 
linear minimum mean squared error (MMSE) receivers [68–70].

Concerning OFDM systems, the subspace-based channel estimation method is pro-
posed to save bandwidth by removing or utilizing inherited redundancy or reducing or 
eliminating the CP by taking advantage of virtual subcarriers [71–75]. The subspace-
based channel estimation method for SISO-OFDM systems is generalized for MIMO-
OFDM systems in [76]. Furthermore, a subspace combined SOS approach has been 
proposed for CP-MIMO-OFDM systems [77]. Since the channel must remain static dur-
ing the estimation process, system performance is improved by reducing the time-aver-
aging and exploiting the frequency correlation among adjacent OFDM subcarriers [78]. 
Reduced received blocks in CP- and zero padding (ZP-OFDM) is achieved by obtaining 
the correlation matrix from the cyclostationary properties of the received signal [79]. 
Meanwhile, a second approach is discussed by frequency-domain calculating the covari-
ance matrix from a selected group of subcarriers [60].

Blind channel estimations are also implemented based on the finite-alphabet property 
of the information-bearing transmitted symbols [80–84]. The finite-alphabet approach 
overcomes the loss of channel identifiability in a subspace-based algorithm when the 
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channel has nulls in subcarriers. These algorithms have been proposed for multicarrier 
and MIMO multicarrier systems [80–84]. A blind shortening channel estimation algo-
rithm might also mitigate the ICI based on an adaptive time-domain equalizer (TEQ) 
[85, 86]. Other blind-based channel estimations make the most of the concept of expec-
tation maximization (EM) algorithm, maximum-likelihood principle, minimum variance 
principle, and orthogonal space-time block codes (OS-TBCs) [87–91]. Blind adaptive 
algorithms are implemented based on normalized least mean square (NLMS), recursive 
least square (RLS), and variable step size approaches [92, 93]. These algorithms adapt 
their filter parameters to minimize the mean squared error (MSE) between the filter out-
put and the signal.

3.2 � Data‑aided channel estimation techniques

Data-aided channel estimation techniques are common in multicarrier communication 
systems. First, the known information is multiplexed within the data symbols at spe-
cific positions at the transmitter. Next, the receiver uses this information to estimate the 
related channel impulse response (CIR). Finally, it implements an interpolation process 
among these isolated CIRs to estimate the channel for those unknown data symbols.

Data-aided channel estimation techniques are implemented using two conventional 
strategies. The first is a training-based channel estimation technique that relies on 
periodically knowing the transmitted information over one or more symbol periods. 
The second method considers sending general information within the data, giving rise 
to pilot-assisted channel estimation. Despite the approach, knowing the information 
requires a fraction of the signal bandwidth to be wasted, reducing the spectral efficiency 
compared with other channel estimation techniques. In addition to that, the interpola-
tion process introduces errors in channel estimation.

Regarding multicarrier systems, conventional data-aided channel estimation uses least 
square (LS), MMSE, or least mean square (LMS) methods to estimate the CFR in train-
ing or pilot mode. Most researches deal with OFDM and MIMO-OFDM systems due to 
the extensive adoption of this MCM in a wireless network. Still, recent works are dedi-
cated to generalizing the devoted OFDM data-aided channel estimation to other MCM, 
such as FBMC and GFDM [94–96]. The training sequence, also called block-type pilots, 
allows for tracking only channel frequency variations (slow fading channel) due to the 
one-dimensional (1D) periodicity, estimating the channel response at each subcarrier. 
The conventional method assumes the channel is the same within the training sequence 
periodicity [97]. In this case, the estimated channel is used for the consecutive received 
symbols until another training sequence arrives. Time-domain linear interpolation or 
higher-order polynomials are considered under fast-fading channels, with the cost of 
increasing the system latency [98, 99].

The pilot-assisted or comb-type pilot methods utilize scattered pilot patterns and, 
therefore, tracks time–frequency variation. The channel estimation accuracy depends on 
the pilot pattern and the interpolating algorithm. The two-dimensional time–frequency 
pilot space defines the former. The frequency-domain pilot spacing must ensure the esti-
mation of channel frequency variation, which depends on the delay spread. On the other 
hand, the time-domain pilot placement is related to the Doppler spread. Several works 
have studied the optimum time–frequency pilot pattern to reduce the number of pilots 
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while preserving the time–frequency variation sampling capabilities. Some OFDM and 
MIMO-OFDM approaches rely on optimally designing the pilot pattern to minimize the 
MSE during the channel estimation [100–113]. For instance, that has been demonstrated 
to be accomplished through equipowered and equispaced pilots [100, 101], optimum 
power and pilot space related to the lower bound of the average channel capacity [102], 
heuristic algorithm [103, 104], general interpolator [105], convex optimization algorithm 
[106], nonuniform placement [107–109], optimum pilot power and phase selection [110, 
111], iterative algorithm [112], and hopping pilots scheme [113]. In addition, grouping 
pilot tones into some equispaced clusters can also improve the channel estimation under 
the MMSE criterion [114].

Analyzing the different pilot placement approaches provides a comprehensive conclu-
sion on the need for adaptive pilot allocation schemes. Pilots transmitted with a power 
higher than the data symbols improve the channel estimation accuracy. However, it gives 
rise to the power allocation issue [115]. Furthermore, the power of pilots at different 
subcarriers must remain equal to meet the MMSE [100]. Superimposed training consists 
of transmitting data and pilot symbols within the same available resources with differ-
ent power values, and avoids data rate loss [116–120]. Nonetheless, the channel estima-
tion performance is decreased due to the interference introduced by the superimposed 
data symbols. Partial superimposed data is an alternative to improve the data rate, while 
channel estimation takes advantage of the aforementioned pilot-assisted methods [117, 
119]. Other pilot design criteria remains on bit error minimization [121], MIMO pream-
ble pilot design [122], channel tracking performance [123], channel capacity maximiza-
tion [124, 125], multiuser pilot design [126, 127], and PAPR reduction [128–130].

The OFDM pilot-assisted methods can be extended to GFDM schemes due to their 
block-based modulation, as found in [131, 132] and the references therein. Regarding 
FBMC systems, the channel estimation techniques for FBMC offset quadrature ampli-
tude modulation (OQAM) have been addressed. This FBMC scheme counts on real-val-
ued OQAM symbols, relaxing the real-domain orthogonality of the ambiguity function 
in the FBMC-OQAM system [133, 134]. However, due to the inherent interference prob-
lem, this characteristic is insufficient for channel estimation purposes in FBMC-OQAM. 
Thus, the estimation techniques are established in two main categories: scattered pilots 
and preamble-based approaches [94, 135–138]. The former consists of an auxiliary pilot 
(AP) or a pair of pilots (POP). The AP method allows for canceling the interference at 
the transmitter while the POP combines the two adjacent pilots to estimate the channels 
real and imaginary parts. The latter encompasses training symbols periodically transmit-
ted over three symbols for interference control.

3.3 � Decision‑directed channel estimation techniques

The DDCE techniques use the data-aided strategy with the detected data symbols in 
the channel estimation process [19, 20]. First, it employs the detected symbols to esti-
mate the channel, which, in turn, is applied to estimate the incoming data. Later, a 
channel estimation update uses this data, extending the process until all the symbols 
are counted. Finally, the decision is based on a bitwise approach or forced constellation 
points, defining the soft [139] or hard techniques, respectively [140, 141]. Using detected 
symbols introduces some disadvantages to DDCE techniques under fast-fading channel 
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estimation. First, the estimation process is based on outdated data, decreasing the sys-
tem performance. Once the current channel might not correspond to the one in which 
the incoming symbols have propagated, symbol error detection is introduced. The new 
symbols are fed back into the process to update the channel, leading to the propagation 
of the error estimation. In this case, the training symbols transmission periodicity must 
be adjusted according to the channel characteristic [19, 141].

The DDCE methods are addressed for OFDM systems with different approaches. They 
include joint estimation of carrier frequency offset (CFO) and sampling clock frequency 
offset [140], sample-spaced and fractionally spaced CIR [142], generalized M estimators 
for mitigating error propagation [141], LS and least MMSE estimators [143], maximum 
a posteriori channel estimation [144], hard decision signal-to-noise ratio (SNR)-assisted 
residual CFO estimation [145], joint CIR and noise variance estimation [146], subspace 
algorithm [147], time-domain channel equalizer [144], and EM algorithm [81]. Perform-
ing soft DDCE based on selecting reliable data tones purified by inter stream interfer-
ence cancelation is proposed in [139]. In [148], it considers a DDCE channel estimator 
based on OFDM packets consisting of a preamble followed by data symbols. The tech-
nique leverages the temporal correlation in channel responses over adjacent OFDM 
symbols. Further, pilot symbols extract correlation in the CFR across nearby subcarriers 
to decrease the effect of decision errors in the time domain through frequency-domain 
averaging. Other works depend on reducing DDCE technique complexity for OFDM 
systems using transmit diversity [149–151].

3.4 � Semi‑blind channel estimation techniques

Semi-blind channel estimation techniques combine both non-blind and blind methods 
[152, 153]. The hybrid solution allows for better tracking of channel variations by send-
ing training data at the beginning of the transmission interval to initialize the estimator. 
Similar to the previous techniques, most works have been dedicated to exploiting semi-
blind channel estimation for OFDM and MIMO-OFDM systems. For instance, blind 
subspace algorithms combined with training sequences explore the signal SOS [74, 154–
156]. Furthermore, first-order statistics of the received signal have been used for semi-
blind channel estimation in pseudo-random postfix OFDM systems using weighted 
pseudo-random postfix sequences [157].

Semi-blind algorithms are accomplished using HOS or SOS within linear prediction 
like training-based LS [158]. SOS has been proven helpful in ICI and ISI suppression 
in a time-domain equalizer [159]. In [160], superimposed training is applied with the 
Gaussian maximum-likelihood criterion. Then, semi-blind estimation methods are used 
with sparse channels [161–163]. Some approaches employ the SOS signal to express the 
received signal’s correlation matrix utilizing the most significant taps (MST) [161, 164, 
165]. Thereafter, the MST estimation is performed based on a training-based LS crite-
rion. Concerning the GFDM and FBMC systems, there are a few semi-blind approaches 
for channel estimation that are similar to those discussed for OFDM [166–168].

3.5 � AI‑aided channel estimation techniques

The conventional channel estimation techniques use a model-based design, requir-
ing accurate mathematical models according to the channel attributes. In addition, 
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complex environments are challenging for designing channel estimating mathemat-
ical models, which might not correspond to reality. This impairment decreases the 
system performance due to the loss of accuracy in the channel estimation process. 
AI-based algorithms have the property of learning the relationship among differ-
ent system variables without the knowledge of a mathematical model [30, 32]. This 
model-free approach allows leveraging the channel complexity without unrealistic 
assumptions, following a better performance than conventional techniques under the 
same channel [24]. Figure 4 shows the system implementation, training process, strat-
egy, and supervision learning-level aspects related to the AI-aided channel estimation 
techniques.

The traditional wireless communication systems design depends on block-type 
transmitter and receiver structures. The different system functions are deployed as 
independent blocks and can be described as mathematical models. This approach 
supports block-by-block optimization to enhance the system overall performance. 
The channel estimation process is also deployed as an independent block function-
ality. Consequently, the AI algorithms can be added to the model-based design to 
strengthen the channel estimation through channel parameters prediction, defining 
the AI-aided model-based block-type channel estimation (AMBCE) approach [31]. 
Further, the AI algorithm can replace the model-based channel estimation, resulting 
in the AI-aided block-type channel estimation (ABCE) methods.

The AI learning capacity yields different joint functions at the transmitter or the 
receiver. For instance, combining the channel estimation process with signal detec-
tion [31]. This approach is defined as AI-aided block-type channel estimation joining 
function (ABCEx). An extension of this concept comprises modeling both the trans-
mitter and receiver as a unique AI network resembling autoencoder models [30, 45, 
46, 50]. From the implementation point of view, the system is seen as an end-to-end 

Fig. 4  AI-aided channel estimation aspects



Page 18 of 63Vilas Boas et al. J Wireless Com Network        (2022) 2022:116 

solution with a single block, whereas the channel is a hidden layer. This strategy is also 
considered in the review process since channel estimation is an intrinsic function.

Regarding the supervision level, AI-based channel estimation algorithms are grouped 
into supervised, unsupervised, and reinforcement learning, a conventional classification 
of ML algorithms [21, 169, 170]. The former is efficient but requires a labeled dataset for 
training purposes. On the other hand, unsupervised learning observes a random dataset 
to extract patterns to model the process and predict its behavior. This AI algorithm is quite 
useful when the system data are vast. Finally, reinforcement learning introduces interac-
tions between the system and its experience performance using feedback rewards and 
penalties.

There are aspects related to the AI-aided channel estimation techniques concerning the 
training process. The standard AI networks are data-driven, with the network structure 
trained using a large amount of data. This approach is extended to the AI-aided channel 
estimation technique, giving rise to some impairments. Moreover, the standard algorithm 
requires a long training time, which may not be affordable for some wireless applications. 
Hence, the model-driven approach is an alternative to solve these drawbacks, comprising 
a model, an approach, and a network [22, 50, 171]. The model is based on physical mecha-
nisms and domain knowledge to provide general solution guidance to design an algorithm 
as a solution. As a result, the AI network is deployed based on the unfolding algorithm pro-
cess, which demands less training time and data.

Online and offline training strategies are considered for AI-aided channel estimation 
techniques [22, 50]. The former trains with a large amount of data as they come from differ-
ent communication systems or reliable simulators, whereas the latter means training with a 
static dataset. Offline training is not affordable for complex environments due to the static 
training model, eliminating the capability of tracking channel variation effects. Also, the 
static characteristic reduces the AI network training for communication systems related to 
the training dataset. Furthermore, online training introduces real-time updating of the AI 
network parameters by tracking the channel effects variation and extending the application 
range to different practical environments.

The AI-aided channel estimation strategies survey has revealed three practical 
approaches: classical ML, NNs, and reinforcement learning (RL). The former consists of 
applying regression, dimensionality reduction, and Bayesian learning to improve conven-
tional channel estimation methods performance, as shown in Fig.  5. The estimator pre-
serves the block-type structure based on the AMBCE approach with supervised learning. 
The NN-based estimator comprises AMBCE, ABCE, and ABCEx structures depending 
on the proposed approach. The data-driven or model-driven procedures are also recur-
rent. Different schemes are surveyed among the NN structures, as presented in Fig. 5. The 
autoencoder network is classified as ABCEx, with data-driven nature and online train-
ing. The reinforcement learning branch is also covered with pioneer works studying the 
Q-learning technique. The following sections look at the relevant works in the AI-aided 
channel estimation for the multicarrier systems field.
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4 � Classical learning‑aided channel estimation techniques
The classical learning techniques are discussed in this section, focusing on their 
applications to conventional model-based techniques. The linear, polynomial, and 
nonlinear regression algorithms are early basic applications of ML concepts for 
channel estimation. Support vector regression (SVR) has recently been raised as a 
potential regression strategy in AI-aided channel estimation techniques [172, 173]. 
The evolutionary algorithm has also been applied to channel estimation, whereas 
the genetic algorithm is more widely used than other evolutionary techniques. In 
parallel, dimensionality reduction has been investigated as an iterative algorithm 
estimator technique. It has been revisited in the AI era as an interesting technique 
to reduce voluminous datasets while preserving their information and refining DNN 
strategies [174]. Finally, the Bayesian learning techniques are also applied to iterative 
algorithms and are seen as primary stages of ML.

Fig. 5  Classification of AI-aided channel estimation techniques
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4.1 � Regression

Regression algorithms consist of a statistical process defining a relationship between two 
dataset-related variables. The main concept is to find a function that best fits the training 
data behavior to perform predictions. For example, linear [175–177], polynomial [178], 
2D nonlinear [99, 179, 180], and support vector [172, 173, 181–187] regressions have 
been employed in channel estimation for multicarrier systems. Regression algorithms go 
under the supervised learning paradigm. The following works considered the regression 
strategy applied in an AMBCE manner.

4.1.1 � Linear and polynomial regression

Linear regression involves finding a linear equation to predict the value of a dependent 
variable (y) according to a given data value, called an independent variable (x). The linear 
equation is given as y = ax + b , where a is the slope of the linear function and b is the 
intersection with the y axis [188]. The method considers simple linear regression with 
a single-input variable or a multiple linear regression comprising multiple inputs. The 
line best fitting the dataset values is obtained using an approximation based on an error 
criterion such as the MSE. However, there are datasets for which a linear curve does not 
represent the relationship between the independent and dependent variables. Therefore, 
the linear regression evolved into a polynomial regression by adding a polynomial of 
order higher or equal to two [189]. The polynomial degree is a hyperparameter that must 
be determined to avoid dataset over- or underfitting.

In connection with channel estimation, the linear regression algorithm enhances 
the interpolation process in data-aided methods, where the channel is first estimated 
through comb-type schemes at the pilot subcarriers. For instance, the linear regression 
is combined with a pilot-assisted iterative channel estimation [175], an LS estimator 
[176], and normalized MSE estimator [177]. An LS fitting (LSF) polynomial regression is 
derived from a linear MMSE to approximate the eigenvectors of the channel correlation 
matrix by orthogonal polynomials [178]. The MSE performance of the LSF is close to 
the linear MMSE when the polynomial degree is high or equals to two. The LSF advan-
tage is the non-statistical strategy over the linear MMSE. Channel estimation and data 
detection are combined in a blind or semi-blind regression model approach [190]. The 
regression algorithm is applied to find the data sequence associated with the LS channel 
estimator within the set of possibilities.

4.1.2 � Nonlinear regression

Nonlinear regression is a variation where the model function combines nonlinear 
parameters related to one or more independent variables. This regression is similar to 
the above-mentioned variations since they all call to find a curve or surface best fitting 
a dataset [191]. A look inside its application to the channel estimation for multicarrier 
systems has revealed that the nonlinear regression model is based on a time–frequency 
space (2D regression model) and combined with an initial channel estimation through 
an LS estimator [99, 179, 180]. First, the pilot carriers are applied to the LS estimator 
to calculate the channel at those taps. Next, the time–frequency plane is divided into 
the same block structure. Then, the 2D nonlinear regression is applied to each block to 
find a 2D surface function to minimize the Euclidean distance to the initial LS channel 
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estimation at the pilot subcarriers. Finally, the regression function estimates the chan-
nel at the data symbol taps in the time–frequency domain grid. The results of BER have 
revealed an excellent approximation to the perfect channel estimation.

4.1.3 � Support vector regression

The support vector regression is an extension of the support vector machine algorithm 
for regression estimation problems [181, 192, 193]. This algorithm introduces the error 
acceptance flexibility into the regression field [192]. By taking the linear regression as 
an example, the goal is to minimize the squared error, while the SVR aims at minimiz-
ing the coefficient errors. Hence, the model absolute error is managed to be lower or 
equal to a maximum error ( ǫ ). As a consequence, the model accuracy is handled by con-
strained specifications [193].

The SVR has been used to estimate nonlinear channels in OFDM and MIMO-OFDM 
systems. The SVR was combined with a data-aided channel estimation method like the 
previous regression techniques. A multi-regressor SVR was proposed to track the rela-
tionship between transmitted and received data through channel estimation, with BER 
performance similar to the MMSE [181]. Using the same training dataset, a BER com-
parison between the proposal and the radial basis function network (RBFN) has shown 
that the multi-regressor SVR exhibits lower values.

Moreover, a complex LS-SVR channel estimator for pilot-assisted OFDM systems 
was formulated by observing the signals time–frequency relationship, surpassing the LS 
estimator [182]. Next, the nonlinear SVR-based algorithm was extended to stand highly 
selective channels for OFDM systems [184–186]. Notably, a method was proposed based 
on a learning and estimation phase process to get the frequency response of a MIMO-
OFDM system. This approach comprises mapping trained data into a high-dimensional 
space and using the structural risk minimization principle to leverage the regression 
estimation for the CFR function [186].

By combining the MMSE with the nonlinear SVR, the authors in [187] accomplished 
better channel estimation than the LS-SVR. The proposal was to map the input data into 
a finite-dimensional space to enable a higher-dimensional Hilbert space, similar to the 
approaches in [184, 185]. A nonlinear SVR-based algorithm implemented with a radial 
basis function kernel for LTE systems leveraged the information in the pilot subcarri-
ers to estimate the CFR [183]. The algorithm leads to lower BER under the same SNR 
compared with the LS and feedback estimators, from a good approximation to a per-
fect estimation. The wavelet transform was used to obtain weights to improve twin SVR 
(TSVR) channel estimation in pilot-assisted OFDM systems operating in fast selective 
fading channels [172, 173]. The training samples are weighted according to their distance 
from the mean values filtered by the wavelet transform. The TSVR algorithm was evalu-
ated in terms of BER and compared with other approaches, resulting in the TSVR being 
the closest to the perfect estimation curve.

4.1.4 � Complexity discussion

Complexity-wise, linear and nonlinear regression estimation shows low complexity and 
can be adapted to MIMO systems [99, 175, 176, 179, 180]. On the other hand, SVR algo-
rithms demand higher computational complexity but still reserve room for improvement 
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and outperform the other algorithms [181, 182, 184, 185]. Models combining MMSE 
and SVR also require high computational complexity, but the authors in [187] claim it 
can be reduced.

4.2 � Evolutionary algorithm

Evolutionary algorithms are convectional ML methods based on biological evolution 
mechanisms, aiming at the global minimum while not sticking to local minima. Some 
evolutionary algorithms are the genetic algorithm (GA), repeated weighted boosting 
search (RWBS), particle swarm optimization (PSO), differential evolution algorithms 
(DEA), and colony optimization [194, 195]. Among those approaches, GA [196–202], 
RWBS [203–205], and PSO [206–209] have been applied to channel estimation in mul-
ticarrier systems. Evolutionary algorithms are also exploited mainly in pilot pattern 
placement optimization, which is out of the scope of this work [210, 211]. This approach 
indirectly improves conventional estimators performance, defining the optimal pilot pat-
tern without supporting the channel estimation process.

4.2.1 � Genetic algorithm

The GA solves a given optimization problem based on biological evolution, as shown in 
Fig. 6 [212]. First, the algorithm generates an initial population and evaluates each indi-
vidual with a fitness value. After that, it selects the fittest individuals, discarding the oth-
ers. Then, the remaining individuals are crossed-over to generate new ones, employing a 
mutation scheme to insert randomness. Finally, the new population is evaluated to rank 
the individuals for future replacement and selection. After reaching a given criterion or a 
predefined number of generations, the algorithm terminates.

The GA has been used for OFDM channel estimation based on AMBCE systems 
implementation. For instance, the GA was applied to yield weight optimization for 
NN, decreasing the iteration number, training time, and overall computational com-
plexity [196]. The joint solution has overcome the MMSE estimator. Beyond that, the 
interpolation process has been replaced by a GA to assist a pilot-aided OFDM system 
in estimating the CFR of non-pilot subcarriers [197]. However, the results have proved 
that the approach has not outperformed the conventional techniques, claimed by the 
authors as a novel method. A blind channel estimator based on GA has been proposed 
using cyclostationarity and spectral factorization [201]. The solution has been shown 

Fig. 6  Genetic algorithm working principle
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to improve blind estimators by combining spectral factorization and GA compared to a 
subspace-based estimator from the literature.

Combining the LS and MMSE estimators has been accomplished using a GA [198]. 
The linear estimators generate the initial population to feed the GA and optimize the 
channel estimation. The GA allowed selecting the best channel estimation matrix among 
three candidates using a fitness function. Then, mutation operation is applied to the LS 
and MMSE, followed by a crossover process and a second mutation. The method was 
evaluated by comparing its normalized MSE with the standalone LS and MMSE imple-
mentation. In conclusion, the approach exhibited better results than the conventional 
estimators for binary phase-shift keying (BPSK) with a few iterations, which was over-
come by the quadrature phase-shift keying (QPSK) modulation as the iteration numbers 
grew. Joint GA-based channel estimation and multiuser detection have also been carried 
out in rank-deficient scenarios [194, 199, 200, 202].

4.2.2 � Repeated weighted boosting search

The RWBS is a guided stochastic global search optimization algorithm to solve complex 
problems [213]. It requires an initial random population related to the potential solu-
tions. Then, the population is updated by replacing the worst individuals with a convex 
combination of the potential solutions [214]. Based on this concept, some channel esti-
mation techniques were obtained for OFDM systems [203–205]. For example, this algo-
rithm was used and modified to generate a candidate CIR vector approximating to the 
global optimum solution instead of summing the weighted candidate vectors [203]. This 
approach improves the convergence rate of the proposed estimator when compared with 
the conventional version (using the RWBS without modifying the generation process) 
at the cost of the worst performance. Still, under scenarios with a limited number of 
subcarriers, an assessment revealed the algorithms equivalent performance with faster 
convergence and low complexity.

Furthermore, joining channel estimation and multiuser detection for OFDM systems 
was accomplished by applying the RWBS algorithm to provide soft outputs to feed a 
forward error correction (FEC) decoder [204]. The joint solution iteratively estimates 
the CIR while trading information between the detector and estimator through the FEC 
capability. The results have shown the solution potential to equal the performance of 
the LS estimator and approach the maximum-likelihood multiuser detection with those 
using the perfect CIR. Despite the lack of comparison, the work under discussion might 
be a variation solution based on a GA [199]. Lately, Hanzo’s research group has pro-
posed a quantum-assisted RWBS algorithm for channel estimation with joint data detec-
tion [199]. They have claimed their quantum RWBS-based estimator differs from their 
previous work by adopting a different methodology for creating the individual popula-
tion and maintaining the algorithms complexity. However, an evaluation comparison of 
their solutions has shown superior performance of the quantum RWBS algorithm [205].

4.2.3 � Particle swarm optimization

The PSO concept relies on the social behavior of insects and sociable animals. Such an 
approach defines group behavior while also considering individual intelligence. Since a 
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particle finds an optimal solution, the others attempt to pursue it considering its posi-
tion, as shown in Fig. 7.

Inspired by this behavioral algorithm, some works have inserted it in the channel 
estimation context for OFDM and MIMO-OFDM systems. The channel parameters 
are estimated using iterative linear estimators and delivered to the PSO algorithm that 
works with it to improve the BER [206]. The BER comparison against the LS and least 
minimum mean squared error (LMMSE) estimator has shown that the proposal equals 
performance, mainly with the latter. Furthermore, using superimposed training symbols, 
a multi-objective PSO has been designed to join channel estimation and decoding in 
MIMO-OFDM systems [207]. The estimator analysis showed promising results under 
rank-deficient scenarios. Moreover, other approaches were proposed for joint channel 
estimation and data detection [208], or partial parallel interference cancelation through 
auxiliary PSO [209], with this last one outperforming the MMSE estimator.

4.2.4 � Complexity discussion

GAs present more computational complexity than regression algorithms [196–200]. 
Mainly, GA-artificial neural network (ANN) exhibits 10% less number of iterations con-
trary to the conventional Levenberg–Marquardt (LM) multilayer perceptron (MLP) 
channel estimator [202]. RWBS proved less complex and able to achieve perfect channel 
estimation without requiring a large dataset [203–205]. PSO had its computational com-
plexity varying according to the channel coefficients demanding a few iterations (100 at 
maximum) to overcome LMMSE estimate [206–209]. A comparison among some of the 
discussed evolutionary algorithms is available in [194].

4.3 � Dimensionality reduction

The dimensionality reduction ML algorithm includes techniques aiming to reduce 
dataset dimensions, yielding better predictions [174]. Among those strategies, princi-
pal component analysis (PCA) and independent component analysis (ICA) are applied 
to multicarrier systems channel estimation. The former relies on orthogonal transfor-
mation to convert correlated variables into uncorrelated variables [174]. It reduces the 

Fig. 7  Particle swarm optimization principle
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dataset dimension to principal components while maximizing the variance. The latter 
focuses on separating diverse independent sources while keeping the dataset dimension.

The PCA has been applied to OFDM and MIMO-OFDM systems [174, 215–217]. The 
approaches use PCA to find the principal components of the dataset for channel esti-
mation purposes. The data is arranged in a matrix to calculate the eigenvectors of the 
covariance [215], with the greatest one defining the principal component eigenvector 
of the dataset used for channel estimation. An improved multi-scale PCA (I-MSPCA) 
is accomplished by combining a wavelet transform, as shown in Fig.  8 [217]. Wavelet 
decomposition is performed upon the received OFDM symbols to compute the covari-
ance matrix of the wavelet coefficients, filtered by a threshold, and applied to the PCA 
algorithm. The computed principal components are passed to a cross-correlation block 
to correlate them with the received OFDM symbols. The most outstanding value of the 
maximum cross-correlation values is selected to define the principal component repre-
senting the CIR. The I-MSPCA was evaluated in a frequency-selective channel and per-
formed better than the proposal in [215] and the traditional LS estimator.

A semi-blind method used the LS criteria within pilots to estimate the initial CIR 
and applied the PCA to track channel variations through a two-layer NN using an RLS 
variable step size [216]. A recent approach applied PCA as a dimensionality reduction 
transformation to create an ML synthesizer for CSI [174]. The PCA is used to assist 
in generating of artificial samples from a real voluminous dataset while preserving the 

Fig. 8  Channel estimation using the I-MSPCA proposed in [217]
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information. This approach aims to support DL models that require a large amount of 
training data.

Similarly to the PCA, the ICA has been studied in the context of OFDM and MIMO-
OFDM systems channel estimation [218–221]. The ICA application enables blind sig-
nal separation, supporting blind equalizers design based on iterative layered space-time 
equalization [218] or MMSE and layered space-frequency equalization to enhance the 
system performance [219]. The proposal combining wavelet transformation and ICA is 
presented in [220], which is similar to the approach discussed in [217] for PCA. In [221], 
a semi-blind channel estimation strategy integrates ICA with pilot carriers. The pilots 
allow obtaining initial channel estimation that serves as the input data to the ICA algo-
rithm. Notably, ICA usage has leveraged blind and semi-blind estimators outperforming 
the MMSE estimator even when using perfect CSI [219, 220].

Complexity-wise, dimensionality reduction ML algorithms represent a simple and fast 
approach to assist the multicarrier systems decision block. Moreover, they accelerate 
the convergence of the decision block after enriching the training dataset. However, the 
decision block technique mainly impacts the overall systems computational complexity.

4.4 � Bayesian learning

Bayesian learning algorithms rely on the Bayes theorem, where the a posteriori probabil-
ity of a variable is conditional on the observed a priori probability of a known input vari-
able [222]. The model is initialized based on the belief that the data is updated after the 
learning algorithm extracts information from it. Regarding the channel estimation area, 
Bayesian learning estimates the channel parameters upon the received signal observa-
tion [222, 223]. This method generates a model-based design approach, which is the 
concept of several works, including multicarrier systems. Furthermore, some works have 
recently addressed the Bayesian learning theory to enable iterative channel estimation in 
multicarrier systems [223–226]. These strategies count on joining the Bayes theorem to 
an iterative technique, which can be seen as a prior stage to ML Bayesian algorithm for 
channel estimation. Thus, a brief discussion of their findings is addressed.

The Bayesian clustered-sparse channel estimation (BCS-CE) method is applied to 
frequency-selective fading channels to exploit the cluster correlation in the training 
matrix, improving the estimation performance [223]. The BCS-CE was compared with 
traditional sparse channel estimators, with an LS estimator knowing the channel using 
the lower bound. The average MSE results show that the proposed estimator exceeds 
the traditional methods and converges to the lower bound for higher SNR. Despite that, 
its complexity is higher than that of traditional estimators. Besides, Bayesian learning 
has been joined to binary particle swarm optimization to afford pilots optimal design 
and channel estimation through the mutual incoherence property (MIP) criterion [224]. 
The proposed estimator was evaluated assuming 16 and 24 pilots optimally positioned 
according to the MIP criterion and compared with the 124 equidistant pilots applied to 
the LS estimator. The estimator outputs a better performance than the LS with 16 pilots, 
while the 24 pilot cases showed a better performance for higher SNR.

EM and Bayesian learning algorithms have also enhanced channel estimation on 
OFDM systems [225]. Bayesian learning allows the construction of a prior sparse signal 
model in which the EM algorithm updates the parameters. In [226], a joint model- and 
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data-driven strategy is proposed to derive a training, theoretical interpretive, and flex-
ible model. It is accomplished using a Gaussian mixture model adapted to evolve based 
on the stochastic behavior of the received signal [222, 223]. In addition, Bayesian learn-
ing allows for estimating the posterior distribution of the channel parameters.

Regarding Bayesian learning algorithms, optimal Bayesian estimation involves a heavy 
computational load [222, 223]. Hence, the proposal used supporting algorithms to ena-
ble the Bayes theorem-based channel estimator to infer the channel parameters [222]. 
However, those algorithms demanded a higher computational load than LS estimator, 
and an optimum pilot design is required to reduce the computational complexity [224, 
225]. Indeed, Bayesian learning algorithms for channel estimation can outperform tradi-
tional methods at the cost of higher computational complexity [223, 226].

5 � Neural network‑aided channel estimation techniques
This section addresses NN applications in the channel estimation process. The NN 
schemes have been grouped into different sections considering their standard features or 
training methods. Surveys about this subject showed an effort to design DNN and opti-
mize the volume of the training dataset. At the same time, recent approaches are rising 
to circumvent the training issue by building different networks and ML dimensionality 
reduction strategies.

5.1 � Neural network concepts

Before going into the survey on the paper subject, it is essential to define some concepts 
related to NN to yield better comprehension of the discussion in the following sections. 
First, regarding artificial NN, the direct computation units are called neurons, arranged 
in a layer fashion to form the network [227]. The neurons are connected through struc-
tures defined as weights that scale the neuron input and alter the function computed at 
the neuron. Hence, the functions employ those weights as parameters to propagate the 
inputs to the outputs [227, 228]. Second, NN learning comes from the weight changing 
at each interaction based on external stimuli referred to as training sequences or data-
sets. Here, the learning process is classified as supervised, unsupervised, and reinforce-
ment learning, with the definitions presented in Sect. 3 [227–229]. During the training 
process, the output provides feedback prediction errors that allow to adjust the weight in 
the NN according to the learning process to pursue a better prediction in the incoming 
iteration [227, 230].

The weighted input sum at each neuron is applied to an activation function or trans-
fer function responsible for introducing nonlinear operations to the prediction process 
based on mathematical operations [229]. This function is essential to leverage NN learn-
ing through complex tasks. Despite the layer number, it breaks through simple linear 
mathematical iterations and avoids getting a linear regression model. The activation 
function might be linear or nonlinear. There are a set of types among nonlinear activa-
tion functions, such as the sigmoid or logistic, hyperbolic tangent, rectified linear unit 
(ReLU), Gaussian error linear unit (GELU), softmax, and so forth. These nonlinear acti-
vation functions present advantages and limitations, which are not in this work scope 
and are appropriately found in [227–229].



Page 28 of 63Vilas Boas et al. J Wireless Com Network        (2022) 2022:116 

The architecture of a NN is related to the layer design fashion. Based on this princi-
ple, a NN primary architecture definition is classified as the single layer and multilayer. 
The single-layer NN comprises a set of weighted ( w1,w2, . . . ,wn ) inputs ( x1, x2, . . . , xn ) 
directly mapped to the output through an activation function, as shown in Fig. 9. This 
structure is commonly referred to as perceptron [227]. In addition, the perceptron might 
have an input invariant to the prediction part, defined as a bias, which defines the activa-
tion threshold. The multilayer NN architecture integrates neurons layer—arranged in an 
input and output layer connected by single or multiple intermediate layers defined as a 
hidden layer. For instance, Fig. 10 shows a multilayer structure. Once again, the neurons 
in the hidden layer might also have a bias weight.

Finally, another essential aspect to discuss is the algorithm used for NN training. The 
training algorithms are related to the function applied to update the weights among 
the network layers, searching to boost the learning process at each iteration [227, 229]. 
There are two possible concepts defined: incremental or batch training. The former 
updates the weights immediately after each iteration, while batch training leverages the 
updating process after all the inputs are inserted in the NN [230]. While the error is 

Fig. 9  Perceptron basic structure

Fig. 10  Multilayer neural network basic structure elements



Page 29 of 63Vilas Boas et al. J Wireless Com Network        (2022) 2022:116 	

computed considering the network output prediction and the output expectation, the 
training algorithms rely on the error back-propagation mechanism. In other words, the 
algorithm implements a set of steps to update the weight starting from the output layer 
in the direction of the input layer.

Notably, the NN families are classified according to their structural aspects, such as 
the number of hidden layers and neuron connections. Thus, this survey considered 
grouping the proposed approaches regarding the NN classification while introducing 
each type appropriately.

5.2 � Back‑propagation neural network

When back-propagation algorithms are used in NN training, back-propagation neural 
networks (BPNNs) are created [231]. The basic algorithm concept is backward propa-
gating the network error from the output to the input layer and adjusting the weights to 
reduce the network error through the steepest descent approach. This BPNN is deployed 
to work with real-domain data. Since the CIR is a complex-type signal, the channel esti-
mation is also a complex-valued process.

Complex-valued BPNNs have been designed based on three layers (input, hidden, and 
output) of NN for channel estimation purposes, as shown in Fig. 11 [231, 232]. The com-
plex signal is decomposed into real and imaginary parts to feed-forward the network. At 
the end, the output is summed to compose the channel estimated sample.

The BPNN in Fig. 11 has been used for channel estimation and equalization in FBMC 
[233] and OFDM systems [231, 232, 234–238], employing supervised learning through 
training sequences. The number of used perceptrons is specific, according to the pro-
posal. The BPNN performance has been assessed in terms of BER and MSE compared 
to other conventional channel estimation approaches. Concerning the MMSE, LS, and 
LMS methods, the BPNN has underperformed the former while it has outperformed the 
others [231, 232, 236].

Complexity-wise, BPNN shows less complexity than the MMSE algorithm, although  
underperforms it [232]. BPNN exhibited a loss of about 2 dB compared with MMSE for 
the 0 dB SNR scenario. BPNN was also tested against semi-blind channel estimation and 

Fig. 11  General complex-valued BPNN for channel estimation [231, 232]
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presented 96%–97% BER enhancement at the cost of an 86%–87% increase in complexity 
[236]. In general, BPNN estimation approaches do not require complicated matrix com-
putations, and the optimum result happens when the size of hidden neurons is almost 
equal to the channel length [231, 233–235, 237, 238].

5.3 � Feed‑forward neural network

The FFNN is characterized by presenting connections among the neurons, not forming 
a cycle, and depending on the same layer. The data flow between the input and output 
layers includes single or multiple hidden layers. When there is one single hidden layer, 
the FFNN is known as MLP. Linear operations are realized in each perceptron, and the 
result is applied to an activation function before perpetuating it to the adjacent layer. 
The use of a radial basis activation function defines the RBFN subgroup.

FFNNs have been applied to FBMC, OFDM, and MIMO-OFDM systems. The net-
works are data-driven and use an ABCE and ABCEx approach. The training process is 
supervised by issuing pilot sequences online or offline. Concerning the MLP, a channel 
estimation has been implemented for a preamble-based FBMC system using a complex-
valued two-hidden layer NN, which is offline trained with simulated datasets [239]. 
Figure 12 shows the proposed network, where the ReLU and tanh nonlinear activation 
functions are used in the hidden and output layers, respectively.

Furthermore, the initial MLP network was modified by inserting an MSE loss function 
to update the network. The two proposals were evaluated in terms of BER, with lower 
rates than the traditional LS. The Levenberg–Marquardt training algorithm allowed the 
designing of a two-layer complex-valued MLP for OFDM systems [240]. Therefore, it 
was extended to a MIMO-OFDM system, where the training also considers the one-step 
secant strategy [241]. The performance analysis showed that MLP results in more diver-
sity gain than the conventional channel estimation approaches.

Initially, RBFN estimators were implemented with a single hidden layer and analyzed 
against the LMS, MMSE, and zero-forcing (ZF), outperforming the referred estimators 
[242]. The network structure resembles the one shown in Fig. 11, considering the discus-
sion context. RBFNs were tested for OFDM systems by exploring the channel correlation 

Fig. 12  Complex-valued MLP network for channel estimation proposed in [239]
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in the time and time–frequency domains [243, 244]. The former considers estimating the 
channel for each subcarrier independently through the network. The latter cooperatively 
estimates the channels at different subcarriers. The strategies performance has shown to 
be similar in terms of BER. Meanwhile, the one-dimensional RBFN has been compared 
with an interpolation RBFN using fewer pilot subcarriers as training inputs. This second 
approach offered lower BER than the first one.

Tracking channel fluctuations in pilot-aided OFDM systems operating in a boisterous 
environment using RBFN have been shown to work well compared to traditional inter-
polation approaches [245]. In parallel, a Gaussian radial basis function interpolation was 
applied for fast-fading channel estimation. The LS method treats the initial estimation, 
and the channel response estimation is assisted by the Gaussian one hidden layer RBFN 
[246, 247]. The proposed scheme was applied to comb-type OFDM systems for analysis 
purposes, generating lower MSE than the LS and other RBFNs estimators. Lately, RBFN 
has been applied to a coherent optical OFDM system to implement an RBFN-based non-
linear equalizer [248]. The network weights are updated based on a two-step process. 
First, a K-means clustering algorithm is used to adjust the hidden layer weights. Fur-
ther, the least mean square algorithm updates the output layer weight. Finally, a Q-factor 
assessment has been performed to highlight the proposal results against other works, 
resulting in a 4-dB performance improvement.

The MIMO-OFDM channel estimation based on RBFN was evaluated in [245, 247–
254]. The RBFN structure is replicated to each antenna branch connected to the input 
layer. Thus, N inputs are forward connected to the next layer to demodulate the signals. 
A semi-blind technique has been improved by updating the function iteration based 
on an RBFN [249]. Further, evolutionary algorithms (PSO and GA) were employed 
to enhance the network parameters. Despite the mixture of techniques, there was no 
comparison to the conventional estimator for assessment purposes. In [250], the RBFN 
estimates the initial values of the MIMO channel supporting the particle filter method, 
which drops out the need for more training pilots since it tracks the channel variation.

Furthermore, joining the channel estimation and signal detection was done using an 
RBFN optimized by a genetic algorithm [251]. The approach was close to the MMSE 
estimator in terms of BER. Cyclic delay diversity OFDM systems were also targeted to 
the RBFN, which was introduced to solve interpolation problems in an uneven-pilot-
based system [252]. Meanwhile, the Gaussian radial basis function has been extended to 
the MIMO-OFDM scenarios to leverage RBFN solutions [253, 254]. The solutions have 
returned better performance than the LS and LMS estimator, close to the MLP network 
BER.

Regarding the complexity, FFNN adds computational latency while improving the 
BER. For example, the proposal in [240] contributes to a gain of 1.2 dB at 10−3 . Also, 
[241] concludes that a training data length of 16 symbols or more produces remarkable 
results and better performance than the conventional LS, meaning that a compromise 
between performance and computational complexity must be reached [242]. Interpola-
tion RBFN-based techniques exhibit complexity and performance trade-offs [244, 246]. 
The ultimate complex estimation methods are proposed in [250, 251], which achieve 
optimal performance in terms of BER and spectral efficiency at the cost of higher com-
putational complexity.
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5.4 � Extreme learning machine

An ELM is an FFNN based on fast learning and one-shot training, reducing the training 
time with low computational complexity. The weights are set through the Moore–Pen-
rose generalized inverse matrix. This learning technique has been applied in the channel 
estimation field for OFDM and MIMO-OFDM systems. The evaluated ELM networks 
are a single-hidden layer with an implementation based on the AMBCE [255], ABCE 
[256–264], and ABCEx [265, 266] approaches. The referred works employ a network 
comprising p input and m output neurons, as shown in Fig. 13. These network variables 
have different meanings according to the system design. For instance, p is equal to the 
number of receiving antennas, while m is related to the number of transmitting antennas 
for MIMO-OFDM systems. The number of hidden layer neurons (l) defines the Moore–
Penrose generalized inverse matrix dimension.

Applying real-valued ELM networks has exploited joint channel equalization and sym-
bol detection [265, 266]. This scheme has two input layer neurons corresponding to the 
real and imaginary parts of the received symbol. In [265], the training process uses an 
LS solution, while the ELM algorithm in [266] employs pilot blocks. Complex-valued 
ELM schemes were also investigated for channel estimation with p equal to the training 
sequence length [256]. The online trained network has been evaluated in a nonlinear 
channel condition, overcoming the LS and MMSE estimator BER results. Furthermore, 
the network performs similarly to the scheme without nonlinearities. The nonlinear 
distortion has been carried out in [258] to enhance the performance of OFDM systems 
with insufficient CP. The offline trained network was deployed online using an initial LS 
estimator to obtain the features of the CFR.

A technique to reduce the number of training pilots was developed based on the 
ensemble learning theory [257]. This method generates and combines different models 
to find an optimal predictive model. The ensemble approach comprised weighted aver-
aging and median of the ELM model predictions based on the training error and prun-
ing generated models, including combinations thereof. The BER results demonstrated 
the proposal effectiveness with a lower rate than ELM schemes and a similar perfor-
mance compared to the MMSE.

A semi-supervised ELM has been proposed to channel estimation and equalization for 
vehicle to vehicle communications [264]. The training phase considered taking the label 

Fig. 13  ELM NN for channel estimation in MIMO-OFDM systems
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data training length equal to the unlabeled dataset. Afterward, the system implementa-
tion applies an LS pre-equalization after the FFT is conducted, with the output deliv-
ered to the semi-supervised ELM. The evaluation has demonstrated BER performance 
close to the LS and other ELM-based estimators. However, the algorithm execution time 
has been the longest among the compared methods. On the other hand, an ELM-based 
equalizer for OFDM-based radio-over-fiber systems was evaluated in [263]. The authors 
proposed a multilayer generalized complex-valued ELM build circumventing the ELM 
algorithm expansion to achieve an ELM-autoencoder. The network evaluation has out-
performed other ELM from the literature, while the authors claimed that the proposal 
increased the computational cost.

Regarding MIMO systems, a semi-blind channel estimation process based on ELM 
networks has outperformed the BPNN, MLP, and RBFN. The scheme encompasses esti-
mating the CFR at the pilot subcarriers and applying it to the training of the real-valued 
network. In addition, an ELM scheme with training based on symbol construction is 
proposed in [259]. The approach reduced the training sequence length and kept the per-
formance, providing a better estimation than the MMSE. Another attempt to reduce the 
training time has combined manifold learning with ELM. Manifold learning is a nonlin-
ear dimensionality reduction technique grouped with the PCA and ICA schemes pre-
sented in Sect. 4. This approach has also outperformed the MMSE estimator.

Recently, an ELM-based detector has been founded on online training for pilot-
assisted mMIMO-OFDM systems at the millimeter-wave [262]. The network resembles 
that shown in Fig.  13, with the pilots being applied to the online training to leverage 
post-symbol detection. The BER assessment highlighted the ELM network performance 
over the MMSE estimator. Despite that, a lack of evaluation among the ELM network 
solutions has been identified.

Complexity appraisal shows that complex-valued ELM can involve only one hidden 
layer, outperform offline DNN in terms of complexity and performance, and reduce the 
training time [256–258, 260, 266]. Furthermore, ELM complexity was investigated to 
require the same number of neurons in the hidden layers as the number of antennas at 
the base station (BS) to achieve higher spectral efficiency than linear mMIMO receiv-
ers [261]. An attempt to leverage unsupervised learning to an ELM has been shown to 
increase the computational time cost with no performance improvement [264]. Besides, 
an ELM-autoencoder solution has significantly improved performance with a high com-
putational cost. In contrast to complex-valued ELM, real-valued ELM demands less 
computation than FFNN and complex-valued ELM due to real-domain values instead of 
complex domain ones [255].

5.5 � Recurrent neural network

The RNN consists of a network structure with one-step temporal dependence among 
the input data [267, 268]. The hidden layers receive the incoming information from the 
previous ones, and its output results through a feedback loop, as shown in Fig. 14. Con-
sequently, it can learn over time in a cumulative process. Taking the unfolded example, 
the output at t − 1 feedback the input at time t, and the output at this current instant is 
provided as input at time t + 1 . Thus, this NN learns not only from the incoming input 
but also by considering the influence of past information.
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The RNN features are suitable for tackling time variations in channel estimation. This 
NN has been used to estimate channel response in OFDM, FBMC, and MIMO-OFDM 
systems [48, 267–273]. It has been deployed in an ABCE approach with supervised 
learning. The RNN was designed as a mapping function to assist pilot-aided OFDM sys-
tems [268]. The RNN was trained with the pilot subcarriers and then used to find the 
channel estimation at the data position. Lately, a bidirectional RNN has been proposed 
to enhance the system performance. A similar approach has been considered in training 
an RNN to provide signal recovery in an OFDM system operating under an interference 
environment. For instance, the network in [269] could predict 50 lost subcarriers based 
on channel estimation under severe interference with a root-mean-square error (RMSE) 
of 0.37065 and 0.24596 after 100 iterations and training epochs.

Moreover, the RNN was applied to track channel variations in MIMO-OFDM systems 
[267]. The proposal attempted to design an RNN for estimating channel response using 
signals with tightly coupled real and imaginary parts. Thus, a split-complex activation 
RNN was accomplished by allowing the network to learn to estimate the real and imagi-
nary parts separately and combining them through the time average of the input infor-
mation over a time window. The work has been improved by adding a self-organized 
map-based optimization to obtain a complex time delay fully RNN block for MIMO-
OFDM systems [270]. The BER assessment has shown that the performance of the pro-
posed network is close to the perfect CSI, superposing the MMSE estimator.

Besides, a SoftMax RNN using frequency index modulation was proposed to per-
form channel estimation on MIMO-OFDM systems [271]. The network provided lower 
BER values than the LS estimator and the ELM algorithm found in [256]. However, the 

Fig. 14  RNN architecture and work principle
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comparison lacks an evaluation of the involved complexity. Reducing the ISI in MIMO-
OFDM systems has been carried out by an Elman RNN for channel estimation [272]. 
The network evaluation has proved its application to channel estimation providing low 
PAPR and BER, with high capacity and throughput. The comparison included a convo-
lutional neural network (CNN) and DNN, with the Elman RNN outperforming those 
networks. The RNN has also been used to design DNNs, such as the ChanEstNet DNN, 
which is later discussed [273]. However, the RNN performance has been recently evalu-
ated in MIMO-OFDM systems [48].

The channel estimation field has also investigated a derivation of the RNN called long 
short-term memory (LSTM). The LSTM is designed to yield good performance in long 
sequence approaches and solve the vanishing and exploding gradient issue in conven-
tional RNNs [274, 275]. This network can obtain long-term dependencies calling for 
learning based on past extended sequence information. Figure 15 shows an LSTM unit 
cell composed of a forget, output, and input gate responsible for the data flow regula-
tion inside the cell. The forget gate decides what kind of information is thrown away or 
included in the cell state based on observing the past state and the actual data. There-
fore, the σf  assumes values equal to 0 (throw away) or 1 (accept the information). The 
candidate cell allows storing certain information in the current cell state, scaling it by the 
σc value. According to the decided value, the input from the gate is added to the current 
state. Finally, the output gate imposes management on what is computed as the output 
value, considering that the cell state is scaled into the range -1 to 1.

The LSTM network has been combined with conventional RNN, CNN, and MLP net-
works [274–277]. The inherent imaginary interference channel estimation problem in 
FBMC systems was approached by combining a bidirectional LSTM and an RNN [274]. 
The network has worked well under fast time-varying scenarios and outperformed a 
DNN algorithm. Meanwhile, the LSTM was joined with a CNN to support channel esti-
mation in time-varying scenarios for OFDM systems [275]. The CBR-Net (CNN batch 
normalization RNN) provided lower BER than the convectional estimator and other 
DNN architectures. A similar hybrid solution, the CNN-LSTM algorithm, achieved 
lower BER than other NN [276]. An MLP-LSTM network is found in [277], with the 
joint solution working well under high-mobility scenarios with a velocity of up to 
150km/h. Recently, bidirectional LSTM network architectures have been raised to prove 
their performance on MIMO-OFDM systems [278–280]. The evaluation has confirmed 
the superposition of conventional estimators. In addition, the researchers have claimed 

Fig. 15  LSTM unit cell detail
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low complexity due to using a DNN architecture to combine massive LSTM units, add-
ing a bidirectional arrangement.

Furthermore, an extension of the LSTM concept is named gated recurrent network 
(GRU). It comprises a cell unit in which the input and output gates are replaced by an 
updating gate that controls the amount of information to be retained or updated. This 
network type has been used to design a data-driven model for channel estimation in 
an OFDM system applied to a fog radio scenario [281]. The performance comparison 
was addressed with the orthogonal matching pursuit channel estimation strategy, show-
ing promising results. The GRU network performance was also investigated under the 
FBMC system [282] to deal with the inherent imaginary interference channel estima-
tion problem. Resembling the bidirectional LSTM architecture, a GRU network called 
BiGRU has been proposed for a MIMO FBMC-OQAM system [283]. The training pro-
cess is based on an offline stage followed by an online prediction. The BER assessment 
uses different time-varying channel models to face the BiGRU performance against the 
interference approximation channel estimation method, with an improvement in the 
FBMC system employing the former.

An RNN with random connections among the neurons of the hidden layer is defined 
as an echo state network (ESN), with a network architecture as shown in Fig. 16. This 
network is typically designed in a single hidden layer called a reservoir. It stands for a 
NN that drops out of the training process through the back-propagation mechanism. 
The ESN has been recently investigated to leverage the channel estimation process in 
OFDM and MIMO-OFDM systems [284–291].

The ESN was used for channel estimation purposes [284]. First, the real and imagi-
nary parts of the OFDM symbol are separated and delivered to two ESNs. After that, 
the network outputs were combined. Then, the ESN was supervised, trained, and ana-
lyzed based on comparing the desired results and those estimated, which leak from a 
performance analysis regarding system implementation. Moreover, an adaptive elastic 
ESN has been designed for channel estimation on IEEE 802.11ah systems employing 
the OFDM modulation [285]. The hybrid network architecture comprises an ESN and 
an adaptive elastic network. The latter has been added to handle ill-conditioned solu-
tions of the LS and applied to obtain the frequency-domain CSI. The ill-conditioned 

Fig. 16  ESN architecture for [284] and [286]
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solution rises from the collinearity problem in the input of the basic ESN model [285]. 
Therefore, the adaptive elastic network replaces the LS method to calculate the fre-
quency-domain CSI. The results regarded the RMSE evaluation of adaptive elastic 
networks against auto-regression and support vector machine algorithms, highlight-
ing the networks superior performance.

A three-layer estimator for the MIMO-OFDM system was designed considering 
a feature, enhancement, and output layer [286]. The feature layer comprised a pool 
of parallel ESNs connected with the enhancement layer by weights and biases. These 
layers extract feature information to feed the output layer, leveraging the channel esti-
mation process. Besides, a supervised learning ESN has been proposed for nonlinear 
MIMO-OFDM systems for joint channel estimation and symbol detection, with BER 
results close but inferior to the LMMSE estimator [288, 289]. Thereafter, the symbol 
detection was based on a deep ESN, superposing the LMMSE estimator performance 
and showing results close to a shallow ESN [290]. Meanwhile, an ESN was designed 
to detect symbols using comb and scattered patterns in a standard LTE system with 
MIMO. The network evaluation has demonstrated superior performance over fewer 
pilots [291].

Complexity-wise, RNN leverages the training dataset to overcome other NNs trade-
offs between accuracy and complexity. For example, they have been shown to require 
218 epochs to achieve an average precision of 96% , while MLP requires 326 epochs to 
achieve an average precision of 94% [267]. They also demand less computation due to 
low overhead using layers of simple matrix–vector multiplications and nonlinear acti-
vation functions [268]. However, DL-based RNN still has a challenging complexity, 
although its robustness can even estimate fast time-varying channels [274, 275, 277]. 
As a solution to reduce RNN intricacy, reservoir computing (RC) has been used to 
generate random synaptic weights [284–291].

Fig. 17  DNN architecture proposed in [292]
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5.6 � Deep neural network

DNNs consist of multiple layers between the input and the output layers, as shown 
in Fig.  17 [23, 292, 293]. The multiple layers are hidden and can contain the same 
number of neurons or decrease towards the output layer. The layers are fully con-
nected because each neuron is connected to all the neurons of the subsequent layer. 
The input value reaching a given neuron is the summation of the weighted output 
and bias values from the primary layer neurons. A given neuron output is a nonlin-
ear activation function value such as the ReLU or the Sigmoid functions. Hence, the 
output sequences of the DNN are a cascaded nonlinear transformation of its input 
sequences.

The general DNN has been used for channel estimation for multicarrier systems 
[292, 294, 295]. For instance, a general DNN has been proposed to estimate CSI, 
allowing for joint channel estimation and symbol detection in an OFDM system 
with performance close to the MMSE estimator [292]. In [294], DNN is applied to 
the received signal to yield a less noisy signal and estimate the channel based on 
the generated signal. It has been shown that the proposed DNN channel estimator 
approaches MMSE estimation to within 1 dB. The authors in [295] have combined 
the conventional channel estimation technique for an OFDM receiver with a DNN to 
surpass MMSE estimation in terms of normalized MSE.

Researchers have proposed variations of the DNN for estimating the channel in 
multicarrier systems [293, 296–298]. A deep learning residual framework (ResNet) 
consisting of two short-connected layers and two fully connected hidden layers was 
used for channel estimation and equalization in FBMC/OQAM systems [293]. The 
ResNet uses a long real-valued sequence of a filtered frequency-domain complex 
sequence of the received signal as the training dataset. Accordingly, the channel esti-
mation performance is better than the general DNN. Meanwhile, a DNN cascading 
with a zero-forcing preprocessor called Cascade-Net was proposed for detecting 
OFDM symbols, outperforming the zero-forcing method [296]. Model-driven DNN 
subnets, ComNet, replaced the usual OFDM channel estimation and symbol detec-
tion receiver blocks, surpassing general DNN by offering to refine inputs [297]. A 
variation of the ComNet receiver includes a compensating network called SwitchNet 
that outperforms the ComNet [298].

DNN hidden layer with only a tiny portion of its neurons connected to the previous 
layer neurons is called the convolutional layer [299]. In addition, the convolutional 
layer neurons share the same parameters. General CNNs significantly reduce the total 
amount of training parameters, comprising an architecture with an input and convo-
lution layer followed by a pooling set and fully connected layers until the output layer 
is reached, as shown in Fig. 18 [227, 228]. The convolution layer enables the gather-
ing of local patterns upon the input data. Meanwhile, the pooling layers summarize 
the given information. This network region reduces the data dimensional space while 
retaining the original information. Thus, the classification stage is conducted by fully 
connected layers.

A CNN has been exploited to recover information from OFDM signals without 
relying on explicit DFT or IDFT computations and performed better than channel 
estimators based on linear MMSE [300]. In [299], the authors added a CNN between 
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preprocessing modules to develop a CNN-based detector that adapts to large systems 
or wide bands. The authors in [301] have joined CNN and image super-resolution 
to create a channel estimation method that, after offline training, outperforms the 
MMSE estimator and can potentially save spectrum.

Joining CNN and DNN can boost channel estimation. The authors of [302] have 
proposed intelligent signal detection comprising DNN and CNN for OFDM with 
index modulation. The signal detector uses pilots to achieve semi-blind channel esti-
mation and reconstructs the transmitted symbols based on CSI. In [303], a hybrid 
NN-based fading channel prediction has been designed by connecting CNN and 
DNN layers. The hybrid channel predictor aggregates robustness to systems operating 
over frequency-selective channels such as MIMO-OFDM. The authors in [273] have 
developed a channel estimation method for high-speed scenarios using a combina-
tion of CNN and RNN. The new network, ChanEstNet, extracts the channel response 
feature vectors for channel estimation, exhibiting low computational complexity com-
pared to traditional channel estimation methods.

Regarding the complexity issue, DNNs depend on extensive training datasets and 
apply matrix multiplication between sequential layers. For example, the adaptive 
DNN complexity investigated in [295] is equivalent to the accurate LMMSE channel 
estimation scheme, but its performance is much better. To reduce DNN complexity, 
the authors in [294] have combined the deep image prior (DIP) model, diminishing 
the training overhead and only needing pilot symbols during channel estimation. 
Also, a sliding structure based on the signal-to-interference power has been designed 
for computational complexity reduction compared to a single deep detection network 
[296]. Furthermore, by splitting the receiver into different subnets, DNNs demand 
less memory and computation than LMMSE-MMSE methods [297–299]. Instead of 
reducing the DNN-aided detector complexity, some researchers have traded it for 

Fig. 18  CNN architecture
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better capabilities. For instance, the complexity has been swapped for the ability to 
replace DFT with a linear transformation [300]. Finally, merging LSTM and CNN cre-
ates a hybrid network that was shown to be able to predict channel characteristics 
[273].

5.7 � Autoencoder‑aided end‑to‑end systems

Autoencoders apply unsupervised learning to replace an end-to-end communication 
system. Hence, from the block-structure communication system point of view, autoen-
coders substitute the whole structure composed of the serial-to-parallel converter, 
lookup table, modulator, detector, symbol estimation, parallel-to-serial converter, and so 
forth. Autoencoders take advantage of the input data statistics to communicate them 
through the channel so that the fewest possible data is sent. Still, it allows the receiver 
to understand the input data completely [304]. Autoencoders reconstruct the input data 
through a series of latent representations, typically using an MMSE objective and a sto-
chastic gradient descent (SGD) solver to find the network weights, achieving a practical 
regression [305]. Figure 19 depicts a general autoencoder architecture, which is taken as 
the basis for autoencoder systems implementation in the following discussion.

DNN and CNN are used to construct autoencoders. On the transmitter side, they learn 
the mapping from bits to waveforms. At the receiver side, they learn the synchronization, 
parameter estimation, and demapping from waveforms to bits. Some channel impair-
ments are considered to train the autoencoder: noise, time and rate of the signal arrival, 
carrier frequency, phase offset, and the received signal delay spread [305]. Although it 
may seem that an extensive dataset is required for training autoencoders, they usually 
require a tiny portion of the code space, the ratio being even 2.9387359× 10−34 . Thus, 
autoencoders contribute to the used resources [306]. The trained autoencoder results in 
a transmit and receive signal that resembles those of MCM communication systems.

Fig. 19  Autoencoder architecture
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The end-to-end autoencoder-based communication system can compete with mature 
systems such as OFDM, FBMC, GFDM, and UFMC without any prior mathemati-
cal modeling or analysis [307, 308]. In [307], the DNN and CNN-based autoencoder of 
[305] has been enhanced to deal with synchronization and ISI. For synchronization, an 
introduced NN is responsible for separating the infinite sequence of the received sam-
ples into different probable block groups and estimating each group probability. For ISI, 
during the training phase, the autoencoder assumes the received messages present ISI 
interference in learning to solve this impairment. The enhanced autoencoder has been 
tested against real channels and demonstrated a performance 2 dB worse than that of 
the MMSE method. In [308], the proposed DNN-based autoencoder exhibited fast con-
vergence when operating over an aggressive Rayleigh fading channel. The autoencoder 
transmitter and receiver parts were alternatively trained until the loss stopped decreas-
ing. The authors claimed that the autoencoder could be applied to any channel without 
analysis.

Instead of competing with well-established MCM systems, autoencoders can be com-
bined with them, bringing more reliability [309, 310]. DNN-based autoencoders have 
been proposed to mitigate synchronization errors and simplify equalization over mul-
tipath channels [309]. The proposed model has also shown flexibility regarding impre-
cise knowledge about the channel and reduced complexity compared to conventional 
OFDM systems. The authors in [310] have combined autoencoders to an OFDM under 
single-bit quantization. The OFDM data detection loss under that constraint was 
reduced using an unsupervised autoencoder, competing with unquantized OFDM at 
SNR values smaller than 6 dB.

Autoencoders have also been compared with MIMO systems [311, 312]. The authors 
in [311] have obtained an autoencoder that outperforms Alamouti space-time block 
code (STBC) [313] operating over the Rayleigh fading channel for SNR values greater 
than 15 dB. It is considered perfectly known, quantized, and none CSI information sce-
narios. The optimum autoencoder was achieved using NN-based regression, consider-
ing channel estimation on both the transmitter and receiver sides. In [312], the authors 
combined autoencoders and ELM and proposed a novel detection scheme for MIMO-
OFDM. In this approach, the autoencoders refine the input data before transmitting it 
and ELM is employed to classify the received signal based on regular features. The BER 
performance of the novel MIMO-OFDM detector is similar to the maximum-likelihood 
detection (MLD).

The extension of MIMO, mMIMO, has also been targeted to use autoencoders. The 
proposed network in [314] employs CNN to learn the channel structure effectively from 
training samples to recover CSI even in low compression regions. This autoencoder is 
mainly investigated for multicarrier systems where the BS receives the CSI from the 
users. The autoencoder can transform the channel matrix into a shorter-dimensional 
vector and vice versa. Even though executing new sensing and recovery mechanism 
beats existing compressive sensing-based methods, the authors claimed it could be 
enhanced by applying advanced DL strategies.

In terms of complexity, autoencoders require a large dataset for training and to reach 
the optimum solution, thus resulting in a trade-off between performance and com-
putation. Some works have addressed power demand reduction as the attractiveness 
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of their proposed method. For example, tensor-based processing can reduce power 
requirements by lowering clock rates, increasing algorithm concurrency, and adapting, 
as pointed out in [305]. The PAPR could also be reduced using a network based on an 
autoencoder architecture of DL [306, 309]. Other works implement different training 
strategies to reduce the intrinsic trade-off between the performance and computation 
of autoencoders [308, 310]. For example, in [307], the authors have used a two-phase 
training: the architecture is trained with simulated channels in the first phase, and the 
receiver is fine-tuned over realistic channels in the second phase.

5.8 � Other neural networks

Generative adversarial network (GAN) [315–318], general regression neural network 
(GRNN) [319, 320], and fuzzy neural network (FNN) [321, 322] have also been inves-
tigated in the channel estimation subject. Likewise, the least mean error [323], meta-
learning [324], k-means clustering [325], and LS [326] techniques were applied to 
leverage NN training. Regarding these training techniques, the survey has shown that 
ML might also be an interesting approach to overcoming the voluminous training data-
set problems in DNN.

5.8.1 � Generative adversarial network

A GAN comprises two networks: generative and adversarial networks. These networks 
operate competitively, as shown in Fig. 20. The generative network aims to retrieve the 
original information utilizing training. On the other hand, the adversarial network dis-
criminates the incoming labeled fake samples of the first network by comparing them 
with accurate data. In other words, the adversarial must learn to recognize false and true 
patterns and the generative to deceive the former. In this way, the generative network is 
later trained to fool the adversarial network by passing through samples as true [316].

This concept was applied to reshape the ResEsNet [315, 327] by considering the chan-
nel response with known pilot positions as a low-resolution image. Thus, the GAN was 
applied to estimate the CSI in a super-resolution approach. First, the generator com-
prises convolution layers and residual blocks with pre-residual activation units. Then, 

Fig. 20  GAN working principles
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batch normalization is applied to the beginning and the end to map/remap the data to 
the scale model. Finally, the fake samples feed the discriminator, also formed by convolu-
tion, batch normalization, and Leaky ReLU layers [315]. The super-resolution GAN has 
outperformed the ResEsNet estimation while presenting better performance than the 
LMMSE estimator. Furthermore, a GAN-based channel estimation approach was pro-
posed for high-speed mobile scenarios [317]. The method goal was to reduce the com-
plexity of the channel estimation process by training a discriminator to learn and extract 
channel time-varying features. After, the generator acts upon the samples to generate 
and restore the channel information.

The GAN approach has also been modeled to reduce the number of pilots in MIMO-
OFDM and OFDM systems [316, 318]. The first network proposal exploited the gen-
erative network to learn how to produce channel samples based on training on real data 
[316]. After that, the trained model was used to get current channel samples accord-
ing to the received signal. The results have been compared with a supervised learn-
ing ResNet mode, exhibiting better performance. However, it could not overcome the 
LMMSE estimator. Meanwhile, the GAN has been devoted to mapping low-dimensional 
channel space into a high-dimensional one, reducing the pilots number in an OFDM 
system [318]. As a result, the designed network could track the CIR at different channels 
after training, outperforming the LMMSE and ChannelNet estimators.

5.8.2 � General regression neural network

The GRNN has been proposed as an enhanced version of the RBFN founded on nonpar-
ametric regression [319, 320, 328]. The network falls into the probabilistic NN category. 
The GRNN architecture comprises four layers known as the input, pattern, summation, 
and output layers, as shown in Fig. 21. The former and the latter are classical structures 
of NN architecture. The pattern layer is the single learning layer of the network and it 
is fully connected with the neurons of the input layer [328]. The pattern output is fully 
connected to the s-summation and the d-summation neurons of the summation layer. In 
contrast, the former computes the weighted sum from the previous layer and the latter 

Fig. 21  GRNN architecture
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the unweighted values. Thereafter, the output layer divides the s-summation results by 
the d-summation.

This neural network approach has been applied in channel estimation using par-
tial CSI information obtained from data-aided decision feedback channel estimation, 
showing more accurate interpolation results [319, 320, 329]. The network structure has 
four layers: input, pattern, summation, and output layer. The pattern layer includes the 
radius of the radial basis function that can control the smoothness level of the regression 
results. The summation layer sums the neuron pattern outputs by multiplying them by 
the desired results and, after, by their own, which are further combined in the output 
layer. This network was first applied to time-domain [319] smoothness and extended to 
a frequency-domain strategy [320]. The latter has outperformed the former and conven-
tional pilot-aided channel estimation.

5.8.3 � Fuzzy neural network

The fuzzy logic was applied to leverage a fuzzy controller to periodically adjust the step 
size in an LMS algorithm for OFDM systems [321]. The results showed a faster conver-
gence and robust tracking of channel variations when compared with the LMS under 
different channel conditions. Furthermore, a functional link FNN estimator was devel-
oped [322]. The network comprises a functional link NN integrated with fuzzy rules, 
whereas each one is a sub-functional link NN with a function expansion of input vari-
ables. The network performance was close to the MMSE estimator.

5.8.4 � Reduction training techniques for neural networks

Regarding the training approach, the least mean error algorithm was applied to a NN 
with two sub-networks to identify amplitude gain and phase variation [323]. Moreover, 
the LS algorithm was integrated into a black box NN [326]. The process uses the LS to 
estimate the channel at the pilot subcarriers, then apply it to the network to predict the 
channel response at the data subcarriers. This approach might be seen as an ML interpo-
lation strategy with results similar to the MMSE, and some other discussed NN. A pro-
posed similar channel estimation method using a multiple variable regression approach 
to design an ML algorithm that does not require any initial information or statistics 
about the channel is found in [330]. It uses the SGD algorithm for parameter optimi-
zation purposes. This proposal has been compared with the LS and MMSE estimators, 
outperforming the conventional estimator while providing performance similar to the 
perfect estimation.

The K-means clustering algorithm was proposed to support a semi-blind channel 
estimator for cell-free mMIMO [325]. The algorithm allows clustering of the received 
signal to optimize the channel estimation process. In the meantime, the meta-learning 
has been exploited in a two-stage method named robust channel estimation with meta-
learning neural networks (RoemNet) for OFDM symbols [324]. The proposed network 
can learn general characteristics from multiple channels, gathering meta-knowledge for 
training purposes. Furthermore, this approach allows applying the RoemNet to differ-
ent unknown channels and fast refinement of its weights by using a few pilot symbols 
through the meta-update process. The RoemNet performance has proved its ability 
to learn and better estimate the channel with a few pilots, outperforming the MMSE 



Page 45 of 63Vilas Boas et al. J Wireless Com Network        (2022) 2022:116 	

estimator. However, the increase in the pilots quantity leads to similar results. Also, it 
was shown that with 8 pilot-long sequences, training the RoemNet yields lower BER 
than the LS estimator with 128 pilot-long sequences.

5.8.5 � Complexity discussion

Regarding the complexity, GANs can reduce it during training while improving the per-
formance compared with residual NN [315, 316]. Additionally, the GAN-based estima-
tion proposed in [316] does not require retraining, even if the number of clusters and 
rays changes considerably, and lowers the number of necessary pilot tones. Complex-
ity-wise, the network approaches in [316, 318] have the lowest value compared to the 
LS and LMMSE. Meanwhile, the network algorithm complexity of [318] was compared 
with the MMSE estimator, resulting in a linear and cubic relationship with the number 
of pilots, respectively. FNN could not reduce the complexity of well-known estimators 
while improving performance [322]. In [321], the used FNN showed a steeper learning 
curve than MSE but increased the computation load slightly. GRNN demanded only 
0.0534ms of processing time for channel estimation at SNR, such as 30 dB to achieve 
a BER of 1.2× 10−4 , as an example of its computational complexity [319]. However, it 
kept the trade-off between performance and complexity, requiring 0.4206ms to reach 
a BER of 1.8× 10−5 . GRNN could reduce this trade-off for other NN-based estimation 
methods. For example, GRNN replaces ANN in [320] to eliminate the iterative training 
process and diminish the computational complexity as the BER decreases. Other tech-
niques, such as least mean error, meta-learning, k-means clustering, and LS, focus on 
reducing the training overhead to demand less computation.

6 � Reinforcement learning
Reinforcement learning is a training approach, as mentioned in Sect. 3, that defines an 
emerging branch of ML. The algorithms under this classification learn from the reward 
maximization hypothesis principle [331]. An agent executes actions in an environment 

Fig. 22  Reinforcement learning working problem
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that has its states modified over time [332], as shown in Fig.  22. The state-changing 
according to taken actions results in a reward or a penalty for the agent. The algorithm 
must establish a strategy, also known as policy, to define actions to achieve a specific goal 
and maximize the expected cumulative reward. The environment is commonly molded 
as a Markov decision process (MDP) that describes the agent sequence of actions, the 
present reward, and the future state and reward [331, 333]. The Q-learning approach 
releases quality rather than optimal learning [332, 333]. Unlike other ML algorithms, 
reinforcement learning succeeds without an explicit training process, learning through a 
mix of exploration and exploitation of the environment in a trial-and-error manner.

The investigation of channel estimation from the multicarrier systems perspective 
has been addressed for OFDM schemes. A model-free Q-learning technique is applied 
to select the best CIR predictor [332]. First, the CIR prediction is constructed using an 
adaptive RLS estimator without pilot signals. The RLS estimator predicts one or more 
future CIR block coefficients using previously estimated ones. Then, the agent interacts 
with the algorithm (environment) to enable dynamic reinforcement learning in this con-
text. The results have shown the dominance of the Q-learning-based estimator over the 
conventional RLS. Besides, a denoising method for channel estimation in MIMO-OFDM 
systems has been modeled as an MDP based on channel curvature computation [333]. 
The channel curvature allows for identifying the unreliable estimation for the future 
MDP. The reward function is defined to reduce the MSE. Finally, Q-learning is used for 
the channel estimation process. This estimator has shown better results related to the LS 
estimator and poor BER values when faced with the MMSE estimator performance.

Combining DNN to approximate the strategy (i.e., the policy), and MDP, deep rein-
forcement learning (DRL) algorithms arise [334–336]. Compared with reinforcement 
learning, weights of the DNN are used as extra input parameters, and the SGD optimizer 
is employed to update the weights. Although DRL might yield instability and diver-
gence, their recent upgrades, deep Q-network [337] and AlphaGo [337], have been able 
to represent the environment even with high-dimensional sensory inputs, e.g., pixels of 
an image. Those two developments were based on games, the former achieving a level 
comparable to that of a professional human gamer across a set of 49 games of Atari 2600 
[338] and the latter defeating a human professional player in the full-sized game of Go 
for the first time.

A few attempts have been addressed regarding the channel estimation for multicar-
rier systems [339, 340]. Double deep Q learning (DDQL) has been proposed for chan-
nel estimation in industrial wireless networks as an alternative to DNN and Q-learning 
approaches [339]. It aims to circumvent the DNN long data sequence training while 
eliminating the overestimation of action values of the Q-learning. Therefore, the DDQL 
has been exploited for channel estimation to adapt to the Rician channel model for the 
dynamic industrial wireless network. The DDQL comprised five hidden layers of fully 
connected neurons with tanh activation functions, and a linear activation layer on the 
output. Lately, the DDQL performance has been compared against some MMSE-based 
estimators. The authors’ proposal estimates the channel better than the other estimators, 
except for ideal MMSE [339].

The pilot contamination problem in mMIMO systems was addressed using DRL 
to leverage a pilot assignment strategy to adapt to the channel variations and keep 
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a modest pilot contamination effect [340]. First, the system model was considered an 
OFDM system; consequently, the sub-channel was assessed as a flat-fading model. Next, 
the reward was modeled as a cost function based on the user’s angle of arrival informa-
tion. The channel characteristic and the maximum cost function allowed to define the 
states, actions, and rewards. Thereafter, the agent learned the pilot assignment policy, 
adapting them to the channel variations to minimize the cost function. Finally, the DRL 
was leveraged based on a six-hidden layer deep residual network (ResNet) as a Q-neural 
network (QNN). The proposed DRL results have demonstrated lower system overhead 
against other approaches, such as soft pilot reuse (SPR) [340].

Concerning complexity, the training dataset does not need to be labeled, making rein-
forcement learning practical and adaptive to time-varying channels. However, those 
advantages and other issues may increase the complexity when combining reinforce-
ment learning and channel estimation, as shown in [332]. For example, dominant CIR 
tap index identification adds to the overall load computation. Regardless, other solutions 
succeeded in reducing the complexity, as the strategy proposed in [333] is based on the 
frequency domain instead of the time domain and reduces the requirement to perform 
DFT. Meanwhile, DRL has been raised as an approach to reduce the complexity of DNN 
in channel estimation, comprising a field of opportunities in the context of multicarrier 
systems and their extension to MIMO schemes.

7 � Discussions and research directions
This section aims to nourish a discussion about how AI-aided channel estimation strat-
egies have been proposed for multicarrier systems, highlighting some learned lessons. 
Afterward, future research directions based on recent findings are pointed out. There-
fore, classical ML, NNs, and RL are carried out in the sense of how the plethora of works 
has modeled them to leverage channel estimation in multicarrier system scenarios. 
At the same time, how those works have striven to improve the results against stan-
dalone conventional channel estimation techniques, such as blind, data-aided, decision-
directed, and semi-blind estimators.

Regarding classical ML, regression algorithms have been joined with conventional 
estimators, such as pilot-assisted iterative channel estimation, an LS estimator, and nor-
malized MSE estimator. Meanwhile, the estimator block-type structures were preserved 
based on the AMBCE approach with supervised learning. The regression algorithms 
mainly enhanced the interpolation process in data-aided methods. Therefore, the chan-
nel was first estimated through data-aided schemes and then delivered to the trained 
algorithms to estimate the channel at the data subcarriers. Under this assumption, 
OFDM and MIMO-OFDM were the system models to apply the estimators based on 
regression techniques. Some target channels were the fast time-varying, highly selective, 
and doubly selective fading environment.

Recently, the research on estimators based on regression algorithms has been scarce, 
which is understood due to the growth of NNs and RL solutions. However, some 
research has accomplished promising results regarding the SVR for OFDM and MIMO-
OFDM systems [172, 173]. Therefore, it is a research direction to apply these estimators 
for OFDM variations or other multicarrier systems, extending them to MIMO schemes. 
In addition, joint regression algorithms with blind and semi-blind estimators is an open 
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and remotely exploited field, which may pursue methods that do not require the infor-
mation of the channel statistics [190].

Evolutionary algorithms are mainly exploited for channel estimation in OFDM and 
MIMO-OFDM systems in the sense of the GA, RWBS, and PSO. The GA has con-
ceived means to design estimators based on AMBCE systems implementation. Some 
approaches replace the interpolation process to aid a pilot-aided channel estimation 
scheme, while others leverage a blind channel estimator based on GA. Beyond that, 
combining the LS and MMSE estimators has also been accomplished by using GA. At 
the same time, the RWBS-based algorithms were devoted to aid a combination between 
channel estimation block with multiuser and data detection functions, comprising an 
ABCEx approach. Likewise, PSO allowed for joint channel estimation and decoding 
MIMO-OFDM systems while also being used to enhance iterative estimator perfor-
mance. These evolutionary algorithms may also be extended to other multicarrier sys-
tems and their variants to unveil their potential and validate them against other classical 
ML techniques, NNs, and RL. Therein, computational complexity and processing time 
may be assessed along with an MMSE performance comparison.

Bayesian learning has been recently considered for channel estimation purposes in 
OFDM and MIMO-OFDM systems addressing sparse channels [222–226]. However, 
the approaches stand mostly for model-based design, with some works including a joint 
model- and data-driven strategy. On the other hand, combining Bayesian learning with 
PSO has also been accomplished to join pilots optimal design and channel estimation 
[224]. Alike, the Bayesian learning-based channel estimator performance has only faced 
the conventional estimators, outperforming them at the cost of higher computational 
complexity. Hence, comparing the Bayesian learning performance with those of NN and 
RL algorithms under the same channel assumptions is necessary to validate its compu-
tational complexity since some works claimed their proposal was close to the MMSE 
estimator [226].

Taking NNs into account, they have been mainly employed using AMBCE and ABCE 
approaches. In other words, they have been used to aid the channel estimation block 
or to replace it. Furthermore, they have proved able to assist with semi-blind and data-
aided channel estimation techniques, even in scenarios involving only a few pilots [244]. 
Also, the inputs used for training and estimation can be complex- or real-valued sym-
bols. Overall, these capabilities rendered NN adaptive to fast-fading, high mobility, and 
vehicular-to-vehicular communication cases.

This survey has provided several different NN models utilized for channel estima-
tion in multicarrier systems. They were discriminated between the hidden layer struc-
tures and training methods. Extensive work was found using the following NN models: 
BPNN, FFNN, ELM, RNN, DNN, autoencoders, GAN, GRNN, and FNN. In general, 
they all exhibited more complexity than classical learning AI algorithms and accompa-
nied a trade-off with the performance. Hence, strategies to overcome this impairment 
are welcomed and represent a research direction. Specifically, some NNs lack com-
plexity analysis, such as the joint FFNN and GA and ELM for mMIMO-OFDM. Also, 
a complexity comparison between RNN and ELM would enrich this topic. These issues 
are all considered an open field to be investigated. In addition, NNs have been imple-
mented to estimate the channel in the following multicarrier systems: OFDM, FBMC, 
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and MIMO-OFDM. However, only ELM and autoencoders have been used with other 
communication systems, such as vehicular-to-vehicular, OFDM-based radio-over-fiber, 
mMIMO, GFDM, UFMC, and MIMO. This last observation signifies another open area 
for investigation, which would help consolidate NN applicability for channel estimation 
in multicarrier systems.

Regarding the RL, this survey points out its usage only to enable channel estimation in 
OFDM and MIMO-OFDM systems. A few approaches have been considered using an 
AMBCE or an ABCE design. RL estimators relied on model-free Q-learning by exploit-
ing a highly mobile and dynamic propagation environment. In the meantime, DRL was 
proposed based on DDQL, aiming at avoiding the DNN long data sequence training and 
the overestimation action values of the Q-learning. In addition, a deep residual network 
(ResNet) was also used as a QNN to accomplish channel estimation in the mMIMO-
OFDM system.

Although RL channel estimation handled OFDM and MIMO systems, this survey con-
cludes that the RL application for channel estimation in multicarrier systems still indi-
cates an open research field, barely exploited. Hence, there are opportunities to address 
its variation along with other multicarrier systems, including a performance compari-
son with the MMSE and other NN-based estimators. Note that there are recent surveys 
devoted to investigating the RL usage with MIMO systems that have also confirmed the 
lack of work in the channel estimation field [341].

Besides estimating, iteration and human brain-inspired networks are capable of pre-
dicting and equalizing the channel in multicarrier systems. They all approximate the 
MMSE estimation. Indeed, most works compared the respective AI-aided channel 
estimation technique performance with the MMSE estimation [178, 231, 241, 294]. 
Although comparisons might consider other estimators, the MMSE estimator is the 
most popular due to its performance in minimizing the mean error. Some iterative 
methods also depend on the channel model probabilistic knowledge to exhibit a suitable 
performance. Neither NN-based channel estimation techniques nor the RL approach 
relied on those probabilistic models. Therefore, those learning algorithms can be better 
candidates for channel estimation in complex and fluctuating environments.

Regarding RL, there is a wide-open field on applying this strategy to MCM to evaluate 
its performance and complexity over the NN. The latter estimators are the best option 
when the multicarrier system operates in a hard-to-model channel or when the goal is to 
provide a less human-dependent channel estimation method. Also, they are more capa-
ble of imitating real-world data. On the other hand, RL techniques leverage training by 
exploiting the environment in a trial-and-error manner, eliminating the need for explicit 
training processes and labeled datasets.

Combining different ML algorithms can outperform the strategies that use only one of 
them. They can be employed to work so that one algorithm treats the incoming data and 
provides the new input to another or one controls the overall multicarrier system work-
ing instead. Configuring the algorithms so that one feeds the another can reduce the 
processing time required by only one algorithm [303]. On the other hand, controlling 
the system means allocating power, pilots, and other resources [299]. Combination of 
different ML algorithms for channel estimation in multicarrier systems remains a wide-
open field that could unravel new strategies and models to solve such an issue.
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A common trade-off among ML algorithms is that the estimation accuracy increases at 
the cost of the training dataset expansion, which increases the computational complex-
ity. These learning strategies call attention to the necessity of a large number of training 
samples to achieve an approximate MMSE estimator’s performance. However, note that 
after training, the AI model can be less complex than the MMSE, which requires regular 
estimates of channel parameters (e.g., noise variance). However, dimensionality reduc-
tion [174], Bayesian learning [223], ELM networks [257], k-mean clustering [325], meta-
learning [324], LS-based ML algorithms [326], and DNN [296] have been investigated 
as solution candidates for reducing training sequences. Further research can consider 
reducing the computational work required by each AI-aided channel estimation. Moreo-
ver, combining the ELM network with distinct dimensionality reduction techniques is 
missing investigation.

Although conventional OFDM presents some drawbacks, it is still largely used as the 
primary multicarrier system to assess AI-aided channel estimation techniques’ perfor-
mance. OFDM variations remain multicarrier systems that haven’t been densely investi-
gated yet for AI-aided channel estimation techniques. Therefore, applying the methods 
presented throughout this survey for the OFDM variations can lead to discoveries that 
can result in mature versions of the aforementioned AI-aided channel estimation strate-
gies. The performance of the AI-aided channel estimation approaches employed by con-
ventional OFDM can be compared with one of the OFDM variations. The performance 
comparisons might include the MMSE estimation, but other metrics, such as computa-
tional complexity, processing time, and manufacturing cost, can be analyzed.

Multicarrier systems employing variations of OFDM, FBMC, GFDM, and UFMC can 
also be used for testing more AI channel estimation methods. New performance results 
can be obtained, and even better multicarrier systems can be designed. Simpler models 
can arise by investigating the combination between OFDM variations and AI mecha-
nisms created to solve the same drawbacks as the OFDM variations. Different AI models 
can join FBMC to improve spectral efficiency or reduce its intrinsic high PAPR. AI can 
control the allocation of pilots or reduce the ICI sensibility of the GFDM and UFMC 
multicarrier systems.

Finally, channels can be better explored in multicarrier systems with AI-aided chan-
nel estimation. Impulsive noise, flexible short-term fading, arbitrarily correlated short-
term fading, shadowed fading, arbitrarily correlated shadowed fading, and cascaded 
fading channels can be used as different fluctuating environments. They can bring 
more robustness to the AI-aided channel estimation methods or help address limita-
tions. For example, the needed number of input parameters can indicate a drawback or 
impact the processing time when the multicarrier system operates in a more aggressive 
environment.

8 � Conclusion
This paper extensively investigates AI applications for estimating the channel for MCM 
systems. Previous surveys on the same subject have been reviewed, but only a few have 
addressed AI usage in estimating the channel. In addition, most of them have been 
devoted to analyze OFDM and mMIMO-OFDM systems. Therefore, the present sur-
vey first contribution was detailing AI techniques used for channel estimation in MCM 
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systems. Generally, the following families of AI methods have been presented: classical 
learning, neural networks, and reinforcement learning. Specifically, the following AI 
models have been described: regression, evolutionary algorithm, dimensionality reduc-
tion, Bayesian learning, FFNN, ELM, RNN, DNN, CNN, RBFN, autoencoders, GAN, 
FNN, GRNN, and Q-learning. The survey second contribution was to carry use-case 
examples of AI for channel estimation in MCM systems that do not include OFDM 
but others, such as FBMC, GFDM, UFMC, STBC, MIMO-OFDM, FBMC-OQAM, and 
mMIMO-OFDM. A third contribution encompassed collecting conventional channel 
estimation techniques for MCM systems, such as non-blind, semi-blind, and blind tech-
niques. Lastly, this survey points out open issues and highlights future research topics 
that can help evolve the channel estimation for not only MCM communication systems 
but also single-carrier communication systems. Due to the immense number of refer-
ences herein, the paper main contribution is to serve as a basis for guiding researchers 
about the current development and opening for new and enhancement works of AI-
aided channel estimators for MCM communication systems.
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