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1  Introduction
Forward error correction (FEC) is a key technology of modern communication systems. 
The capability of detecting and correcting transmission errors has largely contributed 
to the progress in data rates, roundtrip latencies, and number of connected devices in 
cellular mobile communication systems. And the demand does not cease. Beyond-5G 
systems target data rates toward 1 Tbit/s, posing new and fundamental challenges to the 
design and implementation of FEC systems [1]. Low-density parity-check (LDPC) codes 
are among the most powerful and widely used FEC schemes. Since their discovery by 
Gallager in 1962 [2], innovations in both the code and the decoder design have opened 
this code class for a wide range of practical applications. Today, LDPC codes are part 
of many modern communication standards, like DVB-S2x, Wi-Fi, and 3GPP 5G-NR. 
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However, achieving 1-2 orders of magnitude higher throughputs than today’s fastest 
standards without sacrificing performance remains a great challenge, mainly due to area, 
power, and power density restrictions in the decoder implementation.

LDPC decoding is based on an iterative exchange of messages between the variable 
nodes and the check nodes in the Tanner graph of the code. To achieve good error cor-
rection performance, the Tanner graph must be large, of low density, and without short 
cycles causing the graph to be highly unstructured and without distinct regularity. These 
properties, however, challenge an efficient and high-throughput decoder implementa-
tion that requires locality to minimize the cost of data transfers and regularity to achieve 
large parallelism [3]. This fact manifests in particular in an increased wiring complex-
ity and routing congestions for large code block sizes resulting in low area utilization, 
poor timing, and increased power consumption of the respective decoding hardware. 
As a consequence, state-of-the-art high-throughput decoders are limited to small code 
block sizes of 1000–2000 bits, e.g., [4–6], which limits the overall performance of the 
FEC system.

Spatial coupling of LDPC codes is a promising approach to overcome these block size 
limitations. Spatially coupled LDPC (SC-LDPC) codes, initially introduced as LDPC 
convolutional codes (LDPC-CC) [7], are constructed from a set of small LDPC codes 
that are coupled together to form a chain of local sub-codes. In this way, a code of almost 
any length can be generated. Similarly, a respective decoder can be constructed by 
chaining together multiple sub-decoders, of which each operates on a much smaller sub-
block. In this way, SC-LDPC codes have the potential to combine good error correction 
performance with high-throughput decoding. This property is of particular importance 
in the context of beyond-5G/6G high-THz communications systems that aim at data 
rates of 1 Tbit/s. Respective use cases show significant variations in bit error rate (BER) 
requirements depending on whether they fall into infrastructure or end-user domains. 
For instance, IEEE 802.15.3d standard sets very stringent BER requirements of 10−12 for 
infrastructure-type use cases such as wireless backhaul/fronthaul and data centers, in 
contrast to relatively relaxed BER requirement of 10−6 for close-proximity communica-
tions with applications in personal-area networks [8]. SC-LDPC codes can cover this 
broad range of use cases as they exhibit good performance in both the waterfall and the 
error floor region of the BER curve [9].

In contrast to classical LDPC block codes, not so much research exists on the imple-
mentation of efficient, high-throughput SC-LDPC decoders. Essentially, we can distin-
guish three candidate architectures in the literature:

•	 The row-layered pipeline decoder (RLPD) [7],
•	 The row-compact pipeline decoder (RCPD) [10] and
•	 The full-parallel window decoder (FPWD) [11].

The RLPD achieves a fast convergence but supposedly suffers from a long initial decod-
ing delay and high storage requirements [10], whereas the RCPD and the FPWD exhibit 
relatively smaller decoding delay and less storage requirements but also a slower conver-
gence [10, 12]. However, these characterizations provide little information about the effi-
ciency of respective decoding hardware, which is evaluated according to implementation 
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metrics like achievable frequency, latency, area, and power consumption. In particular, 
for data transfer dominated circuits with complex signal routing like highly parallel 
LDPC decoders, it is difficult to fully assess the implications of design decisions on the 
algorithmic level on the implementation efficiency.

In this work, we therefore provide the first comparative investigation of various high-
throughput SC-LDPC decoding architectures down to the silicon level. Our investiga-
tion focuses on the N = 51328 , R = 0.8 terminated EPIC SC-LDPC code with sub-block 
size c = 640 and coupling width ms = 1 [13]. We explore various design trade-offs, 
including row- and column-wise decoding, non-overlapping and overlapping window 
scheduling, and processor pipelining. To the best of our knowledge, we present the first 
description of a column-wise SC-LDPC decoding architecture in the literature.

2 � Preliminaries
2.1 � Notation

In the following, we use italic letters, e.g., x, for the representation of scalars, bold low-
ercase letters, e.g., x , for the representation of vectors, and bold uppercase letters, e.g., 
X , for the representation of matrices. N0 denotes the set of positive integers, including 
the 0-element, Z the set of integers, R the set of real numbers, and F2 the Galois field 2. 
log2(x) denotes the base 2 logarithm of variable x, and ⌈x⌉ is the least integer greater than 
or equal to x.

2.2 � System model

We define a system for the continuous transmission of data blocks, as depicted in 
Fig.  1. An information source generates a stream, or sequence, of information blocks 
u[−∞,∞] = [u−∞, ...,u∞] , with each information block being composed of b bits, 
i.e., ut = [ut(1), ...,ut(b)], t ∈ Z and ut(·) ∈ F2 . An encoder maps this sequence 
of information blocks on a sequence of code blocks v[−∞,∞] = [v−∞, ..., v∞] with 
vt = [vt(1), ..., vt(c)] , c > b and vt(·) ∈ F2 . After modulation, transmission over 
a noisy channel, and subsequent bit-level demodulation, the decoder receives a 
sequence of blocks y[−∞,∞] each comprising c log-likelihood ratio (LLR) values, i.e., 
yt = [yt(1), ..., yt(c)] and yt(·) ∈ R . Finally, a decoder provides an estimation Ou[−∞,∞] on 
the initially transmitted information, with Out = [ût(1), ..., ût(b)] and ût(·) ∈ F2.

2.3 � SC‑LDPC codes

We define an R = b/c SC-LDPC code as the set of code sequences v[−∞,∞] satisfying

where

(1)v[−∞,∞] ·H
T
[−∞,∞] = 0,

Fig. 1  System model
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is also denoted as the parity-check matrix or syndrome former matrix of the SC-LDPC 
code. The elements Hi(t)  = 0 are binary, full rank sub-matrices of dimension (c − b)× c . 
From Eq. 1, it follows that each vt satisfies

and is thus coupled to ms preceding and ascending code blocks. Consequently, ms is also 
referred to as the coupling width or the memory of the code, (ms + 1) as the constraint 
length.

We define the parity-check matrix of a terminated SC-LDPC code of finite length 
L as H[1,L] . For simplification, we consider in this work only time-invariant codes, 
i.e., Hi(t) = Hi(t

′) for i = 0, . . . ,ms and t, t ′ ∈ Z . For a detailed description of SC-
LDPC codes, we refer to [7, 10] and [9].

2.4 � Window decoding of SC‑LDPC codes

SC-LDPC codes are decoded with message-passing algorithms, i.e., an exchange of 
probabilistic messages between variable and check nodes in the corresponding Tan-
ner graph of the code. The Tanner graph can be directly derived from H

[1,L], and the 
decoding can be performed similarly to a conventional LDPC block code by repeat-
edly updating the respective variable nodes and check nodes. This block scheduling, 
however, does not take advantage of the limited memory of the code and the conse-
quent diagonal band structure of H[1,L] . Instead, it is more efficient to use a sliding 
window scheduling. Here, the decoding is not performed simultaneously on the full 
graph corresponding to H[1,L] , but time-delayed on multiple sub-graphs each defined 
by a decoding window W(t) of length W. The decoding window can be considered 
as the Tanner graph corresponding to a sub-matrix of H[1,L] comprising W rows and 
W +ms columns. Throughout the decoding process, the window traverses H[1,L] 
from the upper left to the lower right, moving by one sub-block each time step t. The 
advantage of a window decoding schedule is a significantly lower structural latency 
than a block schedule, as the decoder can start the decoding right after receiving the 
first sub-block y1 . Furthermore, since the window length is typically much smaller 
than the block length, i.e., W ≪ L , the memory requirements are far less compared 
to a conventional LDPC block decoder of similar length.

H[−∞,∞] =

. . .

H0(t − 1)
. . .

... H0(t)

Hms(t − 1)
...

. . .

Hms(t) . . . H0(t +ms)

. . .
...

. . .

Hms(t +ms)

. . .

(2)[vt−i, . . . , vt , . . . , vt+j] · [Hms(t − i), . . . ,H0(t + j)]T = 0, {i, j ∈ N0 | i + j = ms}
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3 � State‑of‑the‑art high‑throughput decoders
From an implementation perspective, a sliding window decoder is subject to similar 
constraints as a conventional LDPC block decoder. For a large window size W, which 
in this analogy corresponds to a large block size N, routing congestions limit the 
achievable throughput. Reducing W, on the other hand, reduces the performance of 
the decoder. This performance loss can be partially counterbalanced by increasing the 
number of iterations on the window, but this again increases the logic critical path.

In [7], the authors propose to split the window into multiple sub-windows, each 
comprising only a single row of H[1,L] , in the following denoted as a row-layer. These 
sub-windows are then processed individually on multiple processors in parallel. 
Each processor performs only a single iteration involving (c − b) check nodes and 
(ms + 1) · c variable nodes. Moving the window to the next position is similar to shift-
ing the processed data from one processor to the next. In this way, the processors 
form a pipeline. It is hence commonly referred to as pipeline decoder. The initially 
proposed architecture requires a spacing between simultaneously processed layers of 
ms to avoid memory hazards. To better differentiate it from other decoding architec-
tures, we will refer to it in the following as RLPD. An application-specific integrated 
circuit (ASIC) implementation of an RLPD was presented in [14]. For a (491,3,6) 
LDPC-CC, the decoder achieves a throughput of 2.37 Gbit/s in 90 nm CMOS tech-
nology. Note that the achievable throughput for a LDPC-CC is much lower due to 
code’s serial structure, that limits the achievable hardware parallelism.

The structural latency, which also impacts the memory requirements of the RLPD, 
is proportional to the number of processors (iterations) I and the constraint length 
(ms + 1) . This can become a significant issue for codes with large ms and that require 
many iterations. In [10], the authors propose a so-called compact pipeline decoder 
with overlapping row-layers. The overlapping regions reduce the decoding window’s 
size and thus the decoder’s latency and memory. In analogy to the RLPD, we refer to 
this architecture as RCPD. However, a drawback of this architecture is a slower con-
vergence of the decoding. The reason for this is a simultaneous update of the variable 
node in the overlapping regions, similar to a flooding schedule. With the size of the 
overlap, latency and convergence of the decoder can be weighed against one another. 
In [15], the authors implemented an RCPD for a (215,3,6) LDPC-CC in a 65 nm tech-
nology. The decoder achieves a throughput of 7.72 Gbit/s.

Another approach for low decoding latency in combination with high throughput 
is the FPWD [11]. Like the RLPD and RCPD, the FPWD comprises multiple proces-
sors arranged in a pipeline. However, here the processors operate on small overlap-
ping sub-windows of at least W = ms + 1 using a flooding schedule. In the course of 
the decoding, the processors exchange extrinsic messages. An implementation of a 
FPWD was presented in [12]. The decoder achieves a throughput of 336 Gbit/s in a 
22 nm technology and is currently the fastest SC-LDPC decoder in the literature.

4 � Proposed pipeline decoder architectures
The decoders presented in the previous chapter, i.e., the RLPD, the RCPD, and the 
FPWD, are individual decoding solutions for SC-LDPC codes with the advantages 
and disadvantages discussed. In this chapter, we generalize several of the presented 
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state-of-the-art concepts, like the layered/compact window schedules [10] and over-
lapping decoding windows [12], and combine them with row- and column-wise 
decoding algorithms. This systematic approach leads to a new, more abstract perspec-
tive on state-of-the-art decoders. For example, the FPWD can then be viewed, as a 
particular column-wise decoder that uses a compact processing schedule.

Based on our methodology, we propose new pipeline decoder architectures, which are 
described in the following. The description resembles a bottom-up approach starting 
with the description of the row and column processors that constitute the fundamen-
tal building blocks of the respective decoders. We then show how the different window 
schedules can be implemented by the different interconnection of these elementary 
components. For simplicity, we assume in the following a fixed coupling width of ms = 1 . 
Furthermore, we focus on Min-Sum (MS) decoding. However, the presented concepts 
can be also applied to larger values of ms and other decoding algorithms.

4.1 � Processors

For the processor design, we utilize the node-splitting concept [12] that was initially 
introduced for the check nodes in the FPWD and apply it to the variable nodes of a 
row-wise decoder and the check nodes of a column-wise decoder. Furthermore, the on-
demand variable node activation (OVA) schedule for the row-wise decoding is extended 
to column-wise decoding.

4.1.1 � Node splitting

For ms = 1 , a row-layer of H[1,L] at time instance t is

and the corresponding sub-graph is composed of Nr = 2 · c variable nodes and 
Mr = c − b check nodes. By transforming the SC-LDPC factor graph [16], the variable 
nodes corresponding to a row-layer can be considered the partial variable nodes of a 
group of coupling nodes. For layer t, the respective coupling nodes connect the vari-
able nodes corresponding to H0(t) to the variable nodes corresponding to H1(t) in layer 
t + 1 . This principle is illustrated in Fig. 2. Similarly, we can merge the coupling nodes of 
layer t with the partial nodes of H0(t) such that the c leftmost nodes of layer t are directly 

(3)Hr(t) =
[

H1(t − 1) H0(t)
]

,

Fig. 2  Illustration of the node splitting for row- and column-wise decoding
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connected via a single edge to the c rightmost nodes of layer t + 1 . Likewise, the c right-
most nodes of layer t are connected to the c leftmost nodes of layer t − 1 . This concept 
can be similarly applied to a column of H[1,L]

corresponding to Nc = c variable and Mc = 2 · (c − b) check nodes. For simplicity, 
we assume that the SC-LDPC is regular with dv and dc and that dv(Hr) = dv/2 and 
dc(Hc) = dc/2 , i.e., the nodes are split exactly in half.

4.1.2 � On‑demand variable and check node activation

In the standard flooding schedule commonly used in the decoding of LDPC block codes, 
an iteration starts with the update of the check nodes (CNs) and ends with the update 
of the variable nodes (VNs). We denote this in the following as CN–VN iteration, see 
Algorithm 1. It was shown in [10] that when employing the flooding schedule in a row-
wise pipeline decoder, the processors do not make use of the most recent information in 
the processing pipeline. The authors, therefore, propose an OVA schedule that provides 
faster convergence for row-wise pipeline decoders. This OVA schedule resembles a sub-
iteration in the layered decoding schedule for LDPC block codes [17]. Here, the itera-
tion, in the following denoted as VN–VN iteration, starts with the calculation of new 
extrinsic messages for the check nodes (line 8, Alg. 1) and ends with the calculation of 
the a posteriori probability (APP) values (line 7, Alg. 1).

Similarly, we propose an on-demand check node activation (OCA) schedule for col-
umn-wise pipeline decoders. The corresponding CN–CN iteration starts at line  4 of 
Alg. 1 and ends at line 3. The first step in the CN–CN iteration is thus to compute the 
extrinsic messages for the VNs based on the respective signs and minimum values. Then, 
the VNs are updated and new signs and minimum values are eventually calculated. 
Between two decoding iterations, the extrinsic messages are represented only using the 
first and second absolute minimum min0 and min1 , the edge index of the first minimum 
idx0 , and the dc/2 signs of the output messages.

The node splitting requires an exchange of messages between neighboring windows/
processors. Therefore, we extend the VN–VN and CN–CN iterations by additional steps 
for the message exchange.

•	 Before the iteration on the respective sub-code, the local variable, respectively, check 
nodes are updated with the incoming messages from the neighboring windows/pro-
cessors. For the row-wise decoder by adding the exchange messages to the respective 
APP value, for the column-wise decoder by sorting the exchange messages into the 
list of minima and updating the sign of the respective check node.

•	 After the VN–VN/CN–CN iteration, the outgoing exchange messages for the neigh-
boring windows/processors are generated. For the row-wise decoder by subtracting 
the incoming exchange message from the updated APP values, and for the column-
wise decoder by multiplication of the minimum value with the check node sign.

(4)Hc(t) =

[

H0(t)
H1(t)

]

,
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Algorithm 2 and Algorithm 3 summarize the resulting processing algorithms for a row 
and a column layer.
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4.1.3 � Processor architecture

The row and column processors apply full parallelism on the node and edge level. For a 
description of respective variable node functional units (VFUs) and check node func-
tional units (CFUs), we refer to [18] and [19]. The architecture of a full-parallel row pro-
cessor that implements Algorithm  2 is depicted in Fig.  3a. The incoming right-to-left 
(R2L) and left-to-right (L2R) exchange messages are first added to the left and right local 
APP values, which are then passed to the VN–VN processor. The VN–VN processor 
comprises three stages, each implementing different parts of Algorithm 1: the VFU out 
(VFUo) stage line 8, the CFU stage lines 1–5, and the VFU in (VFUi) stage line 7. Even-
tually, the received exchange messages are subtracted from the left and right APP val-
ues. Note that the respective channel values are implicitly contained in the APP values, 
which is a common practice in row-layered decoding architectures [19].

The column processor has a similar structure and is depicted in Fig. 3b. The update 
minima unit (UMU) stage updates the minima for all 2 · (c − b) check nodes with the 
exchange messages according to Algorithm  4. Inside the CN–CN processor, the CFU 
out (CFUo) stage implements line 4, the VFU stage lines 6–9, and the CFU in (CFUi) 
stage lines 2–3 of Algorithm 1. In the split stage, the new exchange messages are gen-
erated by concatenating the sign bit from the check node computation with the new 
minimum value min0 (sign-magnitude representation). Note that no logic is required to 
perform this step.

The first and the last sub-block of the code require special processing. If a processed 
sub-block is the first of a block, it must not interact with the previous, if it is last, with 
the subsequent sub-block in the pipeline. This is realized with the respective multiplex-
ers that, depending on the case, pass a neutral element or the termination sequence to 
the respective VN–VN or CN–CN processor.

The outputs are stored in a register stage. Let Qchv , Qext and Qapp denote the bitwidths 
for the channel values, the extrinsic messages, and the APP values. The memory require-
ment for a row processor is then

and for the column processor

(5)Memrow = 2 · c ·Qapp + c · dv · Qext

(a) (b)
Fig. 3  Architectures for row- and column-wise iteration processors
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4.2 � Window schedules

With the described processors, different window processing schedules can be imple-
mented by differently interconnecting the processors.

4.2.1 � Layered schedule

The layered schedule resembles the layer-by-layer schedule for LDPC block codes [17], 
except that multiple layers are processed in parallel. It was already stated in the introduc-
tion of the RLPD that the spacing between active layers must be at least ms . Respective 
processing windows for 4 iterations of row- and column-layered decoding are illustrated 
in Fig. 4a.

Figure 5a shows the corresponding processor arrangement. Note that the processors 
can be interchangeably row or column processors. The APP and extrinsic messages are 
passed from one processor to the next via an intermediate pipeline stage. Consequently, 
the respective rows/columns are updated only every second clock cycle, which creates 
the alternating layer processing depicted in Fig. 4a. To better understand the exchange 
message handling, Fig. 5a also shows the respective pipeline diagram. If we consider a 
sub-block t currently processed inside the pipeline (shown at the bottom right of the 
pipeline diagram), it must receive a R2L message from sub-block t − 1 and a L2R mes-
sage from sub-block t + 1 . With the sub-blocks moving through the pipeline, the R2L 
output of a processor i is connected to its R2L input and the L2R output to the L2R input 
of processor i + 1 . In the first stage of the pipeline, L2R messages are not yet available 
and must be initialized with ’0’.

It should be noted that this processor arrangement results in redundant computations 
in the row processors as each processor updates its right and left APP values in every 

(6)Memcol = 2 · (c − b) · [2 · (Qext − 1)+ ⌈log2(dc/2)⌉ + dc/2] + [c ·Qchv].

Fig. 4  Illustration of different window schedules (4 iterations)
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clock cycle, although the respective R2L and L2R messages are only updated every sec-
ond clock cycle. To improve the efficiency of the architecture, we can directly connect 
the left APP input to the right APP output of the same processor and the right APP 
input to the left APP output of the previous processor. The R2L and L2R inputs are then 
set to zero. In this way, the processors share the APP values. This is not possible for the 
column-wise decoder as there is no distinction between intrinsic and extrinsic messages 
in the list representation.

4.2.2 � Compact schedule

In the compact schedule, the layers are overlapping (see Fig.  4b). The respective 
processor arrangement is shown in Fig.  5b. Due to the overlaps, the sub-codes are 
updated in every clock cycle and the stored data passed from one processor to the 
next. This modification of the processing also affects the message exchange, which 
is again illustrated in the pipeline diagram. Accordingly, the R2L exchange messages 
must be propagated to the input of the same processor or, in the case of L2R mes-
sages, two stages ahead.

4.2.3 � Multi‑compact schedule

The decoding throughput for a given code is mainly determined by the achievable 
operating frequency and thus by the critical path of the processors. The critical path 
of both the row and column processors comprises a complete VN–VN or CN–CN 

Fig. 5  Pipeline decoder architectures and pipeline diagrams



Page 12 of 19Herrmann and Wehn ﻿J Wireless Com Network         (2022) 2022:90 

iteration. Unrolled block decoders introduce additional pipeline stages in the decod-
ing iterations to achieve higher clock frequencies [5, 18]. For pipelined SC-LDPC 
decoders, this is more challenging due to the data dependencies between neighboring 
sub-blocks. With the proposed split node architecture, however, each processor oper-
ates on its local data set, which allows us to introduce additional pipeline stages in 
the processors and delay the message exchange. The corresponding arrangement for 
one additional pipeline stage in the processors is shown in Fig. 5c. The connections 
between processors for the L2R and R2L messages are again derived from the pipeline 
diagram. For each additional pipeline stage, the exchange message must be delayed by 
one clock cycle. We denote this schedule in the following as multi-compact, or com-
pact (i), where i denotes the number of pipeline stages inside the processors.

4.3 � Input/output stages

The column-wise decoders require an input stage to generate the initial list for the 
first processor in the pipeline from the channel values. This input stage is equivalent 
to a CFUi stage in the CN–CN processor. The row-wise decoders do not require a 
designated input stage, as the right APP values can be initialized directly with the 
channel values and the left APP values with zero messages. Instead, the row-wise 
decoders require an output stage to combine the left and right partial APP values. 
Therefore, the right APP messages of the last processor are stored in a register stage 
and then added to the current left APP messages.

4.4 � Computational complexity analysis

We estimate the computational complexity of the decoders based on the number of 
edge messages that are computed and transferred in every clock cycle [20]. Let Erow 
denote the number of edges corresponding to a row-layer and Ecol the number of 
edges corresponding to a column layer of H[1,L] . For a ( dv,dc ) regular code, the num-
ber of edges can be expressed as Erow = dc · (c − b) and Ecol = dv · c , which is equiva-
lent to the number of ones in Hr(t) and Hc(t) , respectively. Since Hr(t) and Hc(t) of 
a time-invariant code are composed of the same sub-matrices H1 and H0 , the num-
ber of edges in one row-layer equals the number of edges in one column layer, i.e., 
Erow = Ecol . From this, it follows that the VN–VN processor and the CN–CN proces-
sor compute the same number of edge messages in each clock cycle and thus exhibit 
similar computational complexity. However, the node splitting introduces additional 
edges for the exchange of messages between processors. The resulting number of 
edges for the row processor is then Êrow = Erow + 2 · c and for the column processor 
Êcol = Ecol + 2 · (c − b) . Taking into account the number of iterations (processors) I, 
we can define the complexity of the row-wise decoders as

and for the column-wise decoders as

(7)Crow = Êrow · I = [dc · (c − b)+ 2 · c] · I

(8)Ccol = Êcol · I = [dv · c + 2 · (c − b)] · I .
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5 � Results and discussion
In this section, we present FEC performance and implementation results of the pre-
sented pipeline decoders. The performance evaluation and the implementation were 
performed for the EPIC SC-LDPC code with L = 80 , ms = 1 , b = 512 and c = 640 [1]. 
The code is regular with dv = 4 and dc = 20 . The code rate is R = 0.798 and the total 
block length N = 51238 bit. The choice of code is based on the fact that the associated 
parity-check matrices and performance data are publicly available [13]. Furthermore, the 
sub-block size c = 640 allowed for a fully parallel decoder implementation, other than 
the larger EPIC codes with c = 960 and c = 1280 . For the latter, not all decoder architec-
tures could successfully pass the placement and routing process in the integrated circuit 
design due to routing congestions. The smaller sub-block size results in a lower per-
formance of the code, for the quantification of which we again refer to [13]. A detailed 
description of the experimental setup is provided in Sect. 7

5.1 � FEC Performance

Figure 6a shows a side-by-side performance comparison of the row- and the column-
layered decoder with 4, 8, 16, and 64 iterations (floating point). For better classification 
of the results, performance curves of the (64800, 51804) DVB-S2 code and the (648, 540) 
Wi-Fi code are also shown, each decoded with 200 iterations Normalized MS (NMS) 
( γ = 0.75 , flooding schedule). Both codes are comparable to the SC-LDPC code in terms 
of code rate ( R = 0.8 and R = 0.83 ). The DVB-S2 serves as a reference LDPC code, that 
is similar in length to a full code block (64800 bit vs. 51238 bit). Conversely, the Wi-Fi 

Fig. 6  Simulation results
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code can be considered an uncoupled counterpart to the SC-LDPC code with a block 
length similar to one sub-block (648 bit vs. 640 bit). We see that for the same number 
of iterations, the row-layered decoder outperforms the column-layered decoder. This 
observation is also made for the compact decoders in Fig. 6b and the compact decod-
ers with one additional pipeline stage in the processor in Fig. 6c. We also see that the 
performance decreases from the layered to the compact and the double-compact decod-
ers. For better visualization, Fig. 6d shows the signal-to-noise ratio (SNR) at BER 10−6 
for all presented decoders over the iterations. This representation helps to illustrate the 
convergence behavior of the decoders, where a strong curvature toward the origin of 
the diagram indicates a faster convergence. The fastest convergence is achieved with 
layered decoding, the slowest with double-compact decoding. Furthermore, we see that 
all decoders asymptotically approach an SNR of approximately 3.1 dB. This behavior is 
expected as the exchanged messages in the compact, particularly in the double-compact 
decoder, are less recent, which affects the convergence speed of the decoder.

5.2 � Implementation results

To compare the efficiency of different pipeline decoders, we implemented

•	 A 4-iteration row-layered decoder,
•	 A 5-iteration column-layered decoder,
•	 A 6-iteration row-compact decoder,
•	 A 7-iteration column-compact decoder,
•	 And two 9-iteration compact decoders with one additional pipeline stage in the pro-

cessor, with row- and column-wise processing.

The pipeline stage was inserted in the minimum search tree of the CFU stage for 
the row-wise processor and after the VFU stage for the column-wise processor. The 
respective number of iterations was selected such that all decoders achieve the same 
FEC performance (fixed point) of BER = 10−6 at 4.2 dB, which is around 1 dB from 
the maximum MS performance of the code. All decoders use 4 bits to represent the 
channel values and the extrinsic messages. The row processors’ APP, R2L, and L2R 
values are quantized with 6 bits. The performance loss compared to floating point for 
this configuration is less than 0.2 dB up to a BER of 10−6.

The layouts of the implemented decoders are depicted in Fig. 7, and Table 1 sum-
marizes the results. When comparing the respective row- and column-wise decoders, 
we see that the column-wise decoders outperform the respective row-wise decoders 
in terms of throughput, energy, and area efficiency. For the layered architecture, the 
column-wise decoder achieves 25% higher clock frequency (throughput), around 19% 
better energy efficiency and 22% better area efficiency. For the compact and double-
compact architectures, the improvements are even more profound with 50% (freq.), 
59% (energy eff.), and 135% (area eff.), and with 38% (freq.), 24% (energy eff.) and 38% 
(area eff.), respectively.

At first glance, these results seem unexpected, especially considering the fact that 
the column-wise decoders are composed of an equal or even larger number of pro-
cessors. However, an important fact to consider is the lower number of edge message 



Page 15 of 19Herrmann and Wehn ﻿J Wireless Com Network         (2022) 2022:90 	

computations of the column-wise processors ( Êcol = 2816 vs. Êrow = 3840 ). Relating 
the calculated computational complexity values to implementation metrics such as 
energy and area efficiency, we observe a large discrepancy. We attribute this to the 
data transfer dominance of the decoder. It was already shown in [21] that for data 

Fig. 7  Layouts of the presented decoders in 22nm

Table 1  Implementation results in 22nm FD-SOI technology

a Calculated using Erow · I since no exchange messages are processed.

b Calculated using Eq. 8.

c Calculated using Eq. 7

Code (c, b, L) (640,512,80)

Architecture Layered Compact Compact (2)

Processing Row Column Row Column Row Column

#Processors 4 5 6 7 9 9

Comp. Compl. 10240a 14080b 23040c 19712b 34560c 25344b

#Pipeline Stages 10 13 8 10 20 21

Frequency [MHz] 438 549 351 525 500 693

Core Area [mm2] 1.02 1.04 2.11 1.33 2.69 1.68

Utilization [%] 82 76 77 77 80 77

Power Total [W] 2.38 2.42 5.13 3.16 4.42 3.78

Power Density [W/mm2] 2.35 2.33 2.43 2.37 1.65 2.24

Throughput [Gbps] 280 351 224 336 320 443

Latency [ns] 22.8 23.7 22.8 19.0 40.0 30.3

Area Eff. [Gb/s/mm2] 276 338 107 252 119 263

Energy Eff. [pJ/bit] 8.5 6.9 22.8 9.4 13.8 8.5

Energy Eff. per proc. [pJ/bit] 2.1 1.4 3.8 1.3 1.5 0.94
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transfer dominated applications, like LDPC decoding, the number of operations has 
little impact on area and energy efficiency. Another important aspect to consider for 
the better efficiency of the column-wise decoders is that the data transfer between 
the processors is much lower ( 256 · Qext = 1024 vs. 1296 · Qapp = 7776 ) and, con-
sequently, the wiring load for the logic circuit resulting in smaller logic cells. Fur-
thermore, the column processor has 57% fewer registers (Eq. 5 and Eq. 6), and thus a 
smaller clock tree.

A similar observation is made when comparing the compact and the double-com-
pact decoders. Despite a higher computational complexity of the latter, the energy 
efficiency improves. Here, the introduction of an additional pipeline stage reduces 
the wiring load and toggling rates. Consequently, the energy efficiency per processor 
improves by 28% for the column-wise decoder and 60% for the row-wise decoder.

It should be noted that there is a large drop in frequency and degradation in energy 
efficiency from the row-layered to the row-compact decoder. The reason for this is that 
the row-layered decoder does not process exchange messages (see Sect. 4.2.1). Conse-
quently, the adders in the row processors and the corresponding wiring were not synthe-
sized, which contributes to the better efficiency of the row-layered decoder.

Finally, Table 2 shows the results for the column double-compact decoder in compari-
son to data from the fastest LDPC Block Code (LDPC-BC) and LDPC-CC decoders in 
the literature. The column double-compact decoder was selected for the comparison as 
it achieves the highest throughput of the presented decoders. The FPWD in [12] is not 
listed in Table 2, as the results are similar to the column-compact decoder in Table 1.

The LDPC-BC decoder in [8] is implemented in the same 22 nm technology and fea-
tures a similar code rate and (sub-)block size and therefore allows for a detailed compar-
ison. The throughput of the SC-LDPC decoder is about 20% lower than the throughput 
of the unrolled block decoder. This results from the fewer pipeline stages per iteration 

Table 2  Comparison with state-of-the-art high-throughput LDPC decoders

Decoder This work [15] [22] [5] [8]

Code SC-LDPC LDPC-CC LDPC-CC LDPC-BC LDPC-BC

(Sub-)block size 640 n/a n/a 2048 648

Code Rate 0.798 1/2–4/5 1/2 0.84 0.83

CMOS Technology 22nm 65nm 90nm 28nm 22nm

Supply Voltage [V] 0.8 1.20 0.8 1.0 0.8

Processing Column Row Row Block Block

Architecture Compact Compact Layered Unrolled Unrolled

# Processors 9 6 4 5 8

Quantization [bit] 4 6 6 3 4

Eb/N0 at BER 10−6 [dB] 4.2 n/a ∼ 3 ∼ 4.7 4.9

Frequency [MHz] 693 322 305 862 837

Decoding Latency [ns] 30.3 n/a n/a 69.6 31.0

Post P &R Area [mm2] 1.68 1.6 2.18 16.2 1.75

Throughput [Gbit/s] 443 7.72 3.66 588 542

Energy Eff. [pJ/bit] 8.5 53.4 75.2 22.7 5.8

Energy Eff. per proc.  [pJ/bit] 0.94 8.9 18.8 4.5 0.73

Area Eff. [Gbit/s/mm2] 263 4.8 1.7 36.3 311
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of the SC-LDPC decoder (2 vs. 3). As a result, the LDPC-BC decoder achieves a higher 
maximum frequency. The area of both decoders is similar. However, the SC-LDPC 
decoder achieves a gain in error correction performance of 0.7 dB over the LDPC-BC 
decoder. With an Eb/N0 of 4.2 dB the SC-LDPC decoder surpasses the maximum perfor-
mance of the Wi-Fi code at 200 iterations (see Fig. 6c). This illustrates the great potential 
of SC-LDPC codes for high-throughput decoding beyond 5G.

6 � Conclusions
In this paper, we presented the first in-depth investigation on the implementation of 
SC-LDPC decoders for throughputs beyond 100 Gbit/s. For a N = 51328 , R = 0.8 ter-
minated SC-LDPC code with sub-block size c = 640 and coupling width ms = 1 , we 
explored various design trade-offs, including row- and column-wise decoding, non-over-
lapping and overlapping window scheduling, and processor pipelining. In this context, 
we provided the first description of a column-wise SC-LDPC decoding architecture. We 
have shown that the column-wise decoding of SC-LDPC codes is a promising approach, 
which, despite poorer convergence behavior, offers advantages in the implementation 
efficiency.

7 � Methods
Performance evaluation and implementation were performed for the EPIC SC-LDPC 
code with L = 80 , ms = 1 , b = 512 and c = 640 [13].

Performance is evaluated with BER over SNR simulations for the transmission sce-
nario depicted in Fig.  1. Each SNR point was simulated with 106 blocks (correspond-
ing to 80 · 106 sub-blocks) transmitted over an additive white Gaussian noise (AWGN) 
channel with binary phase-shift keying (BPSK) modulation. All decoders use the NMS 
algorithm with γ = 0.75.

Implementation was performed in a 22  nm fully depleted silicon-on-insulator (FD-
SOI) technology under worst-case process, voltage, and temperature (PVT) conditions 
(125◦ , 0.72 V for timing, 0.80 V for power). For synthesis, we used the design compiler, 
for placement  and  routing the IC-compiler, both from Synopsys. Power numbers are 
calculated with back-annotated wiring data using Synopsys Primetime and Siemens 
Modelsim. The stimuli for the power simulations were obtained at a fixed SNR of 4 dB. 
Measurements started after an initialization phase of 100 clock cycles to ensure that the 
pipelines are filled.
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