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1 Introduction
As an effective carrier of common information in the information age, a digital image 
has been widely used in many fields, including scientific research, media, and judicial 
expertise. The popularity of image editing software has reduced the cost of image con-
tent modifying but has led to the dissemination of a large number of tampering images 
containing false information on the Internet. In general, copy-paste modifies the local 
information of an image’s region through the covering operation, and its specific opera-
tion is to select a region in the original image to copy and paste it into another local 
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regions in the same image, which represents a typical tampering method. The tam-
per region is homologous to the original region in the image, and thus difficult to be 
detected [1].

The existing forgery detection methods [2] mainly use the similarity between tam-
pering regions as a detection criterion, and the detection process includes four steps, 
namely, preprocessing, feature extraction, feature matching, and post-processing, 
among which, feature extraction and feature matching play a key role. Since the exist-
ing methods use a fixed threshold in the detection process, their generalization ability 
is not strong enough. In addition, most of them rely on a single feature easily disturbed 
by the natural high-similarity region, which leads to the high false alarm rate. Aiming at 
mentioned problems, it is of high significance to improve the performance of the forgery 
detection methods by increasing their feature expression ability and realizing adaptive 
threshold automation with feature fusion.

In this paper, an improved two-stage [3] detection method of copy-move forgery based 
on parallel feature fusion is proposed. Firstly, the SILC super-pixel segmentation algo-
rithm is applied to preprocess an image, and then a local region extraction algorithm 
without threshold is used to obtain a suspected tampering local region with high simi-
larity. To improve the feature expression ability, a new parallel feature combining the 
SIFT feature and Hu moment feature is used to describe the extracted local regions with 
high similarity. Finally, the thresholds are generated adaptively according to the histo-
gram of oriented gradient (HOG) features of the suspected tampering regions, which are 
then used to determine the attributes of local regions and to improve the generalization 
of the proposed method. The experimental results show that the proposed method can 
achieve high accuracy of 99.01% and 98.5% on the MICC-F2000 and MICC-F220 data-
sets respectively, and also shows strong robustness on the COMOFOD dataset.

The rest of this paper is organized as follows. Section 2 describes the current related 
works of copy-paste forgery detection technology. Section  3 introduces an improved 
two-stage forgery detection method based on parallel feature fusion. Section  4 pre-
sents the verification and analysis results of the proposed scheme from various aspects. 
Finally, Sect. 5 concludes the paper and gives future work directions.

2  Related works
The existing forgery detection methods are carried out based on the similarity between 
copy region and paste region, which can be roughly divided into three categories of 
image partition-based, feature point-based and deep learning-based methods [4].

The image partition-based methods are to segment and sample an image to obtain 
a local region first, then extract the features of the local region for matching, and 
finally to obtain the similar local region for identification. The commonly used fea-
tures include the Discrete Cosine Transform (DCT) coefficients [5–7], RGB fusion 
information [8], Discrete Wavelet Transformation (DWT) [9], Zernike Moment [10, 
11], Analytical Fourier-Mellin Transform (AFMT) [12], Hu invariant moment, Polar 
Cosine Transform (PCT) [13], PCET-SVD [14], CMF-iteMS [15], and Stabilized 
Wavelet Transform (SWT) [16]. The listed features mainly acquire the descriptor of 
an image’s local region in the color domain or transform domain. Although these 
features have many advantages, they also have certain shortcomings. For instance, 
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the DCT and RGB features have low computational complexity, but their robustness 
is not strong. The Hu feature is composed of seven invariant moments, which can 
describe the object shape well, achieving certain robustness and low computational 
complexity. Zernike Monment, PCT and AFMT need to map an image to a higher 
order, which has higher computational complexity but achieves slightly stronger 
robustness than the RGB and other features.

The feature points-based methods extract the key points in the high entropy region 
of an image and construct the descriptor to complete the region matching. Their com-
monly used features include the SIFT [17–21], SURF [22, 23], ASIFT [24], ORB [25] and 
LBP [26]. The feature points are distributed where the gray level of an image changes 
dramatically, and their robustness mainly depends on the formation of a feature descrip-
tor. Among the mentioned features, the SIFT detects key points in the scale space, and 
forms feature descriptors by using the main direction mechanism, which provides strong 
robustness and effective resistance to attacks, such as illumination, rotation and scale 
change. For example, Tahaoglu et al. [27] proposed a new forgery detection and localiza-
tion method, which does not rely on forgery region features, but obtains SIFT key points 
based on RGB and LAB color space. However, its eigenvector has 128 dimensions and is 
of high complexity.

The deep-learning-based methods do not require manually extract features but learn 
the internal characteristics of a forged image through the training mechanism to com-
plete the forgery detection. Wu et  al. [28] designed a deep matching and validation 
modelbased on a simple convolutional neural network (CNN) for recognition. And they 
further presented an end-to-end detection model based on a two-branch structure, 
namely Busternet, including operation detection branch (Mani-Det Branch) and simi-
larity detection branch (Simi-DET Branch) [29]. Jaiswal and Srivastava [30] proposed 
an encoder-decoder CNN model based on multi-scale input and multi-level convolu-
tion layer, which can divide pixels into forged and unforged pixels by the final sigmod 
activation function. Liu et al. [31] proposed a novel convolutional kernel network (CKN) 
based on an improved CNN structure that can greatly reduce the training time cost.

Recently, a number of multi-features-based methods have been proposed for improved 
detection performance. Sunitha et al. [32] presented a keypoint-based method for effi-
cient detecting copy-move forgery with a hybrid feature. Peng et al. [33] proposed a pro-
gressive hybrid feature-based method, which uses no threshold in the steps of obtaining 
similar local regions. Khan et al. [34] develop a detection method by combining the fea-
tures of block and feature points, but this method has a relatively high false alarm rate. 
Pun et al. [35, 36] combine the SURF feature and DAMFT features, but their method has 
a high time complexity and still uses a fixed threshold when judging a region’s attributes.

In summary, the image partition-based methods generally adopt a global search strat-
egy, which can achieve high accuracy but with a high false alarm rate, because the used 
features like SIFT can be easily disturbed by natural similarity. The deep-learning-based 
methods can automatically extract features, but their robustness needs to be improved 
due to the uncertainty of the deep feature generation and needs of large amounts of 
training data. In order to achieve low false alarm rate and high robustness, we explore 
how to combine different features and attend to propose an improved method with 
adaptive thresholds in this paper.
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3  Proposed method
In [33], the authors used uniform non-overlapping segmentation in the image pre-
processing stage, but this approach did not consider the correlation between pixels, 
easily resulting in losing the correlation between local regions in the image. The num-
ber of regions acquired by the Hu and SIFT features is inconsistent in terms of pro-
gressive hybrid features. In addition, a fixed threshold value is still used in the final 
determination of regional attributes. To solve these problems, this paper proposes an 
adaptive two-stage forgery detection method based on super-pixel segmentation and 
parallel feature fusion. The proposed method is shown in Fig. 1, where it can be seen 
that it includes two stages, coarse-grained detection and fine-grained detection.

In the first stage, the simple linear iterative cluster (SLIC) algorithm is used to 
preprocess an image to obtain the set of irregular local regions with semantic infor-
mation, and the SIFT feature is used to characterize these regions and establish the 
correlation distribution map. Then, the candidate tampering regions are obtained 
according to the correlation distribution map.

In the second stage, the candidate tampering regions are combined with some simi-
lar local regions first, and then, a parallel fusion feature is extracted to express the 
characteristics of local regions. Next, the thresholds are adaptively generated accord-
ing to the HOG feature of matched local regions, which is used to decide whether a 
local region has been tampered.

Fig. 1 The proposed method flowchart
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3.1  Preprocessing step

In the preprocessing step, a color image is mapped to the gray space first and then seg-
mented by the SLIC algorithm is to obtain the local regions. The SLIC algorithm clusters 
pixels to generate irregularly shaped super-pixels by using an iterative strategy, which is 
ideal in running speed, compactness and contours preservation. The main process is to 
transform RGB color images into 5-dimensional feature vectors in CIELAB color space 
and XY coordinates, and then construct distance metrics for 5-dimensional feature vec-
tors, and perform local clustering of image pixels. The distance metric of the super-pix-
els D′ is calculated by Eq. (1).

where dc and ds represent the color distance and the spatial distance respectively; Ns is 
the maximum spatial distance within the class, which is applicable to each cluster; Nc is 
the maximum color distance. The pseudocode of the SLIC is given in Algorithm 1.

The comparison of the segmentation effects of the non-overlapping segmentation 
and the SLIC segmentation on a gray-scale image is presented in Fig. 2. Traditional seg-
mentation simply divides regions without considering the correlation between pixels. In 
addition, the local region extraction algorithm with no-threshold in the next step oper-
ates based on the correlation between local regions. Therefore, when a tampering region 

(1)D′
=

√

(dc/Nc)
2
+ (ds/Ns)

2

Fig. 2 Comparison of the segmentation effects of two different segmentation schemes. a Uniformly 
non‑overlapping segmentation, b SLIC segmentation
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is divided into several different local regions, the correlation between them will be weak-
ened, leading to a failure of the local region extraction algorithm to mine accurately the 
local information of an image containing the tampering region. Conversely, the SLIC 
segmentation clusters correlated pixels into a super-pixel block of an irregular shape, 
which has the visual integrity of an object and can retain tampering region information 
as much as possible.

3.2  Similar local region extraction without threshold

The process of similar local region extraction is to find the pairs of matching regions with 
a high similarity according to the degree of feature point matching between regions, and 
denote them as the candidate tampering regions. The specific process is shown in Fig. 3.

Firstly, each local region is described by the SIFT feature. And the two-nearest neigh-
bor algorithm is used to match the SIFT feature points of local regions. When the 
Euclidean distance of two feature points is less than the minimum distance and the sec-
ond smallest (default value is 10), the feature matching is considered successful.

Secondly, we use the RANSAC algorithm to further remove false matching points 
from the above matching points. Specifically, a corresponding homography matrix con-
taining geometric information such as rotation and scaling of the tampered region is 
estimated for each matching point using an iterative mechanism. Then, the correlation 
confidence of the two matching points is calculated based on the upper homography 
matrices. If the correlation confidence is lower than a fixed threshold (the default value 
is set as 0.995 in this paper), the two matching points are mismatched.

Next, according to the matching results of feature points, the correlation distribution 
map between local regions is established, as shown in Fig. 4. This map represents the 
correlation between two local regions, and the larger its value is, the stronger the corre-
lation between two regions will be. Thus, a pair of two matching regions with the great-
est correlation can be a tampering region. Therefore, the local regions that correspond 
to the peak and sub-peak of correlation are selected as the candidate tampering regions.

The candidate tampering regions obtained by coarse-grained detection is a set of 
local regions with high correlation, which includes both the real tampering regions and 
the natural original regions with high similarity. Therefore, it is necessary to accurately 
determine the candidate tampering super-pixels in the next stage of fine-grain detection.

3.3  Local region combination

To obtain larger receptive fields and to generate more complete candidate tampering 
regions, the acquired target local regions are needed to be combined. The specific 
process is shown in Fig. 5, where it can be seen that the target super-pixel is set as a 
center and the neighborhood super-pixels and the target super-pixel are combined; 

Fig. 3 The block diagram of the similar local region extraction process
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namely, the pixel labels of the neighborhood super-pixels are modified into that of the 
target super-pixel.

In the process of region combination, if the distance between two super-pixels is 
too close, local aliasing can be easily caused. Thus, it is necessary to consider a rela-
tive position between two suspected tampering regions. First, each super-pixel is 
labeled and the distance between the super-pixels is calculated by Eq.  (2), where d 
represents a relative positions of two local regions, abs() represents the absolute value 
function, and ci represents the location coding of a local region i.

According to the relative position between two local regions, there are two possible 
cases.

(1) A region in the matched pair is at the image edge.
(2) No region in the matched pair is at the image edge.

In case (1), due to the influence of the edge effect, it is impossible to use eight-
neighborhood for the local region on the image edge, so the four-neighborhood asso-
ciation is adopted. In case (2), the n-neighborhood is adopted, and the value of n 

(2)d = abs(c1 − c2)

Fig. 4 Correlation distribution map
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Fig. 5 Illustration of the region combination process
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depends on the relative position d, which is calculated by Eq. (3), where L represents 
the sampling size. When two local regions are distant, the eight-neighborhood com-
bination mode can be chosen, otherwise, the six-neighborhood combination mode 
can be chosen.

3.4  Parallel feature fusion

To eliminate the interference introduced by natural highly correlated regions, Peng et al. 
[33] proposed a forgery detection method based on progressive fusion features. In this 
method, first, the SIFT feature of each local region is extracted and matched, and then 
the Hu moment feature is extracted from the neighborhood of each pair of matched fea-
ture points, which are required to be secondly matched. Finally, the attribute of the local 
region is judged according to the rules. The fusion feature with a progressive structure 
can effectively combine the SIFT feature with the Hu feature to enhance the detection 
robustness and to avoid the interference of a similar natural region caused by illumina-
tion invariance, however, this approach has certain problems. First, the scheme needs 
quadratic matching of feature points, which is highly time-consuming to calculate. Sec-
ondly, the expression ability of the progressive fusion features is not strong enough to 
make full use of the SIFT or Hu features, thus leading to a relatively high false alarm rate.

Moreover, the Hu moment feature is calculated for the neighborhood pixels of the 
SIFT-based matched key points, so its scope is limited to the matched feature points, 
which makes it difficult to describe the local region accurately, leading to the phenom-
enon of "missing matching" in the feature point matching algorithm. As shown in Fig. 6, 
some of the discrete feature points are not judged as matching points.

To solve the above problems, a new parallel fusion feature is proposed to describe a 
local region with suspected tampering. The block diagram of the fusion process is shown 
in Fig. 7. First, a set of SIFT feature points is obtained from the candidate local regions, 
and then the SIFT and HU features are calculated and combined simultaneously in the 
neighborhood of the feature points, and the final descriptor corresponding to the pair of 
matched regions is constructed after normalization.

(3)n =

{

6, d = 1, L, L+ 1, L− 1, L+ 2, L− 2, 2L+ 1, 2L− 1, 2L+ 2, 2L− 2

8, else

Fig. 6 Scope of the Hu moment
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For each feature point, a seven-dimension vector of the Hu moment feature ( Hu7 ) 
and a 128-dimension vector of the SIFT feature of the neighborhood pixels ( SIFT128 ) 
are generated. Since the first to fourth components in the vector of the Hu moment fea-
ture have strong invariance, only the first four-dimension vector of the Hu feature ( Hu4 ) 
and SIFT128 are combined to generate the final 134-dimension feature vector. Then, it 
is normalized to eliminate the dimensionality effect and used as a feature descriptor in 
region matching, namely parallel fusion feature ( ParallelF134 ) expressed by Eq. (4), where 
concat(· ) denotes a combinatorial function and Normalize(· ) represents a normalized 
function provided by OpenCV.

The way of progressive feature fusion extracts the Hu moment feature from the 
matched feature points and performs the secondary matching on this feature. The paral-
lel feature fusion directly extracts the SIFT and Hu moment features from the extracted 
feature point set and combines them, which expands the extraction range of the Hu 
moment feature and enhances the expression ability of the parallel fusion feature.

3.5  Adaptive threshold generation based on HOG level

Generally, traditional methods use thresholds in two situations: (1) to measure whether 
there is a similarity between local regions or features, and (2) to measure whether the 
similarity of regions meets the standard of a copy-move forgery. At present, there have 
been no uniform standards for selecting a fixed threshold. In addition, different images 
have different characteristics such as color, illumination, or texture, so it is challenging 
to choose a threshold that will be suitable for most images. In this paper, an adaptive 
threshold generation algorithm based on the HOG level is adopted. After the description 
and matching of super-pixels by the parallel fusion feature, a threshold is automatically 
generated to determine whether two matched super-pixels denote tampering regions. 
The schematic of this process is shown in Fig. 8.

(4)ParallelF134 = Nomailze(concat((SIFT128, Hu4))

Fig. 7 The block diagram of the parallel feature fusion process

Fig. 8 The block diagram of the adaptive threshold generation process
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The HOG is a feature descriptor representing the texture information of an image’s 
local regions through the gradient information. If the super-pixels A and B contain a 
tampering region, their texture information for both should be the same.

For super-pixels A and B containing the candidate tampering regions, their HOG 
features are extracted, and the corresponding HOG levels representing their texture 
richness are calculated by Eqs. (5) and (6), respectively, where i = 1, 2, 3, . . . , n , and 
c = 1, 2 ; n represents the total dimension of the HOG feature, xi represents the ith 
component of the HOG feature, and Ec represents the average gradient intensity of a 
local region.

Most of the SIFT feature points exist in the high entropy region of the image, 
which is the region with rich texture, and the texture richness of a region will 
directly affect the number of SIFT feature points. When the tampering region is rel-
atively flat, the feature points will attenuate to a certain extent. But when the texture 
of the tampering region is rich, it will have more feature points. That is, the number 
of feature points directly affects the amount of information available for similarity 
calculation. Thus, the HOG level of the pair of matched local regions can be used 
for dynamically adjusting the threshold T, which can be calculated by Eq. (7), where 
m is the proportionality factor, with the default value of one. The pseudocode of the 
adaptive threshold generation algorithm is given in Algorithm 2.

The adaptive threshold generation algorithm sets the thresholds according to the 
characteristics of the local regions, which increases the generalization and robust-
ness of the proposed detection method. The generated threshold value is used as a 
criterion to determine whether the local region is a tampering region. Namely, the 
correlation between super-pixels A and B is compared with the threshold value T, 
and if the similarity is greater than T, the region is considered as a tampering region.

(5)Ec =
∑

xi/n

(6)HOG_Level = E1 + E2/2

(7)T = HOGLevel ×m
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4  Results and discussion
4.1  Datasets and evaluation metrics

In the experiments, the hardware includes a PC with an Intel I7-9700K CPU and 
Nvidia Tesla P40, running on Windows 10 operating system. The software is Micro-
soft Visual Studio 2019. The true positive rate (TPR), false positive rate (FPR) and 
F-measure (F1) are used as the evaluation metrics of the proposed algorithm’s detec-
tion performance.

The performance of the proposed method is verified by experiments on three public 
datasets, namely, MICC-F220, MICC-F2000 and COMOFOD datasets [17, 37]. The 
basic information on the datasets is given in Table 1. And some examples of tampered 
images in the datasets are shown in Fig. 9. where the green boxes are the source target 
regions and the red boxes are the tampered regions.

The MICC-F220 and MICC-F2000 datasets are used to verify the robustness of the 
proposed method against geometric attacks, including translation, rotation, and stretch 
and the different combinations of the above three operations. According to the degrees 
of rotation, stretch and translation, there are different requirements for algorithm 
robustness. The scaling scales in the x-axis direction and y-axis direction are denoted 
as Sx and Sy respectively; the rotation angle of a local region is denoted as θ ; the attack 
degrees of the MICC-F220 and MICC-F2000 datasets are H and J, respectively. The 
attack degrees of these two datasets are given in Tables 2 and 3, respectively.

Table 1 Basic information on datasets used in the experiments

Datasets Number of 
original images

Number of 
tampering images

Resolutions Image formats Number 
of attack 
types

COMOFOD 200 4800 512 × 512 JPEG 6

MICC‑F220 110 110 739 × 492 JPEG 1

MICC‑F2000 700 1300 739 × 492 JPEG 1

Fig. 9 Some examples in test images of three differents datasets
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The COMOFOD dataset is used to test the robustness of the algorithm from two 
aspects: attack type and attack degree. Among them, tampered images are accompa-
nied by various post-processing attacks of different degrees, including JPEG compres-
sion, blur, contrast change, color adjustment, brightness attack and Gaussian noise. 
The information on the attack types in this dataset is given in Table 4.

4.2  Module validity testing

For verifying the module validity of the SLIC, parallel feature fusion and adaptive thresh-
old generation algorithm, four different schemes are conducted and evaluated on the 
MICC-F2000 dataset. The method proposed in [33] (Scheme  1) is used as a baseline, 
Scheme 4 is our proposed method. The experimental results are shown in Table 5.

Table 2 Type of geometric attack in MICC‑F220 dataset

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10

θ 0 10 20 30 40 0 0 0 10 20

Sx 1 1 1 1 1 1.2 1.3 1.4 1.2 1.4

Sy 1 1 1 1 1 1.2 1.3 1.4 1.2 1.4

Table 3 Type of geometric attack in MICC‑F2000 dataset

J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12 J13 J14

θ 0 5 25 70 90 0 0 0 0 0 0 0 40 30

Sx 1 1 1 1 1 1.2 1.5 2.0 0.7 0.5 1.4 2.6 3.4 1.4

Sy 1 1 1 1 1 1.2 1.5 2.0 0.7 0.5 1.7 1.3 1.2 0.7

Table 4 Attack types in COMOFOD dataset

Attack types Attack degree levels Related parameters

JPEG compression JC1, JC2, …, JC9 Compression factor = [20, 30, 40, 50, 60, 70, 80, 90, 100]

Blur attack IB, IB2, IB3 Fuzzy window size = [3 × 3, 5 × 5, 7 × 7]

Contrast change CA1, CA2, CA3 Adjustment interval = [(0.01, 0.95), (0.01, 0.9), (0.01, 0.8)]

Color adjustment CR1, CR2, CR3 Variations in brightness for each color channel: [32, 64, 128]

Brightness change BC1, BC2, BC3 Adjustment interval = [(0.01, 0.95), (0.01, 0.9), (0.01, 0.8)]

Gaussian noise NA1, NA2, NA3 Mean = 0, variance = [0.0009, 0.005, 0.0005]

Table 5 Detection results of different schemes with different module combination

Bold text indicates that the current method has the highest value

Name Description TPR (%) FPR (%) F1

Scheme 1 [33] Uniform‑type segmentation + progres‑
sive fusion feature

97.2 6.4 92.9

Scheme 2 SLIC + progressive fusion feature 97.5 6.2 93.3

Scheme 3 SLIC + parallel fusion feature 97.9 5.5 94.1

Scheme 4 (our method) SLIC + parallel fusion feature + adap‑
tive threshold generation

98.5 5.7 94.3
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Compared with Scheme  1, the TPR of Scheme  2 increased by 0.3% and FPR is 
decreased by 0.2%, indicating that SLIC can improve the detection performance to a cer-
tain extent. Compared with Scheme 2, the TPR and FPR of Scheme 3 are increased by 
0.4% and decreased by 0.7%, respectively, indicating that the parallel fusion feature is 
stronger than the progressive fusion feature in characterizing the local region and could 
accurately identify the tampering region without being disturbed by the similar natural 
region. In Scheme 4, the adaptive threshold generation algorithm is added to improve 
the detection ability of the tampering region further, and the TPR of this scheme is 0.6% 
higher than that of Scheme 3. Although the FPR of Scheme 4 is increased by 0.2%, F1 is 
still 0.2% higher than that of Scheme 3, indicating that the comprehensive performance 
of proposed Scheme 4 is better than that of other schemes.

4.3  Comparison with other methods

The proposed method is compared with other methods, and the comparison results are 
given in Tables 6 and 7. Table 6 shows the effects of different methods on the MICC-
F220 dataset. As given in Table 6, the TPR of the proposed method is 99.1%, which is 
consistent with that of Alberry’s method [34]. However, for the proposed method, the 
FPR is 2% lower and F1 is 8% higher than those of Alberrys’ method. Although the FPR 
of the proposed method is 1.2% and 3.2% higher than those of Resmi [21] and Das [16], 
its TPR is 8.2% higher, and its F1 is 4.6% and 2.9% higher than those of these two meth-
ods, respectively. Thus, the proposed method can guarantee higher accuracy, lower false 
alarm rate, and the better comprehensive detection performance. As shown in Table 7, 
the TPR, FPR and F1 of the proposed method are the highest on the MICC-F2000 data-
set among all the methods.

Table 6 Comparison of different methods on the MICC‑F220 dataset

Bold font indicates that the current method has the highest value

TPR (%) FPR (%) F1

Das [16] 90.9 4 93.0

Resmi [21] 90.9 6 91.3

Soni [23] 97.6 8.4 94.7

Peng [33] 98.2 8.1 95.1

Alberry [34] 99.1 9.2 95.1

Proposed method 99.1 7.2 95.9

Table 7 Comparison of different methods on the MICC‑F2000 dataset

Bold font indicates that the current method has the highest value

TPR (%) FPR (%) F1

Amerini [17] 93.4 12.5 86.25

Amerini [20] 94.8 9.15 89.5

Soni [23] 96.4 9.8 89.8

Peng [33] 97.2 6.4 92.9

Proposed method 98.5 5.7 94.3
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As shown in Tables  6 and 7, the detection effect of the proposed algorithm on the 
MICC-F220 dataset is not significantly improved compared with the results on the 
MICC-F2000 dataset. The main reason for this is that the degree of post-processing 
attacks in the MICC-F220 dataset is not as rich as that in the MICC-F2000 dataset. 
Namely, there is only a small amount of equal stretching in the MICC-F200 dataset, 
while the functions of unequal stretching and combination are included in MICC-F2000, 
which requires higher robustness of the detection methods. The existing methods have 
certain robustness against small scale equal stretching, but the resistance against une-
qual stretching and its combination attacks still needs further improvement. Therefore, 
the performance of the existing methods on the MICC-F2000 dataset is slightly lower 
than those on the MICC-F220 dataset.

4.4  Robustness analysis of different methods

The detection accuracy comparison of the proposed method and the method presented 
in [33] under different degrees of geometric attacks is displayed in Fig. 10, where H1–H9 
contains equal rotation and equal proportional pressure and their combination, and the 
value range of the scale factor is 1–1.5. As shown in Fig. 10, the methods performed well 
against the H1–H9 attack types on the MICC-F220 dataset. The results show that with 
the deepening of the attack degree, the proposed method could still remain the accuracy 
higher than 92% under the H10 attack.

The MICC-F2000 dataset contains tampering images of both equal and unequal 
stretches, and the scale factor range is wider than that of the MICC-F220 dataset. In 
addition, unequal stretches have different scaling factors in different directions, resulting 
in a relatively large distortion in the target region, which affects the similarity between 
local regions and thus the detection effect, so a detection method with high robustness 
is required to recognized the geometric attack. As shown in Fig. 11, the TPR of the pro-
posed method is improved obviously in three levels of J11, J12 and J13. Compared with 
Peng’s method [33], the increase is 2%, 2% and 4%, respectively. Therefore, the proposed 
method shows stronger robustness against the combined geometric attacks of unequal 
scale transformation and rotation than Peng’s method.

Fig. 10 Robustness comparison on the MICC‑F220 dataset
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The resistance performances of different methods to the post-processing attacks are 
presented in Fig.  11. For the convenience of observation, the compared methods are 
marked in Fig. 11 using the labels shown in Table 8. Based on the results, in the case of 
different attacks, the detection ability of the proposed methods is better than those of 
the other methods.

As shown in Fig. 12a, the recognition ability of the proposed method is excellent for 
the JPEG attack, and the accuracy is about 40% higher than that of the BusterNet in the 
case of the JC4 attack. In addition, the increase in the compression factor does not sig-
nificantly affect the TPR of the proposed method, indicating that the proposed method 
also has a strong resistance to JEPG compression. As shown in Fig. 12b, our method also 
has a good resistance to brightness changes; namely, its TPR does not decrease with the 
increase in the brightness adjustment space, which is due to the illumination invariance 
of the SIFT features. For the contrast attack, according to Fig. 12c, the TPR of the pro-
posed method decreases with the expansion of the contrast region, and its accuracy is 
low in the case of the CA3 attack. The contrast transformation is mainly implemented 
by adopting the gray histogram equalization method for local regions and thus leads 
to the difference in features between the copied region and pasted region. Therefore, 
the proposed method is more sensitive to the contrast attack than the other methods, 
but it could still achieve a good accuracy. In addition, Fig. 12d shows that the proposed 
method can effectively resist the color attack.

However, Fig. 12e shows that under the fuzzy attack, the accuracy of the proposed 
method is low, which is in a suboptimal position at the IB1 level, and its TPR is 4% 
lower than that of the BusterNet; also, TPR decreases with the increase in blur inten-
sity, and only 35% accuracy could be achieved under the IB3 attack. Namely, the 
essence of the blur attack is the weighted average of the pixels in the local region, 

Fig. 11 Robustness comparison on the MICC‑F2000 dataset

Table 8 Labels of different existing methods

Methods Ryu [10] Cozzolino [11] Wu [28] Wu [29]

Labels Zernike Patch DVN BusterNet
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which greatly weakens the gradient information of local regions, especially those 
with a rich texture. The key point of the SIFT is the extreme value in the local region, 
which mostly has a rich texture. Therefore, the reduction in regional gradient infor-
mation will result in a decrease in the number of key points of the SIFT; that is, the 
amount of information used to describe the similarity of local regions will decrease 
sharply, leading to a significantly decrease in the detection performance of the pro-
posed method. As shown in Fig. 12f, the proposed scheme also has a strong resistance 
to noise.

As analyzed above, the proposed method achieves a good robustness to the 
JPEG compression, color change, brightness change and noise addition, and could 

Fig. 12 Robustness comparison of different methods for different attack types. a JPEG attack, b brightness 
change, c contrast change, d color change, e fuzzy attack, f noise addition
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withstand a certain degree of contrast change, noise addition and fuzzy attack, among 
which, the ability to resist the fuzzy attack still could be further improved.

4.5  Comparison with deep‑learning‑based methods

The recent success of deep learning in the field of pattern recognition has motivated 
many scholars to try to apply deep learning technology to the field of image forensics. 
In the copy-move forgery detection applications, both the BusterNet and the convo-
lutional kernel network (CKN) proposed by Liu et al. [29]. have been used in recent 
years. The BusterNet uses a two-stream network structure to identify the tamper-
ing regions of an image. The robustness of the BusterNet is stronger than that of the 
proposed method only under the fuzzy attack but slightly weaker than the proposed 
scheme under other attacks, as shown in Fig. 12.

The CKN represents a variant of the CNN network, which accelerates the CNN’s 
training speed. The comparison results of the proposed method and the CKN are 
given in Table 9, where it can be seen that in the experiments, the proposed scheme 
is superior to the CKN network in terms of TPR, FPR and F1 metrics. Compared with 
the CKN, the TPR of the proposed method is 5.5% higher and its FPR is 5.3% lower, 
indicating that the overall performance of the proposed method is better than that of 
the CKN.

Although deep learning technology has the advantages of automatic feature extrac-
tion and strong generalization, it still has certain technical difficulties in the field of 
copy-move forgery detection, which can be summarized as follows.

(1) Fewer features to be learned. The traditional recognition task is mainly to detect 
various objects in an image, and a set of object features of objects that can be 
learned in the training process is relatively rich, including eyes, hair, and contour 
in the task of cat and dog recognition. However, in the task of copy-move forgery 
detection, the tampering regions can be randomly selected, and the training dataset 
cannot provide significant training features to the network.

(2) Fewer public datasets. Network model training requires a labeled dataset of a cer-
tain size. At present, the application research on deep learning technology in the 
field has still been in the preliminary stage. In addition, typically used databases, 
such as GRIP, CASIA, MICC-F220, and MICC-F2000, include a small number of 
images and contain a variety of post-processing methods, which makes it difficult 
to provide enough valuable learning information to the model. In contrast, person-
ally-made datasets, while being a good choice, are difficult to label effectively.

(3) Forensics technology based on deep learning has a strong dependence on the train-
ing dataset and requires that the training set and testing sets have the same data 

Table 9 Comparison of different methods

Methods TPR (%) FPR (%) F1 (%)

CKN 93 11 87.2

Peng [30] 97.2 6.4 92.9

Our 98.5 5.7 94.3
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distribution. However, in the practical application, the consistency between a ran-
dom image to be detected and data used to train the network cannot be guaran-
teed.

(4) In addition, the training process of a deep learning-based model has a high time 
cost. Conversely, the proposed scheme neither depends on the training set, nor 
needs to train the detection model, but it has strong robustness, which has a certain 
practical significance.

4.6  Comparison of running times

This section compares the running times of different methods. In the test, 25 original 
images and 25 tampering images are randomly selected from the MICC-F2000 data-
set. The proposed method is used to detect these 50 images, and the average running 
time of processing an image is calculated. The running time comparison of the proposed 
method and the existing methods is shown in Fig. 13.

The results show that compared with Peng’s method [33], the running time of the pro-
posed method ranks in the middle, which increases mainly in two situations. In the pre-
processing step of the first stage, instead of using the uniform-type segmentation, the 
proposed method adopts the SLIC algorithm with an iterative mechanism to cluster 
pixel values and to obtain irregular and meaningful super-pixels. The clustering process 
involves complex steps such as feature construction, distance measurement, and seed 
point updating, which is time-consuming. In the second stage, the processes of paral-
lel feature fusion and adaptive threshold generation are needed to extract three types of 
features, which requires much time. To improve the detection accuracy and robustness, 
the SLIC segmentation is introduced, which represents adaptive threshold generation 
algorithm with high complexity. However, as observed in Fig. 13, the time complexity of 
the proposed method is within a tolerable range, so this method has a strong practical 
significance.

Fig. 13 Running time comparison of different methods
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4.7  Localization performance analysis of tampering regions

This subsection evaluates the tampered region location performance of the proposed 
method. As shown in Fig. 14, the first and second rows are the results of locating tam-
pered regions on FICC-F220 and FICC-F2000 datasets by the proposed method respec-
tively. The results show that the proposed method can detect copy-move forgery and 
mark forgery feature points accurately. Figure  15 give the results of tampered region 
localization by different methods, a is Forged image, b is Ground truth, c is the results of 
CKN [29], d is the results of BusterNet [28], and e is Ours.

As illustrated in Fig. 15, we observe that BusterNet and CKN models based on deep 
learning can realize the location of tampered regions by using real labelled data for train-
ing. Although there are certain noises and misidentified regions, the source/target loca-
tions are roughly accurate. The proposed method can also accurately obtain the content 
information of the tampered region by obtaining the tampered feature points, but does 
not accurately give the location of the tampered source/target. Therefore, in the future, 
we will explore the combination of the technology in this paper and semantic segmenta-
tion technology based on deep learning, and study how to achieve a more accurate loca-
tion of source/target.

Fig. 14 The results of proposed method on FICC‑F220 and FICC‑F2000 dataset

Fig. 15 The results of copy‑move forgery region localization by different methods. a is Forged image, b is 
Ground truth, c is the results of CKN [29], d is the results of BusterNet [28], and e is Ours
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5  Conclusion
In this paper, an improved two-stage forgery detection method based on parallel fusion 
feature and an adaptive threshold generation algorithm, which includes coarse-grained 
detection and fine-grained detection. In the coarse-grained detection stage. the SLIC 
algorithm is used to preprocess an image and to divide the image into irregular super-
pixels, solving the problem of local regional correlation attenuation caused by uniform 
segmentation. In the fine-grained detection stage, a parallel fusion feature is used to 
enhance the feature expression ability of a local region. To improve the robustness of 
the proposed method, an adaptive threshold generation algorithm based on the HOG 
level is designed to generate a suitable threshold conforming to the characteristics of 
different local regions for the final detection of suspected tampering regions. The pro-
posed method is verified by experiments and compared with the other methods. The 
experimental results show that the proposed method achieves highest accuracy among 
all compared methods, and it has higher robustness which can resist several common 
attacks such as noise and brightness change.

However, there is room for further improvement of this method’s resistance to fuzzy 
attack, which needs further study. Compared with the deep learning methods, the pro-
posed method is still weak in locating the tampered region, and it is difficult to accu-
rately give the specific coordinates and contours of the tampered region. Thus, It is 
necessary to combine with deep learning methods to achieve accurate detection and 
positioning. In the future, it is also needed to continue to explore different types of fea-
ture fusion and new feature mining to further improve detection capabilities.
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