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1  Introduction
In recent years, deep learning has been developed, and some technologies [1–6] to 
improve the performance of deep learning have also emerged. However, deep learn-
ing often requires large amounts of labelled data. Labelling data are notoriously time-
consuming and laborious. At present, there are various datasets, but when a new task 
comes along, the model trained on these datasets does not work well for the new task 
due to distribution differences. How to learn when the probability distributions of the 
source domain and target domain are inconsistent is the domain adaptation learning 
problem [7]. Specifically, learning the target model with labelled source domain data 
and unlabelled target domain data is domain adaptation (generally unsupervised domain 
adaptation). Domain adaptation is easy to confuse with domain generalization. The 
main difference between the two is the availability of target domain data. The former 
should obtain target domain data, and the latter should not. Sometimes more than one 
source domain is used to improve adaptation performance, i.e. the accuracy of the tar-
get model. Unsupervised multi-source domain adaptation (UMDA) improves the model 
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performance by establishing transferable features from multiple labelled source domains 
to unlabelled target domains. Many UMDA methods combine the data from the target 
domain with the data from each source domain to form several source–target domain 
pairs, and then establish transferable characteristics by narrowing the distance between 
the domains [8]. This paper focuses on UMDA scenario.

In addition to the adaption problems, data privacy protection is also receiv-
ing increasing attention. To protect privacy, raw data cannot be shared between 
domains during the training of the model. Based on this limitation, federated learn-
ing [9] is used to solve this problem. Federated learning can be considered a kind 
of distributed machine learning, but it is very different from traditional distrib-
uted machine learning where it has very strict requirements on privacy and effi-
ciency, and the data distribution of each node is non-independent and identically 
distributed(non-IID), which causes there to be obvious domain shifts between 
nodes in a specific task. Inspired by federated learning and unsupervised domain 
adaptation, Peng et  al. [10] proposed unsupervised federated domain adaptation 
(UFDA). In addition, they also mainly introduced a method to solve the problem of 
UFDA by using federated adversarial domain adaptation (FADA). However, FADA 
not only has poor accuracy but also has high communication costs and is prone to 
privacy leakage. This adversarial training method requires each source domain to 
exchange and update model parameters with the target domain after each mini-
batch, which undoubtedly consumes a large amount of communication resources, 
to some extent, and increases the risk of privacy leakage. In contrast, the multi-
domain model generalization balance (MDMGB) in this paper reduces the impact 
of the two defects and improves accuracy. At the same time, the performance of the 
model is further enhanced with information maximization and pseudo-label tech-
nology. We coin the whole process, including MDMGB, as self-supervised feder-
ated domain adaptation (SFDA).

Our main contributions are summarized as follows.

1.	 Propose an architecture which efficiently and effectively transfers knowledge learned 
from multiple source domains to the target domain.

2.	 Develop a weighting strategy based on the centroid similarity between the source 
and target domains. The proposed strategy does not require the sharing of raw data 
between domains.

3.	 Our approach is empirically evaluated over two benchmark datasets, and compared 
with existing methods, the performance of our method is significantly improved.

Section 2 presents the related work. Section 3 describes the details of multi-domain 
model generalization balance and self-supervised federated domain adaptation. Sec-
tion 4 presents the experiments and evaluates the results. The experiments are provided 
and analysed in Sect. 4. Finally, Sect. 5 concludes this work and discuss future work in 
Sect. 5.
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2 � Related works
2.1 � Unsupervised multi‑source domain adaptation

UMDA aims to transfer knowledge learned from multiple labelled source domains to 
a single unlabelled target domain. Many unsupervised multi-source domain adapta-
tion methods are based on the theory of learning from different domains proposed by 
Ben-David et al. [11]. At present, there are two mainstream strategies to learn transfer-
able features. One is the moment matching method represented by the maximum mean 
discrepancy (MMD) and correlation alignment (CORAL) [12–18], and the other is the 
adversarial training method [17, 19–22]. In the first kind of method, MMD [12] and 
CORAL [14] are designed to match first-order (mean) and second-order (covariance) 
statistics of different distributions, respectively, while HoMM [15] can perform moment 
tensor matching of any order. The maximum mean discrepancy is often used to measure 
the distance between two distributions and is a commonly used loss function in transfer 
learning. MMD is an effective measure that can compare different distributions without 
initial estimation of the density function. In domain adaptation, the original MMD [12] 
is defined as

where p and q represent the probability distributions of the source domain and target 
domain, respectively. sup stands for supremum and E stands for expectation value. F is 
a set of functions in RKHS (reproducing kernel Hilbert space) whose norm is less than 
or equal to 1. However, the above form cannot be calculated directly and requires the 
use of the kernel trick. The most commonly used kernel function is the Gaussian kernel 
function,

By replacing the expectation with the mean value of each small batch, the following 
computable form can be obtained:

Among the second kind of methods, the representative algorithm is DANN (domain 
adversarial neural network), which for the first time introduces the idea of adversarial 
training [23] into the field of transfer learning and learns the features with category 
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discrimination and domain invariance through the joint optimization of feature extrac-
tor, label predictor and domain classifier. The feature extractor and domain classifier 
are equivalent to the generator and discriminator in the generative adversarial network, 
respectively, and they form an adversarial relationship to promote the emergence of fea-
tures with domain invariance.

2.1.1 � Domain generalization

Unlike domain adaptation, domain generalization [8, 24, 25] cannot use any sam-
ple of the target domain, but it still has to capture transferable information across 
domains. To complete the classification task without the target domain available 
at the time of training, labelled data from several related classification tasks can 
be used. Meta-learning involves generalization to a new task [13], but because 
meta-learning is more concerned with how quickly the model converges when the 
labelled data for the new task are acquired (in small amounts), it assumes that the 
labelled data for the new task are accessible. When a new task appears, meta-learn-
ing needs to be retrained, but the domain generalization model does not need to be 
retrained.

2.1.2 � Federated learning

Federated learning (FL) is a machine learning setup that aims to train a high-quality 
centralized model while training data remain distributed over a large number of cli-
ents with unreliable and relatively slow network connections for each client. For the 
optimization of communication problems, many effective methods [26] have been 
proposed, so this paper focuses on how to learn a centralized model with high per-
formance. The federated optimization problem has four key properties: non-IID: 
the data on each client are specific to the user; unbalanced: the amount of data 
generated by the client varies greatly; massively distributed: the number of clients 
participating in an optimization is much larger than the average number of exam-
ples per client; and limited communication: network connections are unstable, 
insecure or expensive. The third feature has received less attention because most 
of the data are typically concentrated in a very small number of nodes, with the 
remaining nodes contributing almost nothing to the results. The federated averag-
ing (FedAvg) algorithm [9] is a basic algorithm that aggregates model updates from 
different clients in each round of communication. Its key point is that each client 
model must have the same random initialization except that the server distributes 
the aggregated model to the client in each round of communication. However, Fed-
Avg’s weighting of the client model is based on the amount of data, and the amount 
of data does not correlate significantly with differences in the domain distribu-
tion. Therefore, it cannot be simply applied to unsupervised multi-source domain 
adaptation.
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2.1.3 � Federated domain adaptation

There has been very little discussion of distributed UMDA, but there is no lack of 
excellent articles, the most advanced and representative of which is the recently 
proposed KD3A (knowledge distillation-based decentralized domain adaptation) 
[27]. However, its computational efficiency is relatively low because each itera-
tion is trained in the source domain in the early stage and the target domain in the 
late stage. When either party is training, the other party has to idle for a long time 
and wait for the return. The concept of unsupervised federated domain adaptation 
(UFDA) was first proposed in FADA [10]. UFDA studies how to transfer knowledge 
learned from decentralized nodes to a new node with a different data distribution. 
UFDA presents three challenges: first, the data are stored locally on the client and 
cannot be shared, which makes mainstream domain adaptation approaches unfea-
sible because they require both labelled source domain data and unlabelled target 
domain data. For each node, the model parameters are trained separately and con-
verge at different rates, and their contribution to the target model depends on how 
close each source domain is to the target domain. Finally, the knowledge learned 
from each source domain is highly entangled, which is likely to result in a negative 
transfer. SHOT [28] proposed a self-supervised method to solve the domain adap-
tation problem of the separation of a single source domain and target domain. (The 
two do not share data.) It produces the same number of result models as the num-
ber of source domains, which increases the overhead of storage space. In addition, 
each model is involved in the calculation of the results.

To solve the problem of multi-source model aggregation in federated domain 
adaptation, this paper proposes a multi-domain model generalization balance 
algorithm (MDMGB). The weighting strategy of this method abandons the tradi-
tional weighting method which depends on the quantity of data, and measures the 
tightness of the source domain and target domain by the similarity of the centroid. 
MDMGB can calculate weights without sharing data between domains. In addi-
tion, to improve the performance of domain adaptation under federated learning 
constraints, we propose a self-supervised federated domain adaptation framework 
(SFDA). MDMGB is used for the aggregation of each source model in each commu-
nication. SFDA completely separates the training of the source domain model from 
the training of the target domain model and simultaneously trains the target model 
in a self-supervised way.

3 � Methods
Let DS and DT represent the source and target domains, respectively. In the unsuper-
vised multi-source domain adaptation, there are a total of K source domains 
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h that minimizes the task-specific loss εDT on the target domain DT , where 
εDT (h) = Pr(X ,y)∼DT

[h(X) �= y] . The general UMDA model learns transferable features 
by minimizing H-divergence. In the context of distributed UMDA, this paper does not 
need to access the data of each source domain, but studies the domain adaptation prob-
lem under the federated learning framework. Each domain that contains the target 
domain and the source domains is treated as a client in federated learning. If conditions 
permit, the client of the target domain can also act as the server.

3.1 � Centroid alignment strategy

The centroid of each class in the domain is obtained by the following formula [29]:

f (x) = h
(

g(x)
)

 is the k-dimensional output of each sample, g represents the feature 
extractor and h represents the classifier. δk(a) =

exp(ak )
∑

i exp(ai)
 refers to the kth element in the 

softmax output of the k-dimensional vector a. These centroids can stably and more reli-
ably represent the distribution of different classes in the domain. Then, the closest cen-
troid classifier is used to obtain the pseudo-label of each sample:

Df (a, b) measures the cosine distance between a and b. The specific form is as follows:

The centroids are constantly updated in an iterative manner through the following 
formula:
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Fig. 1  MDMGB algorithm framework. From the figure, it can be seen the structure of the MDMGB algorithm 
and processes among sections.
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However, one update is usually good enough. It is worth mentioning that in practical 
calculations, a one-dimensional nonzero number (such as 1) is appended to each eigen-
vector to avoid division by zero.

3.2 � The algorithm of MDMGB

Figure  1 shows the structure of the MDMGB algorithm. The weight of each source 
domain is determined according to its distance (tightness) from the target domain. 
Since the weight calculation requires the use of the target domain, MDMGB omits 
steps 2 and 3 when the target domain is not yet available. For UMDA, there are many 
methods to calculate the weight of the source domain based on the distance between 
the source domain and the target domain, but they do not work in the UFDA condition 
due to the need to obtain both source domain and target domain data. In contrast to 
existing distributed UMDA approaches, MDMGB aggregates the model rather than the 
original gradient. In addition, MDMGB does not use the amount of data on each source 
domain in the process of weighting the source domain; for specific reasons, please refer 
to Appendix A. It should be emphasized that MDMGB is built on the premise that each 
source domain has a sufficiently large amount of data, corresponding to the critical few 
nodes in federated learning, and that the data volume of each node cannot differ by 
orders of magnitude.

The following is the weighting strategy of the MDMGB algorithm. Assume that we 
now have the uploaded source models 

{

w1,w2, . . . ,wK
}

 from K source domains. A pre-
liminary model was obtained by averaging them directly:

Next, w0 is distributed to the target domain and each source domain to compute and 
return the centroid for each category as described below. At this point, assuming that 
the number of categories is L, the centroids of each source domain are 
{

ck0 , c
k
1 , . . . , c

k
L−1

}K

k=1
 and the centroids of the target domain are 

{

cT0 , c
T
1 , . . . , c

T
L−1

}

 . The 

size of a set of centroids uploaded by each domain is only related to the number of cate-
gories and the size of the eigenvector, which are small relative to the model. This process 
has almost no impact on communication efficiency. Then, the cosine similarity of each 
centroid of each source domain and the corresponding centroid of the target domain is 
calculated and summed:
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Since the cosine similarity ranges from [− 1, 1], for sumk to be non-negative, the final 
sum value is:

Finally, we use this sum value to calculate the weights:

At this point, the weights obtained can be used to re-aggregate the source models.

3.3 � The algorithm of SFDA

Figure 2 shows the complete algorithm framework. The algorithm flow in this paper is 
mainly divided into two steps: training the source model and training the target model 
classifier. The source model is composed of a feature learning module and classifier mod-
ule (hypothesis). SFDA leaves the feature extractor fixed and uses the classifier module 
as the initializer of the target domain learning.

3.3.1 � Training the source model

First, the model (the same model distributed by the server) is trained separately on 
each client (source domain) in a federated learning manner. During the training 
process, the model parameters are communicated once for several iterations. Label 
smoothing (LS) is used to improve the model’s generalization ability as each source 
domain client trains the model locally. The standard cross-entropy loss function is

fs is the output of the source domain sample xs on the source model, and q is a k-dimen-
sional vector, all of which are “0” except that it is “1” at the position corresponding to the 
correct label. To improve the discriminating ability of the model, LS is applied to source 
model learning. With the label smoothing technique, the loss function becomes:

(12)sumk = sumk + L.

(13)αk =
sumk

∑K
i sumi

.

(14)Lsrc
(

fs;Xs,Ys
)

= −E(xs ,ys)∈Xs×Ys

K
∑

k=1

qk log δk
(

fs(xs)
)

.

Fig. 2  SFDA algorithm framework. The figure shows function of parts and process between sections.
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K represents the number of categories and α is the smoothing factor, which is usually set 
to 0.1.

During each round of communication, the client sends its own model to the server 
for aggregation (apply MDMGB). Finally, the server distributes the updated model to 
each client. This process is performed several times until the model converges. If the 
target domain is still unknown at this time, the unified model obtained can be consid-
ered the result of domain generalization.

The domain can be understood as a kind of interference information [30, 31]. An 
image in a digit recognition dataset is made up of numbers and interfering informa-
tion (background colour, light intensity, line thickness, etc.). The difference between 
the images in different domains is caused by the interference information, while the 
basic characteristics of the numbers themselves remain unchanged. In addition, the 
learned model represents the knowledge expressed in each source domain for a spe-
cific task, and this knowledge contains interference information and corresponding 
basic characteristics.

In distributed training, it is very important to set the number of communication 
rounds r. Since the models in different source domains have different convergence rates, 
the models need to be aggregated r times in each iteration. Based on this, each iteration 
can be equally divided into r stages, and the model can be aggregated after each stage. 
r = 0.2 means aggregation once every 5 iterations; r  = 1 means that it aggregates once 
per iteration. It has been shown that for better performance, more communication is 
needed during training (in general, more rounds are better). However, an unrestricted 
increase in the number of communication rounds not only makes the improvement of 
accuracy less and less obvious but it also increases the communication cost proportion-
ally [9, 16, 19, 29].

3.3.2 � Training the classifier of the target model

First, the target model is initialized with the trained source model, then the feature 
extractor is frozen (parameters are not updated during training), and the classifier of the 
target model is trained. It is worth noting that SHOT fixes the classifier when training 
the target model and only trains the feature extractor. We fix the feature extractor and 
train the target model classifier for the target domain.

The loss function of target model training is composed of two parts: information max-
imization (IM) loss and pseudo-labelling (PL) cross-entropy loss.

(1) Information maximization
The ideal probability vector output should be similar to the one-hot encoding, but the 

probability vectors should be different from each other for different classes of samples. 
Therefore, in this paper, information maximization loss is applied to maximize the prob-
ability of labels with maximum probability (individual certainty of predicted results), 

(15)Llssrc
(

fs;Xs,Ys
)

= −E(xs ,ys)∈Xs×Ys

K
∑

k=1

qlsk log δk
(

fs(xs)
)

,

(16)qlsk = (1− α)qk + α/K .
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while the number of predicted labels of each category is basically the same (global diver-
sity of predicted results). IM loss is composed of Lent and Ldiv:

where p̂ = Ext∈Xt

[

δ
(

ft(xt)
)]

 is the mean value of the probability vector of the whole tar-
get domain by element operation. Lent

(

ft;Xt

)

 makes the prediction result of each sample 
more certain; Ldiv

(

ft;Xt

)

 promotes the diversity of the probability vector outputs.
(2) Pseudo-labelling
Using IM losses alone can lead the model to go in the wrong direction. This nega-

tive effect comes from inaccurate network output. For example, a target domain sample 
from the first class that passes through the network with a probability vector of [0.34, 
0.36, 0.1, 0.1, 0.1] might be forced to have an expected output [0.0, 1.0, 0.0, 0.0 0.0]. To 
mitigate this effect, pseudo-labels should be applied to each unlabelled sample to better 
supervise the training of the classifier. In this paper, a self-supervised pseudo-labelling 
strategy is applied to reduce the impact of such adverse factor.

Firstly, calculate the centroid of each category on the target domain as described in 
Subsection 3.1, and then, pseudo-labels are generated on the basis of the centroids cT :

Because ŷt is generated by centroids generated in an unsupervised manner, ŷt is called 
a self-supervised pseudo-label.

In summary, given the source model fs(x) = hs
(

gs(x)
)

 and the pseudo-labels above, 
this paper fixes the feature extractor gt = gs to learn the classifier ht , and the total loss 
function on the target domain is as follows:

where β is greater than or equal to 0, which is used to control the weight of the pseudo-
label cross-entropy loss.

In the end, only one result model is generated, and the training of the source model 
and target model is completely separated. After the decoupling of the two-step opera-
tion, the efficiency is substantially improved.

From the perspective of the federated optimization problem, the source domains 
involved here correspond to a small number of nodes that play a key role in federated 
learning. Moreover, the distribution differences among several source domains also fully 
reflect the property of non-IID in federated optimization. Both MDMGB and full SFDA 
can be extended to other network architectures very directly. Algorithm 1 provides the 
complete pseudo-code of the SFDA training process.
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4 � Results and discussion
This section first introduces datasets and settings for experiments. Then, we compare 
the SFDA with some baselines in terms of accuracy. Subsection 4.4 analyses the effects 
of label smoothing and pseudo-labelling. To some extent, Subsection 4.5 reflects the fea-
sibility of SFDA in actual scenarios. Subsection 4.6 illustrates the advantages of SFDA in 
communication efficiency.

4.1 � Datasets and settings

In this paper, SFDA was evaluated on the DigitFive and DomainNet datasets. DigitFive, 
as a benchmark dataset, is widely used. It contains five digit recognition datasets, namely 
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MNIST, MNIST-M, SYN, SVHN and USPS. DomainNet is by far the largest multi-
source domain adaptation dataset, with a total of 6 domains (Clipart, Infograph, Paint-
ing, Quickdraw, Real and Sketch), 345 categories and approximately 600,000 images. 
Figure  3 shows some sample data (images) from DigitFive and DomainNet. Following 
the previous settings [13], this paper uses a three-layer CNN as the backbone network 

Fig. 3  Examples of images in a DigitFive and b DomainNet. DigitFive contains five digit recognition datasets. 
And DomainNet is by far the largest multi-source domain adaptation dataset, with a total of 6 domains 
(Clipart, Infograph, Painting, Quickdraw, Real, Sketch)
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on DigitFive and pre-trained ResNet101 on DomainNet. In the experiments, we set 
each domain (dataset) as the target domain in turn and all the remaining domains as the 
source domains, and then calculate the single accuracy and the average accuracy.

4.2 � Baselines

In this paper, the advantages of SFDA are highlighted by comparison with the follow-
ing methods: DAN [18], multilayer adaptation with multi-kernel MMD; M3SDA [32], 
dynamically aligning moments of feature distributions; DANN, based on adversarial 
training; FADA, advanced distributed UMDA method. This paper designed two baseline 
experiments without domain adaptation, namely oracle and source-only. Oracle con-
ducts supervised learning directly on the target domain. Source-only simply combines 
source domains to form a hybrid domain to train a single model in a supervised learning 
manner.

4.3 � Performance on DigitFive

Table  1 shows that SFDA exceeds FADA in both single and average accuracy. The 
improvements in accuracy ranged from approximately 6 percentage points to approx-
imately 23 percentage points. In addition to the results when MNIST-M was used as 
the target domain, SFDA also showed great improvement in single accuracy and average 
accuracy compared with M3SDA. For the accuracy of MNIST-M as the target domain, 
the difference between the two is less than 0.5%. In general, the performance of dis-
tributed UMDA is not as good as that of the common multi-source domain adaptation 
method due to the inability to obtain both source domain and target domain data at 
the same time and the limitations of communication. However, the accuracy of SFDA 
not only exceeds the distributed unsupervised multi-source domain adaptation method 
FADA to a large extent but also exceeds the common multi-source domain adaptation 
method M3SDA in general.

Table 1  Accuracy (%) of unsupervised multi-source domain adaptation on DigitFive

Bold value represents the current highest accuracy

Methods Target

Mnist Mnist-m Svhn Syn Usps Avg

Upper and lower bounds
 Oracle 99.5 95.4 92.3 98.7 99.2 97.0

 Source-only 92.3 63.7 71.5 83.4 90.71 80.3

Common multi-source domain adaptation
 DAN 96.3 63.8 72.5 85.4 94.2 82.4

 M3SDA 98.4 72.8 81.3 89.6 96.2 87.7

 DANN 97.6 71.3 63.5 85.4 92.33 82.1

Decentralized multi-source domain adaptation
 FADA 92.5 64.5 63.5 82.8 91.7 79.0

 SFDA 99.10 72.31 86.02 90.37 98.06 89.17
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4.4 � Influence of label smoothing and pseudo‑labelling

To verify the effectiveness of the label smoothing technique and pseudo-label tech-
nique in this paper, we designed a comparative experiment, and the results are shown 
in Table  2. According to the results in Table  2, the average accuracy increased from 
88.80% to 89.03% after the application of pseudo-labelling technology. Without the use 
of pseudo-labelling technology, the accuracy on SVHN is significantly reduced. As men-
tioned earlier, models can go in the wrong direction. The accuracy of the model with-
out LS was 89.03%, while the accuracy of the model with label smoothing was 89.17% 
because the standard cross-entropy loss function would make the source model overfit 
the source domain, which would lead to the decline of the generalization ability of the 
model. Following the practice of SHOT [29], that is, only the feature extractor is trained 
on the target domain, the performance of the target model degrades very seriously. The 
learning rate in the experiment is the best value obtained by multiple experiments; that 
is, under the current setting, the value of the learning rate brings the highest accuracy. 
However, this article does not exhaust all possible values.

Table 2  Influence of label smoothing and pseudo-labelling on the accuracy (%) in DigitFive

Bold value represents the current highest accuracy

Methods Target

Mnist Mnist-m Svhn Syn Usps Avg

No label smoothing; No pseudo-labelling. (learning rate is 0.05)
 SFDA-LS-PL 99.19 74.53 83.13 89.42 97.74 88.80

No label smoothing. (learning rate is 0.01)
 SFDA-LS 99.26 74.09 84.80 89.29 97.69 89.03

Standard settings. (learning rate is 0.01)
 SFDA 99.10 72.31 86.02 90.37 98.06 89.17

Table 3  Accuracy (%) of unsupervised multi-source domain adaptation on DomainNet

Bold value represents the current highest accuracy

Methods Target

Clipart Infograph Painting Quickdraw Real Sketch Avg

Upper and lower bounds
 Oracle 69.3 34.5 66.3 66.8 80.1 60.7 63.0

 Source-only 47.6 13.0 38.1 13.3 51.9 33.7 32.9

Common multi-source domain adaptation
 DAN 48.4 14.8 40.2 15.3 53.9 34.0 34.5

 M3SDA 58.6 26.0 52.3 6.3 62.7 49.5 42.6

 DANN 52.5 11.1 42.0 14.7 52.9 38.1 35.2

Decentralized multi-source domain adaptation
 FADA 52.3 16.3 41.9 13.9 52.7 36.8 35.7

 SFDA 57.67 17.57 45.69 13.08 51.65 48.68 39.06
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4.5 � Performance on DomainNet

To fully verify the generalization performance of the model, we selected a large Domain-
Net dataset to conduct experiments and simulated six scenes: Clipart, Infograph, Paint-
ing, Quickdraw, Real and Sketch. The experimental results are shown in Table  3. The 
models are compared vertically and the results horizontally when each dataset takes 
turns as the target domain. Table  3 shows that, similarly, SFDA significantly exceeds 
FADA in terms of average accuracy. The SFDA performs better on 4 of 6 tasks. For the 
other two tasks, Quickdraw as the target domain and Real as the target domain, the 
SFDA in this paper is only about 1% behind FADA in accuracy. The experimental results 
on DomainNet provide a reference for the practical application of the algorithm in this 
paper because its data volume and the number of categories are very large and the image 
itself is complex enough.

4.6 � Comparison of communication cost

Table  4 shows the change in communication times with the total number of epochs 
when batch_size = 64 and MNIST-M is the target domain. It is easy to see from this 
that the number of communications required by SFDA is significantly smaller and that 
the number of communications required by FADA is around three orders of magnitude 
larger than that of SFDA.

5 � Conclusions and future work
This paper proposes a distributed UMDA approach under a federated learning frame-
work. A unified source model is obtained by aggregating the learned models in multiple 
source domains (a label smoothing technique is used for the training of the models in 
each source domain), and the target model is initialized by using the model. Then, the 
classifier of the target model is trained in a self-supervised way by using the information 
maximization and pseudo-labelling technique. SFDA takes into account both data pri-
vacy protection and communication efficiency while achieving ideal accuracy. Through 
the comparison with the existing algorithms, both the communication efficiency and 
the accuracy are greatly improved. In future work, we hope to design a more effective 
weighting strategy to solve the effect of self-supervised learning on the target domain 
largely depends on the quality of the source model.

Appendix A
If each source domain model can be adequately trained, they can represent almost per-
fectly their own source domain, which makes the size of the data volume meaningless in 
the weighting process. However, when the source models are aggregated in the early 

Table 4  Comparison of time consumption between FADA and SFDA

Total_epoch 45 90 135 180

FADA 15,660 31,320 46,980 62,640

SFDA 18 36 54 72
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stages of training, they may not be fully trained due to the small number of iterations. 
Therefore, this part explains the defects of using data volume from another aspect. If the 
closeness of each source domain to the target domain has been quantified as 
{c1, c2, . . . , cK } and the larger the value, the closer the relationship between the domains 

is, and the data volume of each source domain happens to be 
{

∏K
i=1 ci
c1

,
∏K

i=1 ci
c2

, . . . ,
∏K

i=1 ci
cK

}

 . 

In this case, if the weight of a source domain is calculated in the following way, the size 
of the data volume just offsets the effect of the tightness:
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