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1  Introduction
The rapid development of the Internet of Things (IoT) and mobile networks is to 
meet users’ demands for performance, speed, seamless connectivity, intelligence, and 
portability [1–6]. As communication technology continues to evolve to meet applica-
tion needs [7–9], the 6th Generation Mobile Communication Technology (6G) is the 
next generation of telecommunication standards to ensure the needs of ever-growing 
intelligence communication applications. The IoT is a potential candidate for lever-
aging the resources of communication networks. It is estimated that there are cur-
rently over 50 billion devices connected to the internet. Based on these IoT devices to 
sense the surrounding environment and provide better services. Spectrum is the most 
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valuable resource in wireless networks, and the increase in IoT end devices may lead 
to spectrum resource abuse. Therefore, regulating the spectrum becomes an impor-
tant task, and it is a non-cooperative communication method. Consequently, it is 
imperative to classify receiver modulation types under non-cooperative communica-
tion conditions. Some researchers have proposed an automatic classification modula-
tion scheme called automatic modulation classification (AMC), which contributes to 
signal recognition, threat assessment, and spectrum monitoring [10].

For the urgent needs of spectrum regulation in IoT, AMC has attracted much atten-
tion in recent years. The conventional modulation recognition algorithms can be 
divided into likelihood-based (LB) methods and feature-based (FB) methods [11]. LB 
determined the modulation mode of the received signal by the likelihood compari-
son, which infers the labels by the Bayesian optimization. FB regarded AMC as a pat-
tern recognition issue, and it yielded suboptimal classification accuracy although it 
was less sensitive to the uncertainties. The algorithm extracts the statistical features 
[12–14], instantaneous time features [15] and wavelet features [16] from the original 
modulated signal, and these features are used as input to the machine learning algo-
rithm, such as Support Vector Machine (SVM), Lightgboost, Decision Tree (DTree), 
K-Nearest Neighbors (KNN), [17–20], and infer the class to which they belong as a 
consequence. However, LB methods are usually of considerable computational com-
plexity, prior knowledge-based accompanying sensitivity to channel noise, and poor 
robustness. FB methods are expert feature-based and suboptimum classification 
accuracy. Accordingly, both LB and FB are poorly adapted to non-cooperative com-
munication environments.

Recently, Convolutional Neural Networks (CNNs) have been successfully applied to 
AMC by learning valid representations from complex data [21]. Reference [22] leveraged 
CNN network on AMC, and high classification accuracy was obtained, which proved the 
CNN-based methods are better than traditional feature-based methods. Reference [23] 
employed CNN, residual network (ResNet), Inception network, and Convolutional Long 
Short Term Memory Deep Neural Network (CLDNN) to process modulated signals, 
respectively, which demonstrated that the temporal feature was effective in improving 
the classification accuracy. Reference [24] considered feature interactions and combined 
the advantages of CNN and Long Short Term Memory (LSTM) to solve the AMC issue. 
Researchers propose a CNN-LSTM dual-stream structure to explore feature interactions 
and the spatial-temporal properties of the original signal. Simultaneously, the signal 
constellation was applied to AMC for the classification accuracy in [25]. Progressively, 
for better robustness and decent inference, a grid constellation matrix-based algorithm 
was considered in [26]. For the few-sample conditions, a host of researchers have made 
some explorations. Bu et al. [27] proposed an adversarial transfer learning architecture 
(ATLA) to reduce the differential on sampling rates, with 10% of the dataset for training, 
and achieved a favorable classification result. Li et al. [28] exploited a capsule network 
(CapsNet) to extract features from signals, with only 3% of the training data set, and 
obtained a promising inference result. Nevertheless, the schemes mentioned above work 
on the assumption that all categories of training sets have data, whether sufficient or few. 
In fact, these methods cannot work under class-imbalance situations, in which the train-
ing set misses data for some classes.
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The data augmentation method that based on Generative Adversarial Networks 
(GAN) [29] is a possible way to address the issue of missing data for some classes, where 
the generator generates a specified data to fool the discriminator, and then the discrimi-
nator attempts to distinguish the real data from the generated data accurately. In the 
literature [30], the unstable convergence of GAN was solved, and an efficient approxi-
mation of the Wasserstein distance was provided for WGAN. For WGAN-GP [31], the 
gradient disappearance and the weight clipping were considered by an improved gradi-
ent penalty. Note that GAN-based data augmentation methods still require the corre-
sponding data for the training and the augmentation. Under the zero-sample conditions, 
GAN-based data augmentation methods are not applicable anymore for the data imbal-
ance issue. For the classes with entirely missing data, the zero-sample learning scheme 
is always considered by expert-set linguistic descriptions, transfer learning, or matrix 
transformations [32, 33]. However, the linear matrix transformation methods have a 
particularly low inferential accuracy under complex data scenes. Furthermore, the mod-
ulated signal does not have a semantic expert dataset. As a result, the methods based on 
semantic space mapping do not have modulated semantics.

In this paper, in order to better regulate the spectrum usage of IoT devices, a novel sig-
nal zero-shot learning network (SigZSLNet) is proposed to solve the issue of zero-sam-
ple mentioned above for AMC firstly, where the mapping relations between the classes 
are established by the semantic space mapping, and the expert-set linguistic descriptions 
are conducted for the modulated modes. GAN drives the generation of unseen classes, 
which enriches the training set. In summary, the contributions of this article can be con-
cluded as 

(1)	 The semantic descriptions are designed for different modulated signals by their 
properties, and the semantic vectors are obtained based on the generation module 
of the semantic attribute vector.

(2)	 The WGAN-GP based method is employed to generate the feature vectors of the 
modulated signals under the guidance of the semantic vectors. After that, a com-
plete training dataset is constructed with the WGAN-GP module, including the 
real feature vector and the synthetic feature vector.

(3)	 The complete training dataset is input to the classifier, and the estimation result of 
the AMC is obtained. Experimental results indicate that the proposed SigZSLNet 
can solve the zero-sample issue for AMC effectively.

To better present this paper, the remainder of this paper is organized as follows. Section 
II introduces the motivation and the description of the model. Section III presents the 
experiments of various groups, and the result is analyzed in detail. We discuss the result 
in section IV. Finally, Section V presents the conclusion of this article.

2 � Method
2.1 � Motivation

With the rapid development of 5G technology, more and more sensors and devices 
are connected to the internet, and the internet is transmitted through the wire and air 
network, satellite network, etc. As the number of participating end terminal devices 
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becomes more and more extensive, the information received by the central server 
becomes more and more complex. As the wireless bands become more compact, moni-
toring and management of wireless signals turn critical and challenging. As shown in 
Fig.  1, the scenarios of wireless spectrum management are considered in this paper, 
where the receiver does not have prior knowledge of the modulated signal at the trans-
mitter. Accordingly, the classes of the modulated signal at the receiver may be differ-
ent from the pre-collected data, and we also need to learn the details of the received 
signal. The task of non-cooperative communication is to recognize the modulation 
types of the wireless signal under the above-mentioned scenarios. Additionally, the 
training data collected in advance are called seen classes, and training data that are 
not available are called unseen classes. In this way, the available classes of the modu-
lated signal at the receiver is Cseen = {c1, c2, . . . , cm−k} , and the unavailable classes 
Cunseen = {cm−k+1, cm−k+2, . . . , cm} . The wireless signal at receiver can be represented as

where s(t) is the modulated signal from the transmitter, G(t) is the channel, and n(t) is 
the Additive White Gaussian Noise (AWGN). The goal of the whole work is to complete 
the training of the classifier based on the data of seen categories, making the classifier 
able to complete the inference of seen and unseen categories.

(1)R(t) = s(t) ∗ G(t)+ n(t),

Fig. 1  AMC application scenarios in the Internet of Things
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where the Tseen and Tunseen are the test signal data of seen and unseen classes, respec-
tively. L is the label of the test data.

Generally, the common DL-based methods [21] can infer the received data with an 
adequate training data set. To make the DL-based method work under zero-sample con-
ditions, this paper mainly concerns how to generate the missing data Cunseen accurately 
with WGAN-GP and how to conduct AMC on the basis of the seen data and the gener-
ated data. 

2.2 � Model description

The overall process of our proposed method is shown in Fig.  2, which consists of 
three subsystems: semantic vector generation, generated module, and classification 
subsystems.

(2)L = f (Tseen,Tunseen|Cseen),
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In the former subsystem, there are two inputs: the wireless signal (seen) and seman-
tic description (seen and unseen). Accordingly, the data of seen signal and the semantic 
description of seen classes are leveraged to train the generation module of the semantic 
attribute vector. Consequently, the semantic vector of unseen classes is obtained by the 
semantic description of unseen classes. Then, in step 2, the original wireless signal of seen 
types and the pre-trained convolutional neural part are employed to yield the CNN feature 
vector of seen classes. Next, the generated semantic vector in step 1 and the CNN feature 
in step 2 are used to generate CNN features of unseen types in step 3. Finally, the CNN fea-
ture of seen classes and the generated feature vector of unseen classes form the training set, 
which is employed to classification subsystem in step 4.

The generation module of the semantic attribute vector is shown in Fig. 3. The network 
architecture of the proposed SigZSLNet is exhibited in Fig. 4. From Fig. 4, SigZSLNet con-
tains three modules, the CNN module, the WGAN-GP module, and the Classifier module.

2.2.1 � Semantic generation

As it is shown in Fig. 3, the generation module of the semantic attribute vector contains 
the convolutional part and the encoding part, where the convolutional part is to extract the 
signal data features, and the convolutional encoding part is to encode semantic descriptions 
and extract semantic features. The layer of semantic generation module and output dimen-
sions of each layer are represented in Table 1. More specifically, various modulated signals 
are related to their property descriptions. As a result, the property descriptions of different 
modulated signals are quantified with one-hot encoding in this letter, and the quantification 
results form the specific semantic vectors, which can guide the WGAN-GP to generate spe-
cific data. After the loss function optimization, a semantic feature vector is obtained that 
can be used as the input to the generator to generate the specific data.

The measured relations between the semantic description and the signal are optimized by 
Joint Embedding Loss [34], which is formulated as

(3)

LA =
1

N

N
∑

n=1

max ls(sn, tn, yn)+ lt(sn, tn, yn)

=
1

N

N
∑

n=1

max(0, �(yn, y)+ E[F(sn, t)− F(sn, tn)])

+max(0,�(yn, y)+ E[F(s, tn)− F(sn, tn)])

Fig. 2  Block diagram of the proposed SigZSLNet
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where N denotes the total number of the signal and text pairs; ls and lt are the loss of the 
signal and the semantic, respectivelty; � signifies the 0–1 loss; y denotes the class label; 
t is the subset of text descriptions, and yn is the n-th text descriptions; s signifies the 
subset of signals; E[·] denotes the mean operation; F(s, t) = e(s)Tϕ(t) , where e(s) is the 

(4)�(a, b) =

{

1, if a �= b
0, if a = b

Fig. 3  The generation module of semantic attribute vector. The left part is the convolutional module and the 
right part is the convolutional encoding module
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encoder of the input signals, and ϕ(t) is the encoder of the input attribute description. 
The algorithm for semantic generation module is shown in Algorithm 1, where Cseen is 
the signal of seen classes, Dseen is the semantic description of Cseen , Dunseen represents 
the semantic description of unseen classes. Sseen and Sunseen are the output semantic vec-
tor of seen classes and unseen classes.

2.2.2 � CNN module

The CNN module is leveraged to obtain the feature vectors, which consists of five 
convolutional layers, one fully connected layer. In detail, the convolution layer 

Fig. 4  The network architecture of SigZSLNet. WGAN-GP can generate the feature data of the unseen 
(missing) classes, D is the discriminator, and G is the generator. The classifier consists of a fully connected layer 
with the neuron number 128 and a softmax layer with the class 7

Table 1  Layers of semantic generation module and output dimensions of each layer

Modules Layers Output

Convolutional part Input 2 ×  1024 × 1

Conv1D (filters 64, size 1 × 5) 64 × 1016 × 1

Maxpooling (size 1 × 5) 64 × 204 × 1

Conv1D (filters 64, size 1 × 5) 64 × 200 × 1

Maxpooling (size 1 × 5) 64 × 40 × 1

Conv1D (filters 64, size 1 × 5) 64 × 36 × 1

Maxpooling (size 1 × 5) 64 × 8 × 1

Conv1D (filters 64, size 1 × 5) 64 × 4 × 1

Maxpooling (size 1 × 5) 64 × 1 × 1

Flatten 64 × 1

Fully connected 64 × 1

Fully connected 64 × 1

Encoding part Encoding 32 × 47 × 1

Conv1D (filters 128, size 1 × 5) 128 × 43 × 1

Maxpooling (size 1 × 5) 128 × 9 × 1

ReLU –

Conv1D (filters 128, size 1 × 5) 128 × 5 × 1

Maxpooling (size 1 × 5) 128 × 1 × 1

ReLU –

Flatten 128 × 1

Fully connected 64 × 1
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includes a convolution with the stride of 1 × 1 and the convolution kernel of 1 × 8, 
an activation function frelu = max(0, x) , and a maximum pooling with the stride of 1 
× 2 and the kernel of 1 × 2. The output of the last fully connected layer is 128 dimen-
sions. The details are depicted in Table 2. In general, the main role of CNN module 
is to extract spatial features of modulated signal data. Similarly, for CNN’s ability to 
extract spatial features, the open source pre-trained CNN model with convolutional 
module can be used as the CNN module in the proposed SigZSLNet. The pre-training 
weights of the model proposed in [22] can be found at GitHub. In this way, we utilize 
this model as a CNN module of SigZSLNet, using the output of the first fully con-
nected layer as the feature vector of the signal.

2.2.3 � GAN module

The main motivation of the GAN module is to generate the feature vectors of the 
unseen (missing) classes, which contains the generator (G) part and the discriminator 
(D) part. The generator consists of two fully connected layers with 256 neurons in the 
middle layer and 128 outputs, and the activation function in each layer is leaky_relu . 
Similarly, the discriminator consists of two fully connected layers with 256 neurons, 
and the activation function in the first layer is leaky_relu , while the second layer has 
no activation function. Table 2 shows the detailed structure of WGAN-GP.

The input to the generator is a semantic attribute vector of the modulated signal, 
which is generated in the semantic generation module. The input of the discriminator 
is a 128-dimensional attribute vector generated by the generator. The generator and the 
discriminator are playing a game called Min–Max, where the generator tries to generate 
data from the semantic attribute vector that can be judged as true by the discrimina-
tor. Simultaneously, the discriminator tries to distinguish between the real feature data 
from the CNN module and the synthetic data generated by the generator. After several 
epochs, the generator generates modulated signal data that makes the discriminator dif-
ficult to distinguish. In this way, the generated feature data can substitute for the real 
data. The Wasserstein GAN with gradient penalty (WGAN-GP) objective function is 
employed in the process we trained, which is proposed by Gulrajani et al. [35]. The opti-
mization objective is expressed as

where x ∼ pr denotes the real data and x ∼ pg signifies the generated data from the gen-
erator. [� ∇xD(x) �2 −1]2 is the gradient penalty, while � serves as the penalty coefficient 
with the default � = 10 . Algorithm  2 describes the generation process of the miss-
ing signal classes, where fG(·) denotes the generator, fD(·) denotes the descriminator, 
fCNN (·) demotes the CNN part, yunseen is the generated feature vector of unseen classes.

(5)
min
G

max
D

LGAN =− Ex∼pr [D(x)] + Ex∼pg [D(x)]

+ �Ex∼Pâ [� ∇xD(x) �2 −1]2
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2.2.4 � Classifier module

The classifier module contains a fully connected layer and a Softmax layer. Specifically, 
the fully connected layer has 128 neurons. PReLU is used as the activation functions in 
the fully connected layer, and Softmax is the judicial function of the last layer, which are, 
respectively, formulated as

where � ∈ (0, 1) is a variable that can be learned by a backpropagation algorithm, and 
adjust to the most appropriate slope value.

The training stage focuses on training the classifier to have the ability to classify seen 
and unseen classes. First, the semantic attribute vector is generated based on the seman-
tic description. In this way, the semantic vectors of the seen and unseen categories are 
obtained. Then, WGAN-GP is trained by the seen classes and their semantic vectors. 
Consequently, synthetic feature vectors for the unseen categories are generated from the 

(6)fPReLU(xi) =

{

xi, if xi > 0
�xi, if xi ≤ 0

(7)fSoftmax(xi) =
exi

∑

i e
xi

Table 2  Layers of SigZSLNet and the output dimensions of each layer

G is the generator module, and D is the discriminator module

Module Layer Output

CNN Input Layer 1024 × 2

Conv1D (filters 64, size 1 × 8) 1024 × 64

Maxpooling (size 1 × 2) 512 × 64

Conv1D (filters 64, size 1 × 8) 512 × 64

Maxpooling (size 1 × 2) 256 × 64

Conv1D (filters 64, size 1 × 8) 256 × 64

Maxpooling (size 1 × 2) 128 × 64

Conv1D (filters 64, size 1 × 8) 128 × 64

Maxpooling (size 1 × 2) 64 × 64

Conv1D (filters 64, size 1 × 8) 64 × 64

Maxpooling (size 1 × 2) 32 × 64

Flatten 2048

Fully connected layer 128

G Input layer 64

Fully connected layer 256

Leaky_relu –

Fully connected layer 128

D Input layer 64

Fully connected layer 256

Leaky_relu –

Fully connected layer 128

Classifier Input layer 128

Fully connected layer 128

PReLU –

SoftMax 7



Page 11 of 18Zhou et al. J Wireless Com Network         (2022) 2022:25 	

generator based on their semantic attribute vectors. Finally, both the real feature vec-
tors and the synthetic feature vectors are input to the Classifier module. After process-
ing by the full connection layer and the Softmax layer, the prediction result of AMC is 
obtained. The final loss function is formulated as

where h is the cross entropy, which is defined as h(p, q) = −
∑

i pi log(qi) . y denotes the 
true label and f signifies the classifier; θ is the weight of the fully connected layer, and 
xseen is the CNN feature of the seen classes; xunseen denotes the unseen class.

The test stage is concerned with determining of the category to which the received 
modulated signal data belongs. Generally, In an end-to-end AMC system, the modu-
lated signals received by the receiver may belong to the seen class or the unseen class of 
modulated signals. The feature vector is obtained after feature extraction by the CNN 
module, and then inferred by the classifier module to obtain the inference results.

3 � Experimental
3.1 � Dataset and settings

The experimental dataset of the in-phase and quadrature (IQ) samples is obtained based 
on the MATLAB 2019b platform. The dataset consists of seven modulated modes, 
Group = {BPSK, QPSK, 2ASK, 4ASK, 16QAM, 32QAM, 64QAM} (SNRs range from 0 
to 10 dB, with the stride 1 dB). For each class, there are 400 modulated signals for each 
SNR, where 300 of them are for training and the rest are for the test. To sum up, the 
training set contains 23,100 modulated signals, while the test set contains 7700 modu-
lated signals. The semantic description of each modulated mode is shown in Table  3, 
where the “statistical peaks” is the peak number of the modulated signal.

Four groups of the seen classes are considered in the experiments, which are presented 
in Table 4. For Group 1, we do not have the class of BPSK for training. Consequently, we 
utilize the data of seen classes {QPSK, 2ASK, 4ASK, 16QAM, 32QAM, 64QAM} and the 
description semantic of all classes to generate unseen classes. Group 2 is similar. Group 
3 and Group 4 are tested under two unseen classes conditions. Similarly, for Group 3, we 
do not have {QPSK, 4ASK}, and leverage {BPSK, 2ASK, 16QAM, 32QAM, 64QAM} to 
obtain unseen classes. For Group 4, we do not have {QPSK, 4ASK}.

The attribute feature vector is normalized in this letter because it can accelerate the 
training and prevent overfitting. Simultaneously, the Gaussian Noise is added to the 
input of the generator because the Gaussian data are easier to map into the CNN feature 
distribution. Additionally, the harmonic mean is considered to reflect the inference abil-
ity, and it is defined as

where s denotes the average classification accuracy for the seen classes, and u is for the 
unseen classes. The implementation of the SigZSLNet is based on Tensorflow.

(8)LC = h(y, f (xseen, xunseen | θ))

(9)H =
2su

s + u
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3.2 � Results

Table 5 provides the performance comparisons of SigZSLNet among various groups. 
In addition, there is one missing class in Group 1 and Group 2, while Group 3 and 
Group 4 have two classes of data missing. The recognition accuracy in Table 5 is the 
average value of five experiments. In fact, the convolutional neural part of the pre-
trained model can employ in the CNN part of the proposed SigZSLNet. In the exper-
iment, we leverage the ResNet pre-trained on rml2018.a [22] to serve as the CNN 
module of the SigZSLNet. As shown in Table 5, the average classification accuracy of 
the proposed SigZSLNet exceeds 76%. In detail, the accuracy of Group 1 and Group 
2 exceeds 85%, which indicates that SigZSLNet can effectively conduct AMC under 
zero-sample situations. Besides, compared with the recognition accuracy of Group 
1 and Group 2, the performance of Group 3 and Group 4 declines. With the increase 
in missing categories, the data quality of generating different missing categories 
decreases.

The reason for the above result is the limited generation ability of the proposed two 
fully connected layers. With the increase in missing categories, the data quality of 
generating decreases. As a result, each class of experiment data has its unique embed-
ding space, and it is difficult for generate models to map various different distribution 

Table 3  The semantic description of each category

Classes Statistical peaks Phase modulation Amplitude modulation Order

BPSK 2 Yes No 2

QPSK 2 Yes No 2

2ASK 4 No Yes 2

4ASK 4 No Yes 4

16QAM 4 Yes Yes 16

32QAM 6 Yes Yes 32

64QAM 8 Yes Yes 64

Table 4  The semantic description of each category

Groups Seen classes Unseen classes

Group 1 QPSK, 2ASK, 4ASK, 16QAM, 32QAM, 64QAM BPSK

Group 2 BPSK, QPSK, 4ASK, 16QAM, 32QAM, 64QAM 2ASK

Group 3 BPSK, 2ASK, 16QAM, 32QAM, 64QAM QPSK, 4ASK

Group 4 BPSK, QPSK, 2ASK, 16QAM, 32QAM 4ASK, 64QAM

Table 5  The performance comparison among various methods

Methods Groups Seen Unseen H Accuracy

SigZSLNet 1 0.8924 1 0.9431 0.9078

2 0.9364 0.8515 0.8919 0.9243

3 0.88 0.7114 0.7868 0.8318

4 0.7991 0.6932 0.7424 0.7688
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spaces at the same time. Simultaneously, the modulated signal is highly susceptible 
to the signal-to-noise ratio. Under low SNR conditions, the signal is strongly dis-
turbed, the features are not obvious, and the features learned by the generator are not 
obvious. In experiments, we mixed low SNR and high SNR data, and the model was 
unable to learn a valid feature representation. Consequently, the recognition accuracy 
decreases due to the fall of the data generation quality. In total, Table 5 states that the 
proposed SigZSLNet is an AMC scheme more applicable to real scenarios.

The test accuracy comparisons under various SNRs are shown in Fig. 5, where the 
settings of Group 1-4 are the same as that of Table  5. From Fig.  5, the recognition 
accuracy improves with the rise of SNR firstly and then slightly declines with the rise 
of SNR when the SNR is above 6 dB. It indicates that SNR is an important influence 
factor for the recognition accuracy of AMC. Particularly, the average classification 
accuracy exceeds 85% of various groups when SNR varies from 6 dB to 9 dB because 
GAN balances the quality of the generated feature vector. In addition, as discussed in 
Table 5, the recognition accuracy of the proposed SigZSLNet gradually deteriorates 
with the rise of the unseen classes.

Fig. 5  The test accuracy comparisions under various SNRs (Group 1 and Group 2 have one class missing 
while Group 3 and Group 4 have two class missing)

(a) (b)
Fig. 6  The visualized feature vector: a The synthetic feature vector, b The real feature vector



Page 14 of 18Zhou et al. J Wireless Com Network         (2022) 2022:25 

In Fig.  6, 50 synthetic feature vectors and 50 real feature vectors of the random 
2ASK modulation signal are visualized. From Fig. 6, although there is much difference 
between the synthetic feature vector and the real feature vector, their similarity is at a 
high level, especially for the waveform variation trend. The generated feature vectors 
have great similarity with the real feature vectors. This means that SigZSLNet can 
generate the feature vectors of zero-sample classes accurately.

As a supplement, the confusion matrix comparisons of various groups are made 
under SNR = 6 dB in Fig. 7, where the BPSK signal is missing in Group 1 and exists 
in Group 2–4. Figure 7 indicates that the classification accuracy of Group 1 is obvi-
ously higher than that of Group 2–4 for the BPSK signal, which manifests the genera-
tion quality of the synthetic feature vectors by the GAN module outperforms that of 
the real feature vectors by the CNN module. This states that the proposed SigZSLNet 
can effectively fill the missing classes and improve the accuracy of AMC under zero-
sample situations. Simultaneously, for the computational complexity of the proposed 
model, the generator and discriminator separately consist of two fully connected lay-
ers, and the WGAN module and the classifier contain 91,009 parameters, which make 
the network converse easily. For the training process, the total number of training 
data is 20900, and the training process takes 0.628 seconds in each epoch.

Fig. 7  The confusion matrix comparisons of different groups under SNR = 6 dB
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In Fig. 8, we show the visualized results of the feature vectors before input to the 
classifier module. The 128-dimensional features are downscaled into two-dimensional 
coordinate vectors by the t-SNE algorithm [36]. Figure 8a–d shows the visualization 
of the seen and unseen classes of Group 4 with different signal-to-noise ratios for 
the feature vectors. The classification accuracy of the classifier is highest at the SNR 
of about 6 dB, as described in the previous experimental results. For the results of 
dimensionality reduction visualization, at a signal-to-noise ratio of 6dB, different 
classes are clustered together, and each class is easier to distinguish. When SNRs = 
{0 dB, 4 dB, 10 dB}, the reduced-dimensional features of BPSK and QPSK are mixed 
together and not easily distinguished. However, for 4ASK and 64QAM, which are 
unseen categories, the generated data are distinguishable. It is concluded that the 
algorithm has the highest classification accuracy at a signal-to-noise ratio of 6 dB 
because the CNN feature vectors of BPSK and QPSK are easily confused. Thus, the 
result of difficulty distinguishing between BPSK and QPSK is that the pre-trained 
CNN feature vector outputs low-quality feature vectors.

4 � Discussion
Simulation results show that the SigZSLNet proposed in this paper can gener-
ate data of missing modulation signal to make up for that data in the training set 
and solve zero-sample in AMC. In the groups where one category was missing, and 
two categories were missing, the accuracy rate exceeded 76% in the task of classi-
fying seven categories. However, it is known from the simulation results that the 

Fig. 8  The visualized t-SNE of Group 4 under different SNRs
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generated modulated signals lack diversity and can only generate data of modulated 
signals with a single SNR. The model needs to be further improved in terms of SNR 
diversity to generate rich modulated signal SNRs. In addition, the poor robustness of 
the open-source CNN model, which is only trained with 24 categories of modulated 
signals, makes it difficult to excel in our experiments. In future work, we will collect 
rich modulated signal data, making a dataset like Imagenet [37], and CoCo [38], to 
train more robust pre-trained models.

5 � Conclusion
The increasing number of IoT devices means that more traffic will occupy the scarce 
available spectrum in the future, so it becomes extremely important to regulate and 
recognize the observed signals. However, in complex electromagnetic environments, 
some classes of modulated signals cannot be collected in advance to train the classi-
fier, which requires us to find a way to address the recognition of signals in zero-sam-
ple conditions. In this paper, we first propose the method SigZSLNet to implement 
AMC under zero-sample conditions. Based on the semantic feature vector, the fea-
ture vectors of the missing modulated signals are generated with WGAN, the classifi-
cation accuracy of unseen classes has been greatly improved.

Simultaneously, the various groups’ experimental results validate the effectiveness of 
the proposed SigZSLNet. The proposed method obtains an average accuracy of over 
85% in the missing category when one modulation signal is missing, corresponding to 
an accuracy of over 76% for the classification over seen and unseen classes. While two 
modulation signals are missing, the proposed algorithm obtains an average accuracy 
of more than 69% in the missing category, corresponding to an accuracy of more than 
76% for the seven classification tasks. We visualized the generated feature vectors for 
comparison. Also, We visualized the data clustering for each category based on the PCA 
algorithm and t-SNE algorithm to prove the validity of the generated data. In conclusion, 
the experimental results show that our proposed method effectively solves the AMC 
task of spectrum resource management for IoT terminal devices.
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