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1  Introduction
With the development of Internet of Things (IoT), an increasing number of IoT nodes 
will be deployed to monitor, sense, collect, and analyze enormous data timely for intel-
ligent services [1]. Due to the limitations of both the production cost and size, most 
of IoT nodes are typically energy- and computation-constraint, which imposes high 
requirements on energy and computation resources [2, 3]. In order to address the above 
challenges, wireless-powered mobile edge computing (MEC) has been proposed by lev-
eraging the ability of wireless power transfer [4] and MEC [5]. To be specific, in wire-
less-powered MEC, IoT nodes harvest energy from a dedicated energy source (ES) on 
demand and then use the harvested energy to support their local computation and data 
offloading. Accordingly, how to schedule communication and computational resources 
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for energy harvesting (EH), data offloading and computation is vital to the achievable 
performance of wireless-powered MEC.

Until now, there are many investigations regarding binary or partial offloading-based 
resource allocation in wireless-powered MEC networks. In the binary offloading, the 
task bits of an IoT node are either locally computed or offloaded to the MEC server, 
while in the partial offloading, the task bits of an IoT node are split into two parts: one 
for local computation and the remaining for data offloading [3]. The authors of [6] stud-
ied the successful computation probability maximization problem in a wireless-powered 
MEC network with a single IoT node by jointly optimizing the binary offloading deci-
sion and the IoT node’s computation frequency and local computation time. The single 
IoT user scenario [6] was extended into multi-user wireless-powered MEC, where the 
authors maximized the weighted sum computation bits under the time-block [7] and 
time-varying [8] channels, respectively. Considering the partial offloading, the authors 
in [9] maximized the weighted sum computation bits of all the IoT nodes by jointly opti-
mizing the beamforming of the ES, the IoT nodes’ computation frequencies and offload-
ing time and the task bits for data offloading and local computation. By optimizing the 
same variables as [9], the authors in [10] studied the energy minimization problem while 
satisfying the data computation requirement of all IoT nodes.

The above works [6–10] assumed that all IoT nodes offload data bits to the MEC server 
via orthogonal multiple access (OMA). Recall that non-orthogonal multiple access 
(NOMA) achieves a better transmission performance than OMA in terms of spectrum 
and energy efficiencies. Recent works have integrated NOMA for data offloading into 
wireless-powered multi-user MEC and validated its superior performance compared to 
wireless-powered OMA-MEC. The author in [11] maximized the sum computation bits 
in a wireless-powered multi-user NOMA-MEC by jointly optimizing the binary offload-
ing decision, local computation frequency, transmit power, EH and data offloading time 
of each IoT node. Considering the partial offloading in wireless-powered NOMA-MEC, 
the energy efficiency was maximized from the system centric [12] perspective. The 
authors in [13] considered a user cooperation enabled wireless-powered NOMA-MEC 
network and minimized the energy consumed by all the IoT nodes via jointly optimizing 
the IoT node’s EH time and computation frequency, the IoT node’s transmit power, and 
the tasks bits for local computation and offloading.

In the above works [6–13], the data offloading was achieved following the harvest-
then-transmit protocol via active radios (ARs) that require power-hungry compo-
nents such as oscillators [14, 15]. Due to the energy-causality constraint for each IoT 
node, it has to allocate more resources for EH in each transmission block, leaving a 
short time for AR based data offloading and limiting task offloading performance of 
each IoT node. In contrary to AR, backscatter communication (BackCom) is receiv-
ing much attention due to its extra-low power consumption and thus, has been con-
sidered for data offloading in wireless-powered MEC [16]. The key idea of BackCom 
is to allow an IoT node modulating and backscattering its information on the inci-
dent signal, resulting in an extra-low power consumption but with a lower transmis-
sion rate than AR [15]. To exploit the different tradeoffs between power consumption 
and transmission rate for AR and BackCom, hybrid AR-BackCom has been used 
for data offloading in wireless-powered MEC networks [17, 18]. The authors in [18] 
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considered a hybrid AR-BackCom-based wireless-powered MEC and minimized the 
energy consumption of the ES by jointly optimizing the EH time, AR, and BackCom 
under the complete offloading where all the IoT nodes’ task bits are offloaded to the 
MEC server. Under the same scenario, the computation energy efficiency of all the 
IoT nodes was maximized [19]. Considering the partial offloading, the authors in [20] 
jointly optimized the time for AR, BackCom and EH, the IoTs’ transmit power for 
AR-based offloading, and the portions of task bits for local computation and offload-
ing to maximize the weighted sum computation bits of all IoT nodes. Considering the 
same network and optimization variables as [20], the max-min computation energy 
efficiency among IoT nodes and the total delay for data offloading and computing of 
all IoT nodes were studied in [21] and [22], respectively.

These works [17–22] have validated that leveraging hybrid AR-BackCom for off-
loading is capable of improving the computational performance of wireless-pow-
ered MEC networks. We note that the previous works [6–10] have confirmed that 
employing NOMA for offloading achieves a better performance than OMA. However, 
such a advantage has not been exploited in hybrid AR-BackCom wireless-powered 
MEC since [17, 18, 20–22] only considered OMA for AR-based data offloading, and 
this motivates this work. Besides, this work also considers the limited computation 
capacity of the MEC server, which removes the ideal assumption that the MEC serv-
er’s computation capacity is unlimited in existing works and makes this work more 
practical.

In this paper, we propose a backscattered-assisted wireless-powered NOMA-MEC 
network that consists of one ES, multiple IoT nodes and one MEC server, and aim to 
develop a resource allocation scheme to maximize the total computation bits of all 
IoT nodes while considering the computation resource allocation at the MEC server. 
The main contributions are as listed below.

•	 We formulate an optimization problem to maximize the total computation bits 
of all IoT nodes by jointly optimizing the EH time, BackCom time, and uplink 
NOMA time of the IoT node, the power reflection coefficient and the transmit 
power of each IoT node, the computing frequencies and time at both the MEC 
server and the IoT nodes. The formulated problem is non-convex and challenging 
to solve due to the following reasons. First, the optimization of the MEC server’s 
computation time and frequency introduces a min function in the objective func-
tion and more coupled optimization variables in both the objective function and 
constraints. Second, the optimization of the IoT node’s transmit power during 
uplink NOMA results in a difference of convex (DC) structure.

•	 We first transform the original problem into an equivalent convex one and then 
propose an iterative algorithm to obtain the optimal solution. To be specific, a 
slack variable and the contradiction approach are introduced to remove the min 
function from the objective function and determine partial optimal solutions, 
respectively. Then, we employ an inequality transformation approach to address 
the DC structure and obtain a sub-problem with given parameters that are from 
the used inequality transformation approach. By doing so, the optimal solution 
can be obtained by solving the sub-problem and update the given parameters iter-
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atively. Further, the sub-problem is transformed into a convex one by constructing 
a series of auxiliary variables to decouple the coupled variables. On this basis, an 
efficient iterative algorithm is developed for obtaining the optimal solution.

The remainder of the whole paper is organized as follows. The system model is clarified 
in Sect. 2. In Sect. 3, a system computation bits maximization problem for the backscat-
tered-assisted wireless-powered NOMA-MEC network is formulated by jointly optimiz-
ing the computing frequencies and time of the MEC server and the IoT nodes, the EH 
time, the BackCom time, the uplink NOMA time, etc., and then, based on the contradic-
tion approach, the inequality transformation approach and variable replacement, an effi-
cient iterative algorithm is proposed to obtain the optimal solutions. Simulation results 
are presented in Sect. 4. The conclusion of this work can be found in Sect. 5.

2 � Method
2.1 � System model

In this work, we consider a backscatter-assisted wireless-powered NOMA-MEC net-
work as shown in Fig. 1, where K IoT nodes harvest energy from energy signals transmit-
ted by a nearly deployed ES and upload their tasks to the MEC server for computation 
as well as perform local computation. Each IoT node has separate EH, offloading and 
computing circuits so that the IoT node can compute tasks locally when offloading tasks 

Fig. 1  The frame structure of the considered network
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or harvesting energy. Following [4–6], we assume that the consumed energy at each IoT 
node for task offloading and local computing is less than or equal to its harvested energy 
so as to avoid drawing energy from its battery. Following [7], we assume that each IoT 
node can adjust its computing frequency using the dynamic voltage scaling (DVS) tech-
nology. We assume that the data bits of each task are bit-wise independent so that the 
partial offloading scheme is employed at each IoT node to determine how many tasks 
should be processed locally/offloaded to the MEC server. Assume that the channels 
from the IoT nodes to the ES or the MEC server are quasi-static fading and remain static 
within one transmission block but vary among different blocks. Perfect channel state 
information (CSI) is assumed and available at the MEC server. On this basis, the MEC 
server can determine the optimal resource allocation scheme and feed it back to all the 
IoT nodes and the ES at the beginning of each transmission block. Following [6–8], all 
the devices in the considered network are assumed to be time synchronized.

Let T denote the time duration of the whole transmission block. According to the 
behaviors of the IoT nodes, the transmission block can be divided into five phases. The 
first phase is the EH phase, where the ES broadcasts energy signals and all the IoT nodes 
operate in the EH mode. The second phase is called as the BackCom phase, in which 
all the IoT nodes take turn to offload their tasks via BackCom and the MEC server can 
receive the offloading tasks accordingly. The third phase is the uplink NOMA phase, 
where the ES keeps silent and all the IoT nodes offload tasks to the MEC server simulta-
neously via uplink NOMA. The fourth phase is the task execution phase. In this phase, 
all the IoT nodes stop offloading tasks, and the MEC server executes all the received 
computation tasks to obtain the computation results. These results will be broadcasted 
to all the IoT nodes in the fifth phase, namely the downloading phase. Following [17, 18, 
20–22], we assume that the downloading time of the MEC server is negligible compared 
with the offloading time and the computing time since the computation results of the 
MEC server are usually just a few bits in some scenarios, and the transmit power of the 
MEC server is much larger than IoT nodes. Therefore, the downloading phase of each 
transmission block will be ignored hereafter.

2.2 � EH phase

Let τe ( 0 ≤ τe ≤ T  ) and Ps denote the duration of the EH phase and the ES’s transmit 
power, respectively. This work considers a linear EH model by following the existing 
works, i.e., [7], where η ( 0 < η < 1 ) is the energy conversion efficiency and fixed as a 
constant. Then, the k-th IoT node’s harvested energy in this phase can be calculated as 
Eh
k = τeηPsgk , where gk is the channel power gain between the ES and the k-th IoT node, 

and k ∈ K = {1, 2, ...,K }.

2.3 � BackCom phase

In order to avoid the mutual interference among different IoT nodes, the BackCom 
phase will be divided into K sub-phases. In each sub-phase, a specific IoT node performs 
task offloading via BackCom while the other IoT nodes perform EH. Let ρk ( 0 ≤ ρk ≤ 1 ) 
be the power reflection coefficient of the k-th IoT node based on which the received sig-
nals at the k-th IoT node can be divided into two parts. In particular, a ρk portion of the 
received signals at the k-th IoT node will be used as the vehicle that carries the k-th IoT 
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node’s information via advanced modulation schemes and then be backscattered to the 
MEC server for task offloading, while the others are flowed into the EH circuit for EH.

For backscattering, let tbk  denote the BackCom time of the k-th IoT node. Then, the 
offloading task bits at the k-th IoT node can be computed as

where W denotes the channel bandwidth, ξ represents the performance gap reflecting 
the real modulation [23, 24], hk is the channel power gain between the MEC server and 
the k-th IoT node, and σ 2 denotes the noise power spectral density. In this work, the ES 
serves only as a RF power source, and the RF signal from the ES can be predetermined 
and known to the MEC server. By using the existing channel estimation methods, the 
MEC server can obtain the CSI of the ES-to-the MEC server link. Accordingly, the MEC 
server can remove the interference from the ES by performing successive interference 
cancellation (SIC).

For EH, both the backscatter IoT node and non-backscatter IoT nodes can perform 
EH during each sub-phase. Specifically, in the sub-phase tbk  , the harvested energy of the 
k-th IoT node and the i-th ( i ∈ K\k ) IoT node are given by Eb

k = tbk η(1− ρk)Psgk and 
Eb
k ,i = tbk ηPsgi , respectively, where η is the energy harvesting efficiency [4]. On this basis, 

we can calculate the total harvested energy of the k-th IoT node at the end of the Back-
Com phase as

As for the energy consumption in this phase, we assume a constant circuit power con-
sumption for BackCom by following [20] and [21], where the energy consumption of 
BackCom is the product of the power consumption rate and the BackCom time. In par-
ticularly, let Pc,k denote the circuit power consumption for BackCom. Then, the energy 
consumption of the k-th IoT node in this phase is determined by Pc,k tbk .

2.4 � Uplink NOMA phase

Let ta denote the duration of the uplink NOMA phase. Following [12], we assume that 
the channel gains between the IoT nodes and the MEC server are ranked in an descend-
ing order, i.e., h1 ≥ h2 ≥ · · · ≥ hK and the MEC server adopts a fixed decoding order to 
decode the offloading tasks of each IoT node in this phase by means of SIC technology. 
Specifically, the MEC server decodes the information of the i-th IoT node first, subtracts it 
from the received composite signal and then, continues to decode the information from the 
(i + 1)-th IoT node, until the information from all the IoT nodes is decoded. Note that such 
a decoding order allows decoding the weakest IoT node’s information without interference, 
thus, maximizing the sum uplink offloading task bits. Including the decoding order in the 
joint optimization may further improve the system computation bits, while it is outside the 
scope of this work and will be studied in our future work. Denote pk as the transmit power 

(1)Rb
k = tbkW log2

(

1+
ξρkPsgkhk

Wσ 2

)

,

(2)

Etot
k = Eh

k + Eb
k +

∑

i∈K,i �=k

Eb
i,k

= ηPsgk

(

τe +

K
∑

i=1

tbi

)

− tbk ηρkPsgk .
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of the k-th IoT node in the uplink NOMA phase. Then, the achievable computation bits of 
the k-th IoT node in this phase is given by

Accordingly, at the end of the uplink NOMA phase, the total achievable task bits 
offloaded by all the IoT nodes can be computed as

2.5 � Task execution phase

In this phase, the MEC server will execute all the received computation tasks. Here, we con-
sider a limited computation capacity at the MEC server. That is to say, all the received tasks 
may not be computed within the task execution phase and the effective computation bits at 
the MEC server depends on both its computation capacity and received computation tasks. 
Let fm and tc denote the computing frequency of the MEC server and the duration of the 
task execution phase, respectively. Then, we can compute the MEC server’s computation 
capacity as Ccc =

tcfm
Ccpu

 , where Ccpu is the number of CPU cycles required for computing one 

bit at the MEC server. On this basis, the effective computation bits at the MEC server, 
which are decided by the minimum between the received tasks and the computation capac-
ity, are given by

2.6 � Local computation

For local computing, let τk and fk denote the computing frequency and time of the k-th IoT 
node, respectively. Then, the effective computation bits at the k-th IoT node can be com-
puted as

where Ccpu,k denotes the number of CPU cycles required for computing one bit at the 
k-th IoT node. For each IoT node, its harvested energy is used to support the local com-
putation. Let εk denote the effective capacitance coefficient of the processor’s chip of the 

(3)Ra
k=















Wtalog2

�

1+
pkhk

�K
i=k+1 pihi+Wσ 2

�

, if k ≤ K−1,

Wtalog2

�

1+
pK hK
Wσ 2

�

, if k = K .

(4)

Coff =

K
∑

k=1

(

Rb
k + Ra

k

)

= Wtalog2

(

1+

∑K
k=1 pkhk

Wσ 2

)

+

K
∑

k=1

tbkW log2

(

1+
ξρkPsgkhk

Wσ 2

)

.

(5)

Ceff = min {Coff ,Ccc}

= min

{

Wtalog2

(

1+

∑K
k=1 pkhk

Wσ 2

)

+

K
∑

k=1

tbkW log2

(

1+
ξρkPsgkhk

Wσ 2

)

,
tcfm

Ccpu

}

.

(6)C loc
k =

τk fk

Ccpu,k
,
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k-th IoT node. Then, the energy consumption for local computing at the k-th IoT node is 
given by [7]

3 � Computation bits maximization
In this section, we aim to design an optimal resource allocation scheme to maximize the 
total computation bits for the backscatter-assisted wireless-powered NOMA-MEC net-
work with the MEC server’s limited computation capacity considered. In particular, we first 
formulate a computation bits maximization problem by jointly optimizing the time alloca-
tion among EH, BackCom, uplink NOMA and task execution, the power reflection coeffi-
cient and the transmit power of each IoT node, the computing frequencies and time at both 
the MEC server and the IoT nodes, subject to multiple constraints, i.e., quality-of-service 
(QoS), energy causality, latency, etc. Then, we transform the formulated non-convex prob-
lem into a convex one by means of many convex tools and develop an efficient iterative 
algorithm to solve it.

3.1 � Problem formulation

In order to formulate the optimization problem, we should create the optimization 
objective and several constraints (such as QoS and energy causality constraints) first. 
The optimization objective is to maximize the total computation bits of the considered 
network and thus, includes the computation bits of both the MEC server and IoT nodes. 
Accordingly, the optimization objective can be written as

where tb =
[

tb1 , . . . , t
b
K

]

 , ρ = [ρ1, . . . , ρK ] , p = [p1, . . . , pK ] , f = [f1, . . . , fK ] and 

τ = [τ1, . . . , τK ].

3.1.1 � QoS constraint

This constraint is used to guarantee the minimum required computation task bits of 
each IoT node, which can be expressed as the computation bits of the k-th IoT node 
are not less than its minimum required computation task bits, denoted by Lmin,k . Due 
to the limitation of the computation capacity at the MEC sever, it is hard to character-
ize how many offloading tasks of each IoT node are executed by the MEC server. To 
solve this problem, we introduce an auxiliary variable αk ( 0 ≤ αk ≤ 1 ) and use αkLmin,k 
to denote how many required computation bits should be offloaded and executed at the 
MEC server. On this basis, we can denote the QoS constraint of the k-th IoT node as the 
following three inequalities, i.e.,

(7)Eloc
k = εk f

3
k τk .

(8)Ctot

(

τe, t
b, ta, ρ,p, f , τ , tc, fm

)

= Ceff +

K
∑

k=1

C loc
k ,

(9)Rb
k + Ra

k ≥ αkLmin,k , ∀k ,

(10)
∑K

k=1
αkLmin,k ≤ Ccc,
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where (9) and (10) jointly ensure that the required computation bits offloaded by the 
k-th IoT node, αkLmin,k , can be computed successfully at the MEC server, while (11) is 
used to ensure that (1− αk)Lmin,k can be computed locally. Combining (9), (10) and (11), 
the QoS constraint of the k-th IoT can be guaranteed.

3.1.2 � Energy‑causality constraint

In order to avoid using the battery power of each IoT node and prolong their operation 
time, we consider the energy-causality constraint, which ensures that the energy con-
sumption of each IoT node for offloading and computing is no more than its harvested 
energy within each transmission block. Accordingly, the energy-causality constraint of 
the k-th IoT node is given by

where pc,k denotes the circuit energy consumption of the k-th IoT node during the 
uplink NOMA phase.

3.1.3 � Computation bits maximization problem formulation

Based on (8), (9), (10), (11) and (12), we can formulate the computation bits maximiza-
tion problem as

where α = [α1, . . . ,αK ] , and f max
k  and fmax are the maximum computing frequencies at 

the k-th IoT node and the MEC server, respectively.
In P1 , C1 and C2 are the QoS constraint and the energy-causality constraint for each 

IoT node. C3 and C4 are the latency constraints which guarantee that all the computa-
tion tasks should be executed within the transmission block. C5 demonstrates the limi-
tation of the computation capacity at both the MEC server and the IoT nodes. From P1 , 
we can observe that P1 is a highly non-convex problem due to the following three rea-
sons. Firstly, the objective function is very complicated due to the min function brought 
by the MEC server’s limited computation capacity and coupled variables. Secondly, C1 is 
highly non-convex since the mutual interference among different IoT nodes in the uplink 
NOMA phase exists, leading to coupled relationships among several variables. Note that 
these coupled relationships cannot be tackled by using existing convex tools, i.e., varia-
ble substitution, etc., resulting in a new challenge to solve P1 . Thirdly, C2 is a non-convex 
constraint due to the existence of coupled variables, i.e., fk and τk , ρk and tbk  , etc.

(11)C loc
k ≥ (1− αk)Lmin,k , ∀k ,

(12)Pc,k t
b
k +

(

pk + pc,k
)

ta + εk f
3
k τk ≤ Etot

k , ∀k ,

P1 : max
τe,tb,ta,ρ,p,f ,τ ,tc,fm,α

Ctot

(

τe, t
b, ta, ρ,p, f , τ , tc, fm

)

s.t. C1 : (9)− (11),
C2 : (12),

C3 : τe+
∑K

k=1 t
b
k+ ta +tc ≤ T , τe,t

b
k , ta, tc ≥ 0, ∀k ,

C4 : 0 ≤ τk ≤ T , ∀k ,
C5 : 0 ≤ fm ≤ fmax, 0 ≤ fk ≤ f max

k , ∀k
C6 : 0 ≤ ρk ≤ 1, ∀k ,
C7 : 0 ≤ αk ≤ 1, ∀k ,
C8 : pk ≥ 0, ∀k ,



Page 10 of 21Zheng and Zhou ﻿J Wireless Com Network         (2022) 2022:23 

In order to solve P1 , we will explore the closed-form expressions for parts of the optimal 
solutions first to simplify the original non-convex problem. Then, we transform the simpli-
fied but still non-convex problem into a more traceable problem and propose an efficient 
iterative algorithm to obtain the solutions.

3.2 � Problem transformation and solution

To simplify the objective function in P1 , we introduce a slack variable � to remove the min 
function by letting � = min {Coff ,Ccc} . Then, P1 can be transformed as

In order further simplify P2 , the following proposition is provided to determine the opti-
mal computing frequency of the MEC server f ∗m and the optimal computing time of the 
k-th IoT node τ ∗k .

Proposition 1  In order to achieve the maximum computation bits of the considered 
network, the MEC server should use its maximum allowed computing frequency to exe-
cute the received tasks and each IoT node will perform local computing during the whole 
transmission block, namely f ∗m = fmax and τ ∗k = T .

Proof  Please see “Appendix A”.�  �

Based on Proposition 1, we substitute fm = fmax and τk = T  into P2 and P2 can be rewrit-
ten as

Although P3 is simplified, it is still non-convex due to the non-convex constraints caused 
by the coupled variables. To tackle this problem, we introduce the following auxiliary 
variables, i.e., φk = ρk t

b
k  and Pk = tapk , into P3 and then, we have P4 , given as

P2 : max
τe,tb,ta,ρ,p,f ,τ ,tc,fm,α,�

�+
K
∑

k=1

C loc
k

s.t. C1− C8,
C9 : Coff ≥ �,
C10 : Ccc ≥ �.

P3 : max
τe,tb,ta,ρ,p,f ,tc,α,�

�+
∑K

k=1
fkT

Ccpu,k

s.t.C1′: (9),
∑K

k=1 αkLmin,k ≤
tcfmax

Ccpu
,

fkT
Ccpu,k

≥ (1− αk)Lmin,k , ∀k ,

C2′ : Pc,k t
b
k+

(

pk+pc,k
)

ta+εk f
3
k T ≤ Etot

k , ∀k ,
C3, C5′ : 0 ≤ fk ≤ f max

k , ∀k ,

C6− C9, C10′ :
tcfmax

Ccpu
≥ �.
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where φ = [φ1, . . . ,φK ] , P = [P1, . . . ,PK ] , Fk
(

tbk ,φk

)

= tbkW log2

(

1+
ξφkPsgkhk
tbkWσ 2

)

 with 

k ≤ K  , FN
k (P, ta) = Wtalog2






1+

Pkhk
K
�

i=k+1

Pihi+taWσ 2






 with k ≤ K − 1 and 

FN
K (PK , ta) = Wtalog2

(

1+ PK hK
taWσ 2

)

.

Proposition 2  In P4, both the objective function and constraints except C1′′ are convex.

Proof  Please see “Appendix B”. � �

According to Proposition 2, it can be observed that P4 is not convex due to the fact 
that C1′′ is non-convex. By observing C1′′ , we find that the co-channel interference 
caused by the uplink NOMA makes FN

k (P, ta) jointly non-concave with respect to 
{Pk}

K−1
k=1  and ta , leading to a non-convex C1′′.

In the following part, we aim to deal with the non-convexity of C1′′ . From FN
k (P, ta) , 

we can see that the main difficulty comes from the DC structure. To address this 
problem, we introduce a specific inequality to relax FN

k (P, ta) . Specifically, we first 
replace FN

k (P, ta) with its low bound based on the above inequality and then, obtain a 
sub-problem with given parameters which are from the used inequality. Compared to 
the problem P4 , the sub-problem is more traceable and can be solved by means of the 
existing convex tools. On this basis, we can develop an efficient iterative algorithm to 
solve P4 , where in each iteration, we just need to solve the sub-problem with given 
parameters instead of P4 . When we achieve the optimal solution to the sub-problem 
with given parameters, we can update the parameters of the inequality based on the 
achieved solution and repeat the above steps until the lower bound is tight.

The following theorem [25] provides an inequality to relax the function with the DC 
structure.

Theorem 1  For θ , θ̃ > 0, we have the following inequality: log2 (1+ θ) ≥ ̟ log2 (θ)+ µ 
with the constant parameters ̟ = θ̃

1+θ̃
 and µ = log2

(

1+ θ̃

)

−̟ log2

(

θ̃

)

, where the 

lower bound is tight at θ̃ = θ.

According to Theorem 1, we have the following inequality

P4 : max
τe,tb,ta,φ,P,f ,tc,α,�

�+
K
�

k=1

fkT
Ccpu,k

s.t.C1′′ :







Fk

�

tbk ,φk

�

+ FN
k (P, ta) ≥ αkLmin,k , if k ≤ K − 1,

FK

�

tbK ,φK

�

+ FN
K (PK , ta) ≥ αKLmin,K , if k = K

K
�

k=1

αkLmin,k ≤
tcfmax

Ccpu
,

fkT
Ccpu,k

≥ (1− αk)Lmin,k , ∀k ,

C2′′ : Pc,k t
b
k +

�

Pk + pc,k ta
�

+ εk f
3
k T ≤ ηPsgk

�

τe +
K
�

i=1

tbi

�

− ηφkPsgk , ∀k ,

C3, C5′, C7, C10′, C6′:0 ≤ φk ≤ tbk , ∀k , C8
′ : Pk ≥ 0, ∀k ,

C9′ : Wtalog2

�

1+
�K

k=1 Pkhk
taWσ 2

�

+
K
�

k=1

Fk

�

tbk ,φk

�

≥ �,
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where ̟ k and µk ( k ≤ K  ) are given parameters in one iteration and decided by the solu-
tion obtained in the previous iteration. For example, let 
{

τ
(i)
e ,

{

t
b(i)
k

}K

k=1
, t

(i)
a ,

{

φ
(i)
k

}K

k=1
,
{

P
(i)
k

}K

k=1
,
{

f
(i)
k

}K

k=1
, t(i)c ,

{

α
(i)
k

}K

k=1
, �(i)

}

 denote the 

obtained solution in the i-th iteration. Then, in the i + 1-th iteration, the parameters at 
the k-th IoT node, ̟ (i+1)

k  and µ(i+1)
k  , can be updated as

Based on (13), (18) and (19), P4 can be relaxed as the sub-problem in the i + 1-th itera-
tion, given by

where C2′′′, C3′, C5′′, C6′′, C7′, C8′′, C9′′ and C10′′ are transformed from C2′′, C3, 
C5′, C6′, C7, C8′, C9′ and C10′ by replacing 

{

τe, t
b, ta,φ,P, f , tc,α, �

}

 with the following 

term, given by

(13)

FN
k (P, ta) = Wtalog2

(

1+
Pkhk

∑K
i=k+1 Pihi + taWσ 2

)

≥ Wta

(

̟k log2

(

Pkhk
∑K

i=k+1 Pihi + taWσ 2

)

+ µk

)

, k ≤ K ,

(14)̟
(i+1)
k =

P
(i)
k hk

∑K
j=k P

(i)
j hj + t

(i)
a Wσ 2

,

(15)

µ
(i+1)
k = log2

(

1+
P
(i)
k hk

∑K
j=k+1 P

(i)
j hj + t

(i)
a Wσ 2

)

−̟
(i)
k log2

(

P
(i)
k hk

∑K
j=k+1 P

(i)
j hj + t

(i)
a Wσ 2

)

.

P5 : max

τ
(i+1)
e ,

�

t
b(i+1)
k

�K

k=1
,t
(i+1)
a ,

�

φ
(i+1)
k

�K

k=1
,

�

P
(i+1)
k

�K

k=1
,
�

f
(i+1)
k

�K

k=1
,t
(i+1)
c ,

�

α
(i+1)
k

�K

k=1
,�(i+1)

�
(i+1) +

K
�

k=1

f
(i+1)
k T

Ccpu,k

s.t.C1′′′ :































Fk

�

t
b(i+1)
k ,φ

(i+1)
k

�

+Wta






̟

(i+1)
k log2







P
(i+1)
k hk

K
�

j=k+1

P
(i+1)
j hj+t

(i+1)
a Wσ 2






+µ

(i+1)
k







≥ α
(i+1)
k Lmin,k , if k ≤ K−1,

FK

�

t
b(i+1)
K ,φ

(i+1)
K

�

+ FN
K

�

P
(i+1)
K , t

(i+1)
a

�

≥ α
(i+1)
K Lmin,K , if k = K

K
�

k=1

α
(i+1)
k Lmin,k ≤

t
(i+1)
c fmax

Ccpu
,
f
(i+1)
k T

Ccpu,k
≥

�

1− α
(i+1)
k

�

Lmin,k , ∀k ,

C2′′′, C3′, C5′′, C6′′, C7′, C8′′, C9′′, C10′′,

{τ
(i+1)
e ,

{

t
b(i+1)
k

}K

k=1
, t

(i+1)
a ,

{

φ
(i+1)
k

}K

k=1
,
{

P
(i+1)
k

}K

k=1

,
{

f
(i+1)
k

}K

k=1
, t

(i+1)
c ,

{

α
(i+1)
k

}K

k=1
, �(i+1)}

.
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As for P5 , it is still non-convex due to the following non-concave function, given as

Thus, we further introduce the following auxiliary variables x(i+1)
k = t

(i+1)
a log2

(

P
(i+1)
k

t
(i+1)
a

)

 , 

k ≤ K  into P5 , and we have P
(i+1)
k = t

(i+1)
a 2

x
(i+1)
k

t
(i+1)
a , k ≤ K  . Substituting 

P
(i+1)
k = t

(i+1)
a 2

x
(i+1)
k

t
(i+1)
a , k ≤ K  into P5 , P5 can be transformed into

where

with k ≤ K − 1 and

with k = K .

Proposition 3  P6 is a convex problem, which can be solved by the existing convex tools.

Proof  Please see “Appendix C”.�  �

3.3 � Design of the iterative algorithm

In this subsection, we provide an efficient iterative algorithm to solve P4 , which is shown 
in Algorithm 1 at the top of the next page. Specifically, in the i + 1-th iteration, we should 

Wta

(

̟
(i+1)
k log2

(

P
(i+1)
k hk

∑K
j=k+1 P

(i+1)
j hj + t

(i+1)
a Wσ 2

)

+ µ
(i+1)
k

)

.

P6 : max

τ
(i+1)
e ,

�

t
b(i+1)
k

�K

k=1
,t
(i+1)
a ,

�

φ
(i+1)
k

�K

k=1
,

�

x
(i+1)
k

�K

k=1
,
�

f
(i+1)
k

�K

k=1
,t
(i+1)
c ,

�

α
(i+1)
k

�K

k=1
,�(i+1)

�(
i+1) +

K
�

k=1

f
(i+1)
k T

Ccpu,k

s.t.C1′′′′ :







Fk

�

t
b(i+1)
k ,φ

(i+1)
k

�

+ FT
k

�

t
(i+1)
a , {x

(i+1)
ii }Kii=k

�

≥ α
(i+1)
k Lmin,k , if k ≤ K − 1,

FK

�

t
b(i+1)
K ,φ

(i+1)
K

�

+ FNT
K

�

x
(i+1)
K , t

(i+1)
a

�

≥ α
(i+1)
K Lmin,K , if k = K

K
�

k=1

α
(i+1)
k Lmin,k ≤

t
(i+1)
c fmax

Ccpu
,
f
(i+1)
k T

Ccpu,k
≥

�

1− α
(i+1)
k

�

Lmin,k , ∀k ,

C2 :′′′′
Pc,k t

b(i+1)
k +



t
(i+1)
a 2

x
(i+1)
k

t
(i+1)
a + pc,k t

(i+1)
a



+ εk

�

f
(i+1)
k

�3
T

≤ ηPsgk

�

τ
(i+1)
e +

K
�

i=1

t
b(i+1)
i

�

− ηφ
(i+1)
k Psgk , ∀k ,

C3′, C5′′, C6′′, C7′, C10′′,

C9′′′ :
K−1
�

k=1

FT
k

�

t
(i+1)
a , x

(i+1)
k

�

+ FNT
K

�

x
(i+1)
K , t

(i+1)
a

�

+
K
�

k=1

Fk

�

t
b(i+1)
i ,φ

(i+1)
k

�

≥ �(
i+1),

FT
k

(

t(i+1)
a , {x

(i+1)
ii }Kii=k

)

=

[

t(i+1)
a log2hk + x

(i+1)
k − t(i+1)

a log2

( K
∑

j=k+1

2

x
(i+1)
j

t
(i+1)
a hj +Wσ 2

)]

×W̟
(i+1)
k +Wt(i+1)

a µ
(i+1)
k

FNT
K

(

x
(i+1)
K , t(i+1)

a

)

= ̟
(i+1)
K W

(

t(i+1)
a log2hK − t(i+1)

a log2

(

Wσ 2
)

+ x
(i+1)
K

)

+ µ
(i+1)
K Wt(i+1)

a
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solve P6 with given ̟(i+1)
k  and µ(i+1)

k
 , ∀k and obtain its optimal solution, denoted by 

{

τ
(i+1)
e ,

{

t
b(i+1)

k

}K

k=1
, t

(i+1)
a , 

{

φ
(i+1)

k

}K

k=1
,

{

x
(i+1)

k

}K

k=1
, 
{

f
(i+1)

k

}K

k=1
, t

(i+1)
c ,

{

α
(i+1)

k

}K

k=1
, �(i+1)

}

 . On 

this basis, the IoT nodes’s optimal transmit powers {p∗k}
K
k=1 , reflection coefficients {ρ∗

k }
K
k=1 

and computing frequencies 
{

f ∗k
}K

k=1
 as well as the optimal time allocation at both IoT 

nodes and the MEC server τ ∗e ,
{

tb∗k

}K

k=1
, t∗a , t

∗
c  are obtained. Then, we can compute the 

maximum computation bits of the system C∗
tot = �(

i+1) +
∑K

k=1
f
(i+1)
k T

Ccpu,k
 . If the stop condi-

tion is satisfied, then the obtained solution {τ ∗e ,
{

tb∗k

}K

k=1
, t∗a , t

∗
c ,
{

f ∗k
}K

k=1
, {p∗k}

K
k=1, {ρ

∗
k }

K
k=1} 

is the solution to P4 and the maximum computation bits of the system are given by C∗
tot . 

Otherwise, we should update ̟ (i+1)
k  and µ(i+1)

k  , ∀k based on the obtained solution by fol-
lowing (18) and (19) and repeat the above steps. Please note that the proposed iterative 
algorithm can always converge since the iteration to update ̟k and µk always converges 
and the detailed proof can be refer to [25].

4 � Experiments and results discussion
4.1 � Experiments

This section is provided to verify the effectiveness and the superiority of the pro-
posed scheme by means of MATLAB. Unless otherwise specified, we set the 
basic simulation parameters as follows. Specifically, we set T = 1 s, W = 100 kHz, 
Ps = 30 dBm, K = 4 , σ 2 = −120 dBm/Hz, fmax = 10 GHz, ξ = −15 dB, η = 0.7 , 
Ccpu = 1000 Cycles/bit, Pc,1 = Pc,2 = Pc,3 = Pc,4 = 10 µ W, ε1 = ε2 = ε3 = ε4 = 10−26 , 
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f max
1 = f max

2 = f max
3 = f max

4 = 500 MHz, Ccpu,1 = Ccpu,2 = Ccpu,3 = Ccpu,4 = 1000 
Cycles/bit and Lmin,1 = Lmin,2 = Lmin,3 = Lmin,4 = Lmin = 100 kbits. Here, we consider 
the standard channel fading model, where the channel gain of each channel is modeled 
by the product of the small-scale fading and the large-scale fading. Let g ′k and h′k , ∀k , 
denote the small-scale fadings from the k-th IoT node to the ES and the MEC server, 
respectively. Likewise, denote Ds,k and De,k as the distance from the k-th IoT node to the 
ES and the MEC server. The channel gains of the ES-the k-th IoT node link and the MEC 
server-the k-th IoT node link are given by gk = g ′kD

−β

s,k  and hk = h′kD
−β

e,k  , where β denotes 
the path loss exponent. In this work, we set β = 2.7 , Ds,1 = 13 m, Ds,2 = 10 m, Ds,3 = 11 
m, Ds,4 = 10 m, De,1 = 50 m, De,2 = 55 m, De,3 = 50 m and De,4 = 51 m.

4.2 � Results discussion

Figure  2 illustrates the convergence of Algorithm  1 under different settings of Ps and 
Lmin . Specifically, we set Ps as 25 dBm or 30 dBm. Lmin is set as 30 kbits, 50 kbits, 70 
kbits, 90 kbits or 110 kbits. From this figure, it can be observed that the proposed itera-
tive algorithm can always converge to a certain value within a few iterations, e.g., 4 
iterations. That is, the proposed iterative algorithm is convergent and computationally 
efficient. By comparing the achievable computation bits under different settings of Ps 
and Lmin , we also see that with Ps (or Lmin ) fixed, a larger Lmin (or Ps ) may decrease (or 
increase) the achievable computation bits.

Figure 3 shows the system computation bits versus the transmit power of the ES Ps , 
where Ps varies from 0.5 W to 2.5 W. In order to demonstrate the superiority of the 
proposed scheme, we compare the performance under the proposed scheme with that 
under the four other benchmark schemes, which are the complete offloading scheme, 
the fully local computing scheme, the backscatter-assisted MEC and the wireless-pow-
ered NOMA-MEC, respectively. In the complete offloading scheme, each IoT node only 
performs task offloading and both BackCom and AT can be used to offload tasks. In 
the fully local computing scheme, all the IoT nodes can only compute their tasks locally. 
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Fig. 2  The convergence analysis of Algorithm 1
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For the backscatter-assisted MEC, each IoT node can not only perform local computing 
but also offload its tasks to the MEC server and only BackCom can be adopted for task 
offloading. For the wireless-powered NOMA-MEC, each IoT node can only choose the 
NOMA technology to offload parts of tasks and the rest tasks can be computed locally. 
Please note that the above four schemes are obtained by means of some methods used 
in this work. Specifically, the complete offloading scheme is obtained by using the pro-
posed iterative algorithm after a few changes, e.g., solving P6 with fk = 0, ∀k . The fully 
local computing scheme is optimized by solving P6 with ta = 0, tc = 0 and tbk = 0, ∀k . 
The results under the backscatter-assisted MEC can be obtained by solving P4 with 
ta = 0 and Pk = 0, ∀k . The results of the wireless-powered NOMA-MEC are achieved by 
means of Algorithm 1 by solving P6 with tbk = 0, ρk = 0, ∀k . It is not hard to prove that 
the above problems, P6 with fk = 0, ∀k , P6 with ta = 0, tc = 0 and tbk = 0, ∀k , P4 with 
ta = 0 and Pk = 0, ∀k and P6 with tbk = 0, ρk = 0, ∀k , are convex, which can be solved by 
using the existing convex tools.

As shown in this figure, it can be observed that all the schemes except the fully local 
computing scheme show an upward trend while the results under the fully local com-
puting scheme are always 0. The reasons are as follows. With the increasing of Ps , both 
the total harvested energy and the achievable BackCom rate at each IoT node increase, 
resulting in an improvement to the system computation bits, while the fully local com-
puting scheme may not satisfy the QoS constraint, etc., which also demonstrates the 
advantage of MEC. By comparisons, we can also see that the proposed scheme can 
achieve the highest computation bits among the five schemes. This is because the pro-
posed scheme combines the advantages of BackCom and AT as well as the partial off-
loading scheme, providing more flexibilities to utilize resources efficiently.

Figure 4 plots the system computation bits versus the minimum required computa-
tion bits at each IoT node, where Lmin is ranged from 50 to 150 kbits. Similarly, we 
compare the performance under the proposed scheme with that under the complete 
offloading scheme, the fully local computing scheme, the backscatter-assisted MEC 
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Fig. 3  System computation bits versus the transmit power at the ES
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and the wireless-powered NOMA-MEC in order to demonstrate the superiority of 
the proposed scheme. It can be observed that the system computation bits under all 
the schemes except the fully local computing scheme decrease when Lmin increases 
since a larger Lmin means a higher QoS requirement for each IoT node and more 
resources will be allocated to the IoT nodes with worse channels, which reduces the 
system computation bits. Besides, we can also see that the proposed scheme outper-
forms the other schemes in terms of system computation bits, which further illus-
trates the advantage of the proposed scheme.

Figure  5 depicts the effect of the computation capacity of the MEC server on the 
system computation bits, where fmax varies from 5 GHz to 25 GHz. It can be observed 
that the system computation bits under the proposed scheme, the backscatter-
assisted MEC, the wireless-powered NOMA-MEC and the complete offloading 
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scheme increase with the increasing of fmax . This is because the improvement of the 
MEC server’s computation capacity allows more task bits to be offloaded and exe-
cuted, resulting in the increasing system computation bits. Note that the fully local 
computing scheme is not included in this figure since its performance is not influ-
enced by fmax . By comparisons, we still can see that the proposed scheme is superior 
to the other schemes in terms of system computation bits.

5 � Conclusions
In this paper, we have studied the computation bits maximization for the backscatter-assisted 
wireless-powered NOMA-MEC network while considering the limited computation capacity 
and the computation resource allocation at the MEC server. In particular, we have formulated 
a computation bits maximization problem by jointly optimizing the EH time, the BackCom 
time and reflection coefficients of the IoT nodes, the IoT nodes’ transmit power and time 
in the uplink NOMA phase, as well as the computing frequencies and time of both the IoT 
nodes and the MEC server. In order to solve the formulated non-convex problem, we first 
introduced a slack variable and the contradiction approach to remove the min function from 
the objective function and determine partial optimal solutions, respectively. Then, based on 
the inequality transformation approach, an efficient iterative algorithm has been proposed to 
obtain the optimal solutions. Simulations results have verified the quick convergence of the 
proposed iterative algorithm and demonstrated the superiority of the proposed scheme in 
terms of the computation bits over the existing benchmark schemes.

Appendix A
Here, we prove Proposition 1 by means of contradiction.

Proof for f ∗m = fmax Suppose that 
{

τ ∗e ,
{

tb∗k

}K

k=1
, t∗a ,

{

ρ∗
k

}K

k=1
,
{

p∗k
}K

k=1
,
{

f ∗k
}K

k=1
, 
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 is the optimal solution to P2 , where f ∗m < fmax and 
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 . Then, the 

maximum computation bits of the system can be computed as  
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 . Further, we can also construct another solution satisfying 
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 . 

Obviously, the constructed solution is a feasible solution to P2 which satisfies all the 
constraints of P2 . Accordingly, we can calculate the computation bits of the system under this 
constructed solution as C+

tot = �
+ +

∑K
k=1

f +k τ+k
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 . Since f +m = fmax > f ∗m holds, we have 
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 , resulting in �+ ≥ �

∗ . Based on the expression of Ctot , we have C+
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tot due to 

the fact that �+ ≥ �
∗ , f +k = f ∗k  and τ+k = τ ∗k  . However, the fact that C+
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tot contradicts 

the above assumption that the solution 
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 is optimal. Therefore, in order to maximize the computation 
bits of the system, the MEC server should compute its received tasks with its maximum 
allowed computing frequency, namely f ∗m = fmax.
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Proof for τ ∗
k
= T

When τe, tb, ta, ρ,p, tc, fm,α, � and {fi, τi}i={1,2,...,K }\k are fixed, we should jointly optimize 
fk and τk to achieve the maximum computation bits of the system. Assume that the k-th 
IoT node’s optimal computing frequency f ∗k  and time τ ∗k < T  satisfy all the constraints 
of of P2 with other parameters fixed. Then, the maximum computation bits of the con-
sidered system C∗

tot are computed as �+
∑K

i=1,i �=k
τi fi

Ccpu,k
+

τ∗k f
∗
k

Ccpu,k
 . On this basis, we con-

struct another solution as {f +k , τ+k } with τ+k = T  and τ+k f +k (f +k )2 = τ ∗k f
∗
k (f

∗
k )

2 . Note that 
the constructed solution is feasible. Correspondingly, we can calculate the maximum 
computation bits of the system under the constructed solution as 
C+
tot = �+

∑K
i=1,i �=k

τi fi
Ccpu,k

+
τ+k f +k
Ccpu,k

 . Since both τ+k f +k (f +k )2 = τ ∗k f
∗
k (f

∗
k )

2 and τ+k = T > τ ∗k  

hold, we have f +k < f ∗k  and τ+k f +k > τ ∗k f
∗
k  . Combining the expression of Ctot , we can 

obtain C+
tot > C∗

tot , which contradicts the above assumption. Thus, τ ∗k = T  holds when 
the maximum computation bits of the system are achieved.

Based on the above analysis, Proposition 1 is obtained.

Appendix B
From P4 , we can observe that both the objective function and the constraints C3 , C5′ , C6′ , 
C7 , C8′ and C10′ are linear, making both the objective function and these constraints convex. 
For the rest constraints C1′′ , C2′′ and C9′ , we can prove that both C2′′ and C9′ are convex 
constraints as follows. For constraint C2′′ , its convexity depends on the function f 3k  . Since 
the second derivative of the function f 3k  is 6fk , which is larger than or equal to 0, the function 
f 3k  is convex and C2′′ is a convex constraint. For constraint C9′ , we need to prove both 
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are concave when it is convex. Since the perspective function can preserve convexity, we find 
that the convexities of Fk
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 , which are concave. Thus, the constraint 

C9′ is also convex. The proof is complete.

Appendix C
After carefully analyzing P6 , it is not hard to conclude that the objective function and all 
constraints except C1′′′′ , C2′′′′ and C9′′′ are linear. Thus, P3 is convex if and only if con-
straints C1′′′′ , C2′′′′ and C9′′′ are convex.

On the convexity of C1′′′′ : We only need to prove that 
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sum-exp function which is proved to be convex, log2

(

∑K
j=k+1 2

x
(i+1)
j hj +Wσ 2

)

 is con-

vex and C1′′ is also a convex constraint.
On the convexity of C2′′′′ : The convexity of C2′′ is decided by the function t(i+1)
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x
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a  is convex, then the constraint C2′′ is convex. Since t(i+1)
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convex.

On the convexity of C9′′′ : Since log2
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 is convex, we have 
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 is concave. Combining the results in Appendix B, we can conclude that 

C9′′′ is also convex. The proof is complete.
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