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1  Introduction
With the continuous development of information technology, information security 
issues in our daily lives are becoming more and more important [1]. Blockchain tech-
nology relies on maintaining a reliable distributed database through distributed ledgers, 
consensus mechanisms, smart contracts, cryptography and other means, and can solve 
the security issues such as information tampering [2, 3]. Therefore, blockchain technol-
ogy is taken high attention from industry and academia.
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In order to improve the revenue of attacking mining pools and miners under block 
withholding attack, we propose the miner revenue optimization algorithm (MROA) 
based on Pareto artificial bee colony in blockchain network. MROA establishes the 
revenue optimization model of each attacking mining pool and revenue optimization 
model of entire attacking mining pools under block withholding attack with the math-
ematical formulas such as attacking mining pool selection, effective computing power, 
mining cost and revenue. Then, MROA solves the model by using the modified artificial 
bee colony algorithm based on the Pareto method. Namely, the employed bee opera-
tions include evaluation value calculation, selection probability calculation, crossover 
operation, mutation operation and Pareto dominance method, and can update each 
food source. The onlooker bee operations include confirmation probability calcula-
tion, crowding degree calculation, neighborhood crossover operation, neighborhood 
mutation operation and Pareto dominance method, and can find the optimal food 
source in multidimensional space with smaller distribution density. The scout bee 
operations delete the local optimal food source that cannot produce new food sources 
to ensure the diversity of solutions. The simulation results show that no matter how the 
number of attacking mining pools and the number of miners change, MROA can find a 
reasonable miner work plan for each attacking mining pool, which increases minimum 
revenue, average revenue and the evaluation value of optimal solution, and reduces 
the spacing value and variance of revenue solution set. MROA outperforms the state of 
the arts such as ABC, NSGA2 and MOPSO.

Keywords:  Block withholding attack, Blockchain, Pow, Mining cost

Open Access

© The Author(s), 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

RESEARCH

Chen et al. J Wireless Com Network        (2021) 2021:146  
https://doi.org/10.1186/s13638-021-02018-x

*Correspondence:   
mhanresearch@outlook.com 
3 Binjiang Institute, Zhejiang 
University, Hangzhou 310052, 
China
Full list of author information 
is available at the end of the 
article

http://orcid.org/0000-0001-7472-0842
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13638-021-02018-x&domain=pdf


Page 2 of 28Chen et al. J Wireless Com Network        (2021) 2021:146 

At present, blockchain is widely used in education, auditing, human resource inter-
net of Things (IoT), electronic voting, medical care, intelligent transportation and many 
other fields [4, 5]. For example, in the medical field, attackers can obtain the personal 
health information (PHI) through hospitals, schools, laboratories and other ways. And 
there are also some problems such as inconsistent information format and difficult reli-
ability proof. Therefore, Bentov Iddo et al. [6] propose a typical blockchain case in the 
medical field, that is, a personal health information system based on blockchain. The 
system combines a proof-of-work (POW) algorithm to manage personal health and 
other information. It effectively not only solves the problems such as information format 
and reliability proof, but also facilitates the search of patients or medical institutions.

In the POW algorithm [7, 8], the miner first calculates the Merkle root of the block 
transaction set and fills the block header with the previous block hash value, block ver-
sion number and other information. Then, it sets the random number Nonce to zero. 
The miner adds 1 to the random number Nonce and calculates the hash value of the cur-
rent block based on the information in the block header. If the leading zero of the block 
hash value meets the difficulty requirement, that is, the miner completes the SHA256 
mathematical puzzle, the miner will send the searched random number and block infor-
mation to other nodes and obtain miner revenue after the blockchain network performs 
verification. The revenue consists of fixed revenue and variable transactions related to 
the number of transactions. If the miner fails to find that its block hash value meets 
the difficulty requirement within a certain period of time, the miner needs to update 
the transaction set of the timestamp and the block body, and perform the search of the 
number Nonce again. At the same time, considering the influence of the entire network’s 
computing power on the block generation time, the blockchain network can flexibly 
adjust the difficulty value of block mining according to the entire network’s computing 
power information. In the actual process, the POW algorithm takes about 10 minutes to 
generate a block. If each miner competes for mining through its own computing power, 
most miners will not obtain stable revenue. In order to increase the possibility of obtain-
ing stable revenue, miners join the mining pool to ensure their own revenue through 
cooperative mining. The mining pool is composed of miners and a mining pool man-
ager [9, 10]. The miner carries out mining work according to the workload certification 
requirements issued by the mining pool manager and sends the mining results to the 
mining pool manager in the form of proof of part work or proof of full work. The mining 
pool manager estimates the mining capacity of each miner by counting the proof of work 
reported by the miners and publishes the proof of full work to the blockchain network to 
compete with the current blockchain network. If the mining pool manager successfully 
obtains the rewards, it will allocate the revenue according to the mining ability of each 
miner, so that each miner in the mining pool can obtain a certain revenue.

But the mining pools are vulnerable to block withholding attack. Block withholding 
attack means that malicious miners always choose to send proof of part work to the min-
ing pool manager and discard the proof of full work [11, 12]. The attack causes a waste 
of computing power in the attacked mining pool, resulting in a decrease in its total reve-
nue. At the same time, it helps malicious miners get revenue from attacked mining pools 
by relying on the proof of part work. Since the malicious miner who carries out the block 
withholding attack always submits proof of part work, the mining pool manager only 
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detects that the total revenue of the mining pool decreases and finds that its mining pool 
is suffering from block withholding attack. But it cannot judge the malicious miners in 
the mining pool.

We believe that attacking and defensive algorithms promote the development of each 
other. Studying the new block withholding attack algorithm that maximizes the reve-
nue of attackers can help us to understand the nature of block withholding attack and 
promote the continuous development of defense algorithms against block withholding 
attack [13]. The study of block withholding attack has a certain practical significance. 
Therefore, we propose the mining revenue optimization algorithm (MROA) of miners in 
PoW-based blockchain networks. The main contributions are as follows: 

1.	 MROA establishes revenue optimization model of each attacking mining pool and 
revenue optimization model of entire attacking mining pools under block withhold-
ing attack with the mathematical formulas such as attacking mining pool selection, 
effective computing power, mining cost and revenue.

2.	 MROA solves the model by using the modified artificial bee colony algorithm based 
on the Pareto method. That is, MROA initializes the population. The employed bee 
operations include evaluation value calculation, selection probability calculation, 
crossover operation, mutation operation and Pareto dominance method, and can 
update each food source. The onlooker bee operations include confirmation prob-
ability calculation, crowding degree calculation, neighborhood crossover operation, 
neighborhood mutation operation and Pareto dominance method, and can find the 
optimal food source in multidimensional space with smaller distribution density. The 
scout bee operations delete the local optimal food source that cannot produce new 
food sources to ensure the diversity of solutions.

3.	 MROA can obtain the composition plan of each attacking mining pool. The plan 
increases the entire revenue of attacking mining pool while ensuring the revenue of 
each attacking mining pool and its miners as much as possible.

The rest of the paper is organized as follows: We introduce the related work in Sect. 2. 
We introduce the principles of our algorithm in Sect. 3. We explain how the algorithm 
is implemented in Sect. 4. We analyze the simulation results of our algorithm in Sect. 5. 
Finally, we summarize the paper and illustrate the future work in Sect. 6.

2 � Related work
Considering the harmfulness of block withholding attack to the actual mining process, 
many scholars study the block withholding attack. Some scholars focus on considering 
the characteristics of the block withholding attack between two mining pools, and stud-
ding on the attack strategy of the attacking mining pool, so as to maximize the revenues 
of the attacking mining pool. Wenbai Li et al. [14] establish a mining pool game model 
from the perspective of system rewards and punishments, and analyze the attack pen-
etration rate and betrayal rate of the mining pool under the Nash equilibrium. Yang Tian 
et al. [15] establish an iterative prisoner’s dilemma model, which is solved by an indefi-
nite value strategy. Considering that there are only two mining pools and only one min-
ing pool allowed to initiate an attack, Rui Qin et al. [16] propose the optimal strategy and 
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attack conditions of block withholding attack. Nisarg Shah et al. [17] prove that the game 
of two mining pools attacking each other is a Nash equilibrium and calculate the wasted 
computing power when it reaches the equilibrium state. Considering the two mining 
pools being able to freely choose to cooperate or block withholding attack, Wu Di et al. 
[18] establish the revenue matrix of each mining pool and find the Nash equilibrium 
from the perspective of pure strategy and hybrid strategy to maximize the revenue of the 
two mining pools. Hu Qin et al. [19, 20] use ZD (zero determinant) strategy to optimize 
the strategy of the mining pool to find the Nash equilibrium in the scenario where two 
mining pools carry out block withholding attack against each other. However, references 
[14–20] do not consider the problem of block withholding attack among mining pools 
with uneven distribution of computing powers in the actual process.

Therefore, some scholars focus on the problem of block withholding attack among 
multiple mining pools and obtain the computing power allocation scheme of the min-
ing pools. Rajani Singh et al. [21] establish a dynamic game model among mining pools 
and propose two algorithms of cooperative mining strategy and noncooperative mining 
strategy to maximize the revenue of the mining pool. Considering the dynamic influence 
of malicious miners on the mining pool, Kim Seonggeun et al. [22] propose an evolu-
tionary game theory based on blockchain. When the miner attacks mining pool, Luu 
Loi et  al. [23] propose an algorithm for calculating revenue of miners and finding the 
Nash equilibrium. Considering block withholding attack among multiple mining pools, 
Shajari Mehdi et al. [24] use the tile coding algorithm of reinforcement learning to ana-
lyze the influence of miners’ migration on the computing power of mining pools. WANG 
Tiantian et  al. [25] consider the behavior of block withholding attack among multiple 
mining pools as an iterative prisoner’s dilemma model, and use the gradient algorithm 
to adjust the mining strategy of the mining pool. Considering the situation where the 
attacking mining pool and other mining pools collude to attack the attacked mining pool 
in the environment of multiple mining pools, Bag Samiran et al. [26] propose a spon-
sored block withholding attack strategy of attacking mining pool to maximize its own 
revenue. But the above references do not consider factors such as mining cost in the 
model establishment.

Some scholars focus on the combination of block withholding attack, selfish mining 
attack, 51% attack and other attack algorithms to increase the revenue of attacking min-
ing pool. Based on the traditional block withholding attack, Jaewoo So [27] propose a 
block withholding attack combined with selfish mining, that is, the miner who initiates 
the block withholding attack carry out selfish mining on the withholding block. Dong 
Xuewen et al. [28] propose a self-sustaining block withholding attack, that is, the attack-
ing mining pool not only carries out a selfish mining attack on the attacked mining pool, 
but also assigns some computing power to carry out block withholding attack. Ke Jun-
ming et al. [29] propose an intermittent block withholding attack based on the dynamic 
adjustment of the block mining difficulty value. That is, when the difficulty value of the 
whole blockchain network is high, the attacking mining pool sends computing power 
to carry out block withholding attack, and when the difficulty value drops, the attack-
ing mining pool turns the block withholding attack into honest mining. Chang Sangy-
oon et al. [30] propose an uncle block attack strategy for the block reward of Ethereum, 
that is, the uncle-block attack strategy requires the attacking mining pool to submit all 



Page 5 of 28Chen et al. J Wireless Com Network        (2021) 2021:146 	

reserved blocks when other miners submit blocks to help the attacking mining pool 
obtain revenue. Considering the blockchain network deployment, Wang Yilei [31] pro-
pose a hybrid block withholding attack to determine the optimal attack strategy based 
on the blockchain network. But the above references mainly optimize the revenue of a 
single attacking mining pool, and do not consider the revenue of the entire attacking 
mining pools.

In conclusion, many scholars use a variety of algorithms to optimize the computing 
power scheme of mining pool. But they do not consider the cost of honest mining, the 
cost of block withholding attack and the dynamic block withholding attack among multi-
ple mining pools. Therefore, we propose the MROA algorithm. In the preliminary work, 
we have achieved certain study results on the block withholding attack. To overcome 
the fast-changing block withholding attacks among multiple mining pools composed of 
miners in the blockchain system, we propose a mining pool computing power alloca-
tion algorithm, which significantly improves the revenues of mining pools with block 
withholding attacks [32], but the algorithm does not consider the selection of the miners 
during the model establishment. Then, considering the selection factors of the miners in 
the attacking mining pool, we propose a novel anti-attack mining revenue optimization 
algorithm to improve the revenues of both the attacking mining pools and miners under 
block withholding attack [33], but in conference paper, the principle description and the 
experimental simulation work are simple.

3 � Algorithm
The assumptions are as follows: 

1.	 Attacking mining pool can freely choose between block withholding attack and hon-
est mining. Honest mining pools cannot carry out block withholding attack, but they 
can carry out honest mining.

2.	 The miners in the blockchain network can freely choose among attacking mining 
pools.

3.	 In order to help attacking mining pools obtain revenue, miners carry out honest min-
ing or block withholding attack according to the requirement of their own attacking 
mining pools.

4.	 Miner shares the total revenue of its mining pool according to the computing power 
provided by himself.

As shown in Fig. 1, miners carry out honest mining or block withholding attack on 
another mining pool according to the instructions of their own attacking mining 
pool. The mining pool manager sends an attacking message to all its miners against 
an honest mining pool. If a miner accepts the block withholding attack task, it sends a 
receiving message to the mining pool manager to carry out block withholding attack. 
Then, it regularly reports attack status messages and accepts the revenue allocated by 
the mining pool manager. Other message passing and signaling are consistent with 
the message communication process of the POW algorithm. Considering that both 
honest miners and attacking miners are trying to maximize the revenue of their min-
ing pools, there are two issues that need to be resolved. The first is how to establish a 
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revenue optimization model of each attacking mining pool and revenue optimization 
model of entire attacking mining pool under block withholding attack with mathe-
matical formulas such as miner selection formula and revenue formula. The second is 
how to solve the model by using the modified artificial bee colony algorithm based on 
the Pareto method and find a reasonable miner work plan for each attacking mining 
pool.

3.1 � Model establishment

Let xijk represent the correlation among miner i, the attacking mining pool j which 
miner i belongs to and other mining pool k. If xijk = 1 and j = k , miner i in the attack-
ing mining pool j and carries out honest mining. If xijk = 1 and j  = k , the attacking 
mining pool j let miner i join other mining pool k and carries out block withholding 
attack. At the same time, the correlation meets the following conditions:

Let wij represent the indicator whether miner i carries out honest mining in attacking 
mining pool j which miner i belongs to. It is

Let sijk represent the indicator whether miner i carries out block withholding attack 
on other mining pool k according to the requirement of attacking mining pool j which 
miner i belongs to. It is

Let yj represent the total computing power that attacking mining pool j can use for hon-
est mining. It is

(1)
∑

j

∑

k

xijk = 1, ∀i

(2)wij =

{

1 j = k and xijk = 1
0 others

(3)sijk =

{

1 j �= k and xijk = 1
0 others

Fig. 1  Schematic diagram of block withholding attack
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where ci represents effective computing power provided by miner i. Then, the total com-
puting power of each attacking mining pool j subjected to block withholding attack aj 
and the total computing power of the attacking mining pool j used to carry out the block 
withholding attack vj are

Since each attacking mining pool j allocates computing power to carry out block with-
holding attack, the real honest mining revenue RH

j  of each attacking mining pool j needs 
to be allocated according to the computing power yj and vj . So RH

j  is

where yH represents the computing power of honest mining pool. The real block with-
holding attack revenue RW

j  comes from the computing power of block withholding 
attack νjk ,∀k used to attack other mining pool k in attacking mining pool j. So RW

j  is

We consider the mining pool needs to consume costs such as electricity and water to 
carry out honest mining or block withholding attacks. Due to the certain differences of 
resource costs in various regions, we set the cost of honest mining CH and the cost of 
block withholding attack Cp according to the region of the miner and calculate the total 
revenue of the mining pool. The total revenue Rj is the total computing power revenue of 
the mining pool j minus the cost consumed.

Since miner shares the total revenue of its mining pool according to the computing 
power provided by himself, we let Rc

i  represent each miner’s revenue. It is

(4)yj =
∑

i

ciwij

(5)aj =
∑

k

∑

i

cisikj , vj=
∑

k

∑

i

cisijk

(6)

RH
j =

yj
∑

j

yj + yH
∗

yj + vj

yj + aj + vj

=

∑

i

ciwij

∑

j

∑

i

ciwij + yH
∗

∑

i

ciwij +
∑
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∑

i

cisijk

∑

i
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∑

k

∑
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k

∑

i

cisijk

(7)

RW
j =

�

k







yk
�

j

yj + yH
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vjk
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





=
�

k







�

i

ciwik

�

j

�

i

ciwij + yH
∗

�

i

cisijk

�

i

ciwik +
�

j

�

i

cisijk +
�

j

�

i

cisikj







(8)Rj = RW
j + RH

j − yjCH − vjCp

(9)Rc
i = Rj

ci

yj + vj
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Then, we transform formula (9) into the revenue optimization model of each attacking 
mining pool j, which is based on the condition that miners have fixed computing power 
and the revenue of the mining pool is evenly allocated.

At the same time, we consider that the maintainer of the attacking mining pool hopes 
that each miner in the attacking mining pool ensures that the difference in revenue is as 
small as possible while increasing the revenue, so as to achieve an overall increase in the 
revenue of the miners in the attacking mining pool. Therefore, we choose average miner 
revenue Rav

m  , minimum miner revenue Rmin
m  and revenue miner variance varm to establish 

revenue optimization model of entire attacking mining pools under block withholding 
attack.

3.2 � Model solution

Formulas (10) and (11) are game problems of individual and entire attacking mining 
pools, and the direct solution is more complex. Currently, Newton algorithm, gradient 
descent algorithm and other optimization algorithms for solving the model are compli-
cated in calculation and difficult to solve the nonlinear optimization problem. Genetic 
algorithm, ant colony algorithm, simulated annealing algorithm and other traditional 
artificial intelligence algorithms tend to fall into local optimal solutions within a lim-
ited number of iterations. Reinforcement learning and some other learning algorithms 
achieve goal optimization through continuous learning of optimal strategies, but they 
require a large amount of data sample in the optimization process. Artificial bee colony 
algorithm means that an intelligent optimization algorithm realizes model optimiza-
tion by simulating the honey-collecting process of bees [34]. The algorithm expresses 
the solution in the process of model optimization in the form of a food source and finds 
the optimal solution through operations such as employed bee operations, onlooker bee 
operations and scout bee operations. Among them, employed bee operations select food 
sources to generate new food sources and perform evaluation value calculation to retain 
food sources with better evaluation values. Onlooker bee operations calculate the selec-
tion probability of each food source based on the evaluation value and select the food 
source to generate a new food source with the roulette method. Then, they perform the 
evaluation value calculation operation to retain the foods with good evaluation values. 
Scout bee operations eliminate the food sources that fall into the local optimal solu-
tion. Therefore, the artificial bee colony algorithm can find the global optimal solution 
through optimization operations in different stages and has a faster convergence speed. 
The artificial bee colony algorithm can solve the single-objective optimization problem. 
But according to formula (10), each attacking mining pool wants to maximize its own 

(10)

max(Rj)

s.t. formulas(1)− (8),∀i, k

xijk ∈ {0, 1}, ∀i, k

(11)
max(Rav

m Rmin
m /varm)

s.t. formulas(1)− (9),∀i, j, k

xijk ∈ {0, 1}, ∀i, j, k
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revenue, which is a multi-objective optimization problem. Therefore, we propose the 
modified artificial bee colony algorithm based on Pareto. The specific solution process 
is as follows.

3.2.1 � Population initialization

Let Nw , Nc and Nv , respectively, represent the number of miners, the number of attack-
ing mining pools and the number of honest mining pools. Then, we use the array as food 
sources. The number of rows in the array represents miner’s serial number. The first col-
umn in each food source represents the attacking mining pool which the miner belongs 
to, and the second column represents the attacked mining pool which the miner is cur-
rently in. The random initialization of each food source is that MROA generates an array 
of zero values and repeats the following operations for Nw times until the initialization 
of food source is completed: It randomly selects the natural number from 1 to Nc and 
replaces zero value in the first column of the array with the random value. Then, it ran-
domly selects the natural number from 1 to Nc + Nv and replaces the zero value in the 
second column of the array with the random value.

3.2.2 � Employed bee operation

MROA calculates the total computing power that each attacking mining pool can use for 
honest mining and block withholding attack by formula (4) and formula (5). In order to 
select the food source with the largest evaluation value as the optimal food source xsta , 
MROA combines the following formula to calculate the evaluation value of each food 
source fm.

Then, MROA uses the evaluation value of each food source to calculate selection prob-
ability Pse

m in crossover operation and mutation operation.

According to the optimal food source xsta and selection probability of each food source, 
MROA crosses the food sources. That is, it takes the optimal food source xsta as a fixed 
parent food source, and determines another paternal food source xalt by the selection 
probability and roulette method. Letting that current row is the first row, MROA carries 
out the following operations for Nw times in turn until the crossover operation of the 
two food sources is completed: it randomly generates a crossover factor η1 ; if the crosso-
ver factor η1 is larger than the threshold η1thr , it will select the current row in food source 
xsta ; otherwise, it will select the current row in food source xalt ; the number of current 
row adds 1.

The crossover operation that produces a new food source with two original food sources 
can increase the diversity of food sources, but it is also necessary to change the food source 
in a favorable direction through the mutation operation of the selected food source. There-
fore, mutation operation can help MROA to reduce that the revenue gap among mining 
pools, that is, letting that current row is the first row, MROA carries out the following 

(12)fm = Rav
m Rmin

m /varm

(13)Pse
m = fm/

SN
∑

m=1

fm
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operations for Nw times until the mutation operation of the food source is completed: it 
randomly generates a mutation factor ϕ1 ; if the mutation factor ϕ1 is larger than the thresh-
old ϕ1thr , it uses the formula (8) to obtain the revenue of each attacking mining pool in the 
food source and replaces the current row according to formula (14), which makes the muta-
tion result of food source beneficial to the current attacking mining pool of lowest revenue; 
Otherwise, it does not change; the number of current row adds 1.

where xknew represents kth row in new food source, RLast represents the attacking mining 
pool of lowest revenue, RFirst represents the mining pool of largest revenue.

In conclusion, MORA generates a large number of new food sources after evaluation 
value calculation, selection probability calculation, crossover operation and mutation oper-
ation of food sources. Therefore, MROA uses the method of elite retention to compare the 
quality of new and old food sources. If the evaluation value of new food source is greater 
than that of the old food source, the new food source will replace the old food source. Oth-
erwise, the old food source will remain unchanged. At the same time, MROA realizes the 
Pareto dominance method through formula (15). If MROA finds that food source κ and 
food source � have a dominant relationship in the revenue of each attacking mining pool, 
MROA will put the dominant food source into the non-dominated solution set QF1.

3.2.3 � Onlooker bee operation

In the non-dominated solution set QF1 , some solutions are concentrated in a certain region. 
Some solutions are sparse. Therefore, it is necessary to calculate the crowding degree of 
food sources and obtain space metric of food sources with their neighbors. According to 
the metric, MROA achieves the non-dominated solution set QF1 maintenance, that is, it 
calculates the revenue of each attacking mining pool in the non-dominated solution set QF1 
and sorts the food sources according to the calculation result. MROA finds the correspond-
ing revenues of attacking mining pools Rj(xm+1) and Rj(xm−1) according to the sorting 
result and uses formula (16) to calculate the crowding degree di of the food sources.

where Rmax
j  and Rmin

j  , respectively, represent the maximum and minimum revenue 
of attacking mining pool j. According to the calculated crowding degree, MROA uses 
formula (17) to calculate the confirmation probability Pcon

i  of the ith food source in the 
non-dominated solution set QF1.

Then, MROA determines the food source xψ based on the confirmation probabil-
ity of each food source. MROA finds the new food source by carrying out the same 

(14)xknew = [RLast, RFirst]

(15)Ri(κ) ≥ Ri(�) and ∃Rε(κ) > Rε(�), i = 1, . . . ε . . . ,Nc

(16)di =







∞, i = 1 and sQF1
Nc
�

j=1

|Rj(xm+1)−Rj(xm−1)|
Rmax
j −Rmin

j

, 1 < i < sQF1

(17)Pcon
i = di/

sQF1
∑

m=1

di
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neighborhood crossover operation and neighborhood mutation operation for the food 
source xψ . The neighborhood crossover operation, neighborhood mutation operation 
and elite retention are basically the same as those of the employed bee operation. MROA 
can obtain the non-dominated set QF2 through the Pareto dominance method of the 
new food source. If the number of food sources in the set QF2 is below the threshold 
value, MROA supplements some food sources through the initialization of food sources. 
When the algorithm iteration is completed, it uses the non-dominated solution set QF2 
as the solution set for maximum revenue of multiple mining pools, and we take the food 
source with the largest evaluation value as the optimal solution.

3.2.4 � Scout bee operation

MROA records the number of times ςi that food source i cannot produce new food 
sources. If ςi > ςthr , then MROA obtains a new food source xnm by formula (18) to 
replace the corresponding food source in the set.

where xmax represents the least crowding degree of food source in the non-dominated 
solution set QF2 , xσ represents the food source with the largest similarity to food source 
xmax . κ represents an Nw ∗ 1 array composed of 0 or 1 random numbers. If there is a 
negative number in food source xnm , the number will take absolute value and replace the 
negative number.

4 � Algorithm implementation
As shown in Fig. 2, the specific implementation steps of MROA are as follows:

Step 1: MROA initializes the parameters such as number of miners Nw , number of 
attacking mining pools Nc , number of honest mining pools Nv , total number of food 
sources in the population SN, mutation factor threshold ϕ1thr , and number of iterations 
item = 0.

Step 2: MROA initializes all food sources in the population. That is, it generates SN 
arrays of Nw ∗ 2 dimensions whose values are all zero. It repeats the random selection of 
natural number from 1 to Nc and replaces the zero value with the random value in the 
first column of the array. Then, it repeats the random selection of natural number from 
1 to Nc + Nv and replaces the zero value with the random value in the second column of 
the array until the assignment of the arrays is completed.

Step 3: MROA uses formulas (12) and (13) to calculate the evaluation value and selec-
tion probability and selects the food source with largest evaluation value as a fixed par-
ent food source xsta . m=1.

Step 4: MROA selects a food source xalt with the roulette method for crossover. The 
current row sets the first row. Then, it carries out the following operations for Nw times 
in turn until the crossover operation of food sources is completed to obtain a new food 
source: It randomly generates a crossover factor η1 ; if the crossover factor η1 is greater 
than the threshold value η1thr , it will select the current row in xsta ; otherwise, it will 
select the current row in the food source xalt ; the number of current row adds 1.

Step 5: Current row sets the first row. Then, MROA carries out the following oper-
ations for Nw times in turn until the mutation operation of food source is completed: 

(18)xnm=xmax+κxmax−xσ
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Fig. 2  Flow chart of MROA
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It randomly generates a mutation factor ϕ1 ; if the mutation factor ϕ1 is greater than 
threshold value ϕ1thr , it uses formula (8) to obtain the revenue of each attacking min-
ing pool in the food source. Then, it replaces the current row with the row in xknew by 
formula (14); otherwise, it does not change; the serial number of current row adds 1. 
m = m + 1. If m is not greater than the number of food sources, skip to step 4. Oth-
erwise, skip to step 6.

Step 6: If evaluation value of new food source is larger than original food source, 
MROA replaces the original food source with new food source. Otherwise, the origi-
nal food source remains unchanged. And MROA carries out the Pareto domination 
method to get the non-dominated solution set QF1.

Step 7: MROA uses formula (16) to calculate the crowding degree of the non-dom-
inated solution set QF1 and sorts in descending order. Then, it calculates confirma-
tion probability by crowding degree and uses the roulette method to determine the 
food source for each onlooker bee operation.

Step 8: MROA carries out neighborhood crossover operation and neighborhood 
mutation operation and elite retention on set QF1.

Step 9: MROA obtains the non-dominated solution set QF2 by carrying out the 
Pareto dominance method on set QF1 . If the number of food sources in the set QF2 
is below the threshold value, MROA supplements some food sources through the 
initialization of food sources.

Step 10: If the number of times ςi of food source i is larger than threshold ςthr , it 
means that food source i in set QF2 cannot generate a new food source. Then, MROA 
replaces the food source i with random new food source and updates set QF2 . The 
number of iterations item = item+ 1 . If item ≤ θ , skip to step 3. Otherwise, MROA 
obtains the solution set QF2 to maximize the revenue of multiple attacking mining 
pools, and we take the food source with the largest evaluation value as the optimal 
solution.

According to the above flow chart, the pseudo-code of MROA is as follows, and 
the time complexity of MROA is analyzed on the basis of the pseudo-code. MROA 
mainly includes four parts, such as population initialization, employed bee opera-
tion, onlooker bee operation, and scout bee operation. The first part is to initialize 
the food source, that is, its time complexity is �(SN ) . The second part is that MROA 
performs crossover operation, mutation operation and Pareto dominance method of 
food sources, that is, its time complexity is �(SN 2Ncθ) . The third part is that MROA 
performs crowding calculation of food sources, neighborhood crossover operation, 
neighborhood mutation operation and Pareto dominance method on food sources, 
that is, its time complexity is �(SN 2Ncθ) . The fourth part is that MROA updates 
the food source in time, that is, its time complexity is �(θSN ) . In summary, the time 
complexity of MROA is �(SN 2Ncθ) . At present, the time complexity of classic multi-
objective optimization algorithms such as NSGA2 (non-dominated sorting genetic 
algorithm II) [35] and MOPSO (multiple objective particle swarm optimization) [36] 
is �(SN 2Ncθ) , so the time complexity of the MROA is the same as that of other clas-
sic multi-objective optimization algorithms, without increasing the complexity of 
the algorithm.
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5 � Results and discussion
5.1 � Simulation parameters and performance parameters

To analyze the performance of MROA, we refer to the distribution of mining pools in the 
real Bitcoin network in the btc126.com website. According to the statistics of btc126.com, 
the computing power distribution diagram of mining pools in the Bitcoin network is shown 
in Fig. 3. The attacking mining pools mainly refer to the AntPool, ViaBTC, BTC.com, and 
SlushPool mining pool in the real Bitcoin network. The miner in the attacking mining pool 
carries out honest mining or block withholding attack on other mining pools. The honest 
mining pool refers to the remaining mining pools in the real Bitcoin network. The miner in 
the honest mining pool carries out honest mining. According to the above algorithm simu-
lation environment and references [18, 37, 38], we use Table 1 to analyze the influence of 
cost parameters of honest mining and block withholding attack on the average mining pool 
revenue and average miner revenue. Moreover, we select NSGA2, MOPSO and ABC (arti-
ficial bee colony) [34] as comparison algorithms and calculate the minimum mining pool 
revenue, mining pool revenue variance, average mining pool revenue, minimum miner 
revenue, miner revenue variance, average miner revenue, the evaluation value and spacing 
value of optimal solution when the number of attacking mining pools and miners change. 
Among them, NSGA2, MOPSO and ABC all choose formula (12) as weight value. The 
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NSGA2 optimizes the mining pool revenue through a fast non-dominated sorting strategy 
of elite reservation and selects the solution with the largest evaluation value as the optimal 
solution in the solution set. The MOPSO optimizes the mining pool revenue through dou-
ble set and adaptive grid method and also selects the optimal solution according to the eval-
uation value. ABC is a classic bee colony algorithm. In order to find the optimal solution 
through iterations, ABC calculates the evaluation value of food source by formula (12). The 
average mining pool revenue or miner revenue means the attacking mining pools or miners 
obtain the average revenue in the optimal solution. The minimum mining pool revenue or 
miner revenue means attacking mining pools or miners obtain the minimum revenue in the 
optimal solution. The revenue variance of mining pools or miners means attacking mining 
pools or miners to obtain the revenue variance in the optimal solution. The spacing value SP 
means the minimum standard deviation from each solution to other solutions in the output 
solution set.

5.2 � Analysis of simulation results

5.2.1 � Algorithm convergence and optimal scheme analysis

We select the maximum number of iterations 100, number of miners 120, and other 
parameters in Table 1 to obtain the non-dominated solution set in MROA. Then, we 

Table 1  Simulation parameter

Parameter name Value Parameter name Value

Number of honest mining pools Nv 1 Initial computing power of each miner ci 0.1

Number of attacking mining pools Nc 6 Computing power of honest mining pool 0.5

Maximum number of iterations θ 50 Crossover factor threshold η1thr 0.05

Block withholding attack cost Cp 0.02 Network reward value 1000

Mutation factor threshold ϕ1thr 0.02 Number of onlooker bees 10

Number of food sources SN 20 Honest Mining cost CH 0.05

Fig. 3  The distribution diagram of computing power of mining pools in real Bitcoin network
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analyze the convergence of MROA. As shown in Fig. 4, MROA selects the food source 
with the largest evaluation value to carry out crossover operation with other food 
sources, which ensures that the offspring can inherit the current optimal food source 
as much as possible. And MROA carries out the mutation operation to change the 
food source in a favorable direction. In the onlooker bee operations, MROA updates 
the food source with low evaluation value through crowding calculation, Pareto dom-
ination and other operations. In the scout bee operations, MROA gives up the local 
optimal food sources, which cannot generate new food sources. These operations can 
quickly find the current optimal food source, so MROA can find the optimal evalua-
tion value of food source about 23 iterations and the actual running time is 10.864s. 
As shown in Fig.  5, according to the revenue of the six attacking mining pools, we 
select the revenue sum of two attacking mining pools as a coordinate value to obtain 
the distribution of the solution set in the three-dimensional space. In the process 
of iteration, MROA considers the mutation operation to ensure the overall revenue 
of attacking mining pools while reducing the revenue gap among attacking min-
ing pools. Then, MROA ensures the uniformity and convergence of non-dominated 
solution set by the congestion calculation, Pareto dominance method, and other 
operations. Therefore, the distribution of the solution set of MROA in the three-
dimensional space is relatively uniform and can form the Pareto front. We calculate 
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the evaluation value of the food source in the non-dominated solution set according 
to formula (12) and select the food source with the largest evaluation value as the 
final output solution.

As shown in Fig. 6, it is the allocation of the computing power of each mining pool 
in the optimal solution of MROA, where x and y coordinate axes represent the serial 
number of each mining pool, z coordinate axis represents the allocation of computing 
power used by each mining pool for honest mining or block withholding attack. Attack-
ing mining pool 1–6 can freely choose between block withholding attack and honest 
mining. Mining pool 7 is an honest mining pool, which cannot carry out block withhold-
ing attack, but they can carry out honest mining. The attacking mining pool reserves 
computing power 0.4 in its own mining pool for honest mining. In order to ensure the 
miner’s revenue inside the mining pool, the attacking mining pool widely attacks other 
mining pools, so each of them uses around computing power 1.3 for block withhold-
ing attack. Since the honest mining pool cannot carry out block withholding attack, it 
is more likely to be attacked by attacking mining pools. So the total computing power of 
the honest mining pool subjected to block withholding attack is 1.6.

5.2.2 � Influence of cost parameters on MROA

We select honest mining cost 0.01, 0.02, 0.03, 0.04 and 0.05, number of attacking min-
ing pools 6, 7, 8, 9, 10, number of miners 60, 90, 120, 150, other parameters in Table 1 to 
analyze the influence of honest mining cost on the average mining pool revenue and the 
average miner revenue.

As shown in Figs. 7 and 8, when the number of attacking mining pools is 6 and the 
honest mining cost and block withholding attack cost are 0.01, the average mining 
pool revenue and average miner revenue reach the maximum revenue under the rea-
sonable allocation in MROA (average mining pool revenue is 138.5 and average miner 
revenue is 14.48). With the increase in honest mining cost, attacking mining pools 
and miners need to consume more cost for honest mining, which leads to the decrease 
in average mining pool revenue and miner revenue, so the average mining pool rev-
enue and miner revenue in MROA gradually decrease. When the number of attacking 
mining pools is 6, the average mining pool revenue is the sum of miner revenue in 
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the attacking mining pools, and the number of attacking mining pools is more. So 
the average mining pool revenue decreases by 1.62% and the average miner revenue 
decreases by 2.7% when honest mining cost increases by 0.01. However, the increase 
in the number of attacking mining pools directly leads to more choices for miners to 
join the mining pool, and the increase in the number of miners directly leads to an 
increase in the mining pools that can be used for block withholding attack. Moreo-
ver, MROA can find the optimal plan according to current situation and reasonably 
allocate the computing power of miners, so as to deal with block withholding attack 
from other mining pools. Then, it results in a decline of average mining pool revenue 
by 1.6%, 1.9%, 2.8%, 2.8%, 2.9%, which gradually stabilizes the declining trend, and 
results in a decline of average miner revenue by 2.7%, 2.6%, 2.8%, 2.8%, 2.6%, which 
is no significant difference in the decline. Therefore, due to the continued increase in 
honest mining costs, the average mining pool revenue is significantly affected more 
than average miner revenue. As the number of attacked mining pools continues to 
increase, the declining trend of average mining pool revenue is gradually stable. But 
the increase in the number of miners has less influence on the average miner revenue. 
The decline range of the average miner revenue is basically unchanged.
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60 80 100 120 140 160 180
Number of miners

3
4
5
6
7
8
9

10
11
12
13
14
15

A
ve

ra
ge

 m
in

er
 re

ve
nu

e

C
H

=0.01
C
H

=0.02

C
H

=0.03

C
H

=0.04
C
H

=0.05

Fig. 8  Influence of honest mining cost on the average miner revenue



Page 19 of 28Chen et al. J Wireless Com Network        (2021) 2021:146 	

We select block withholding attack cost 0.01, 0.02, 0.03, 0.04 and 0.05, honest mining 
cost 0.03, number of attacking mining pools 6, 7, 8, 9, 10, number of miners 120 and 
other parameters in Table 1 to analyze the influence of block withholding attack cost on 
the average mining pool revenue and average miner revenue.

As shown in Figs. 9 and 10, when the number of attacking mining pools is 6, and the 
honest mining cost and block withholding attack cost are 0.01, average mining pool rev-
enue and average miner revenue reach maximum revenue under the reasonable plan in 
MROA. (The average mining pool revenue is 132.79 and the average miner revenue is 
13.94.) With the increase in block withholding attack cost, attacking mining pools and 
miners both need to spend more on block withholding attack, which leads to the decline 
of average mining pool revenue and miner revenue. When the number of attacking 
mining pools is 6, with each 0.01 increase of block withholding attack cost, the average 
mining pool revenue decreases by 10% on average, and the average miner revenue only 
decreases by 6.6%. With the increase in the number of attacking mining pools or the 
number of miners, MROA can find the optimal solution according to the attack situ-
ation among mining pools and reasonably allocate the computing power of miners. It 
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Fig. 9  Influence of block withholding attack cost on the average mining pool revenue
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results in the average mining pool revenue decreased by 10%, 14%, 15%, 16% and 15%, 
and the declining trend is gradually stable. It also results in the average miner revenue 
decreased by 6.6%, 7.6%, 7.5%, 8.3%, 6.5%, which are with little difference. Therefore, 
with the increase in block withholding attack cost, average mining pool revenue is sig-
nificantly affected more than average miner revenue. At the same time, with the increase 
in the number of mining pools, the declining trend of average mining pool revenue is 
stable. But the influence of the increasing number of miners is less. The decline range of 
the average miner revenue remains unchanged.

5.2.3 � Algorithm performance comparison

Algorithm performance comparison under the change of number of attacking min-
ing pools

We select the number of attacking mining pools 6, 7, 8, 9, 10, number of miners 120 
and other parameters in Table  1 to analyze the minimum mining pool revenue. As 
shown in Fig. 11, when the network reward value is the same, as the number of attack-
ing mining pools increases, the real mining revenue of the MROA, NSGA2 and MOPSO 
mining pools decreases, which directly reduces the minimum revenue of the algorithm. 
ABC chooses the direct optimization evaluation value to ensure the maximum social 
efficiency and does not consider the factor of mining pool revenue. ABC choses the 
direct optimization evaluation value to ensure maximum social efficiency and ignores 
factors such as mining pool revenue. Therefore, the minimum mining pool revenue 
in ABC is low, and there is a certain fluctuation. In order to ensure the quality of the 
non-dominated solution set in the process of optimizing the revenue of the dominated 
pool, NSGA2 uses the traditional crossover operation, mutation operation and Pareto 
dominance method. However, traditional optimization strategies can easily obtain the 
local optimal solution in complex situations. Although MOPSO selects particles in each 
iteration to ensure the quality of the non-dominated solution set, its selection process is 
uncertain and the crossover and mutation operations are simple. MROA not only adds 
the minimum mining pool revenue to the evaluation value and improves the common 
crossover and mutation operations to ensure the quality of the solution, but also adds 
the Pareto domination calculation, crowding calculation and other operations to avoid 
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falling into a local optimal solution. MROA is significantly larger than NSGA2, MOPSO 
and ABC in terms of the minimum mining pool revenue.

We select the number of attacking mining pools 6, 7, 8, 9, 10, number of miners 120 
and other parameters in Table 1 to analyze the average mining pool revenue. As shown 
in Table 2, with the increase in the number of attacking mining pools, the average min-
ing pool revenue gradually decreases because the network rewards have the same value. 
MROA can be quickly realized by the modified artificial bee colony algorithm based on 
Pareto domination in finding the optimal solution. ABC, NSGA2 and MOPSO use the 
same evaluation function of MROA in the selection of a final solution and also allocate 
the current iterative network revenue reasonably. MOPSO has the worst effect because 
of the uncertainty in the process of particle selection. Mining pool average revenue of 
MROA is slightly larger than that of NSGA2, MOPSO and ABC. Since attacking mining 
pools freely choose block withholding attack and honest mining based on the current 
revenue situation, the average revenue of attacking mining pools is 32.5% larger than the 
average revenue of honest mining pools.

We select the number of attacking mining pools 6, 7, 8, 9, 10, number of miners 120 
and other parameters in Table 1 to analyze the mining pool revenue variance. As shown 
in Fig. 12, MROA takes mining pool revenue variance into account. MROA uses muta-
tion operation to the revenue gap among attacking mining pools and uses the Pareto 
dominance method to search for a multi-objective space solution set. It searches for the 
computing power allocation plan that can improve the revenue of all mining pools as 
much as possible. It also avoids falling into the local optimal solution and improves the 
convergence speed of the algorithm. ABC takes the evaluation value of algorithm as the 
only objective and mainly considers the maximization of group revenue. Its random-
ness in the solution process is large. The crossover operation and mutation operation in 
NSGA2 and MOPSO are simple, and their convergence speeds are slow. They still stay 
in the local optimal solution with low number of iterations. Therefore, with the limited 
number of iterations, MROA is lower than NSGA2, MOPSO and ABC in terms of the 
mining pool revenue variance. MROA decreases the revenue variance of attacking min-
ing pools and has good fairness.

We select the number of attacking mining pools 6, 7, 8, 9, 10, number of miners 120 
and other parameters in Table 1 to analyze the evaluation value of optimal solution. As 
shown in Fig. 13, as the number of aggressive mining pools increases, the decrease in 
mining pool revenue variance is smaller than the decrease in average revenue and mini-
mum revenue, resulting in the decrease of the evaluation values of optimal solutions in 

Table 2  Influence of number of mining pools on the average mining pool revenue

Number of attacking mining 
pools

Average mining pool revenue

MROA NSGA2 MOPSO ABC

6 132.7 131.5 104.7 132.4

7 112.5 111.0 91.2 111.7

8 98.5 95.5 78.0 97.8

9 85.9 84.4 64.4 84.7

10 77.4 75.2 59.9 76.9
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MROA, NSGA2, MOPSO and ABC. MROA improves the average and minimum mining 
pool revenues and reduces the mining pool revenue variance. According to the revenue 
average allocation of mining pools (formula (9)), MROA reduces the revenue gap of the 
miners as much as possible and improves the revenue of the average miner and the mini-
mum miner. In terms of the evaluation value of the optimal solution, MROA is better 
than NSGA2, MOPSO and ABC.

We select the number of attacking mining pools 6, 7, 8, 9, 10, number of miners 120 
and other parameters in Table 1 to analyze SP of mining pools. As shown in Fig. 14, due 
to the increase in the number of attacking mining pools, the number of optimization 
targets and the difference in the non-dominated solution sets increases, which make 
the increasing of spacing value SP in MROA, NSGA2, MOPSO and ABC. MROA not 
only uses the elite retention to retain the optimal solution during each iteration, but also 
determines the search direction for finding the optimal solution with mutation opera-
tion. In order to find a non-dominant solution set with a balanced distribution, it uses 
onlooker bee operations such as crowding calculation and Pareto dominance method. 
However, NSGA2 and MOPSO obtain the non-dominated solution set by optimizing 
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the mining pool revenue. ABC is a single-objective optimization algorithm and only 
obtains the latest generation of food source set. In terms of the spacing value, MROA is 
lower than NSGA2, MOPSO and ABC.

Algorithm Performance Comparison under the Change of Number of Miners
We select the number of miners 60, 90, 120, 150, 180 and other parameters in Table 1 

to analyze the minimum miner revenue. As shown in Fig. 15, when the number of min-
ers increases, in order to increase the revenue and reduce the influence of block with-
holding attack of other mining pools on its own mining pool, the attacking mining pools 
use part of their computing power for block withholding attack. It makes the percentage 
of honest mining computing power in the network’s total computing power decrease and 
results in a gradual decrease in the total revenue that the entire network obtains. There-
fore, the minimum miner revenue of MROA, NSGA2 and MOPSO gradually decreases. 
When the number of miners is 60, 80 and 120, the computing power in the network is 
relatively small. In the process of finding the optimal solution, MROA takes the mini-
mum revenue of the miner as one of the evaluation parameters of the food source, so that 
the optimal solution in the iterative process can ensure the minimum revenue of min-
ers. The convergence speeds of NSGA2 and MOPSO are relatively slow, and they only 
obtain the local optimal solution after 50 iterations. ABC improves the miner revenue by 
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directly optimizing the evaluation value, so the average miner revenue is better than that 
of NSGA2 and MOPSO. But ABC does not consider the revenue competition between 
mining pools, resulting in low revenue of some mining pools and miners. Therefore, the 
minimum miner revenue in MROA is larger than that in NSGA2, MOPSO and ABC. 
In terms of the minimum miner revenue, MROA is better than NSGA2, MOPSO and 
ABC. When the number of miners is 150 and 180, there is a large amount of computing 
power in the blockchain network, and each attacking mining pool has more computing 
power, which can be allocated to increase its own revenue. The allocation of computing 
power for each algorithm is roughly similar. Therefore, the minimum miner revenue of 
the MROA is slightly larger than that of the NSGA2, MOPSO and ABC algorithms, and 
the difference in the minimum miner revenue of each algorithm is gradually reduced.

We select the number of miners 60, 90, 120, 150, 180 and other parameters in Table 1 
to analyze the average miner revenue. As shown in Table  3, as the number of miners 
increases, the average miner revenue of MROA, NSGA2, MOPSO and ABC has shown 
a gradual decline. In terms of the average miner revenue, MROA and ABC are slightly 
larger than NSGA2 and MOPSO. The ABC focuses on the average revenue of miners 
in the optimization process with formula (12), which is the same evaluation function of 
MROA; therefore, the average revenue of the ABC and the average revenue of MROA 
are not much different. The average miner revenue in MROA, NSGA2 and ABC is simi-
lar and obviously larger than that of MOPSO. Since attacking mining pools freely choose 
block withholding attack and honest mining, the average revenue of attacking mining 
pools is 31.2% larger than the average revenue of honest mining pools. The specific rea-
son is the same as the influence of number of mining pools on the average mining pool 
revenue. Please refer to section 5.2.3.

We select the number of miners 60, 90, 120, 150, 180 and other parameters in Table 1 
to analyze the miner revenue variance. As shown in Fig. 16, due to the increase in the 
number of miners, each attacking mining pool has enough computing power to allocate 
and increase its own revenue, so the miner revenue variance in each algorithm gradually 
decreases. When calculating the evaluation value of food sources, MROA not only takes 
the miners revenue variance as one of the evaluation parameters, but also improves the 
traditional crossover operation and elite retention. And MROA uses mutation manipu-
lation and Pareto dominance method to ensure that the revenue gap of miners remains 
within a certain range. ABC considers the miner revenue, but its optimization algo-
rithm is only the traditional single-objective bee colony algorithm, and its optimization 
effect is limited. In the iterative processes of NSGA2 and MOPSO, the main purpose is 

Table 3  Influence of number of miners on average miner revenue

Number of miners Average miner revenue

MROA NSGA2 MOPSO ABC

60 13.4 13.3 9.8 13.3

90 9.0 9.0 7.0 9.0

120 6.7 6.6 5.4 6.7

150 5.1 5.1 4.3 5.0

180 4.0 4.0 3.4 4.0
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to optimize the revenue among mining pools, and there is a local optimal solution in 
the optimization result. In terms of the miner revenue variance, MROA can balance the 
miner revenue and have better fairness.

We select the number of miners 60, 90, 120, 150, 180 and other parameters in Table 1 
to analyze the evaluation value of optimal solution. As shown in Fig.  17, due to the 
increase in the number of miners, miner revenue variance, average miner revenue and 
minimum miner revenue have decreased accordingly. Each algorithm maintains a sta-
ble state in the evaluation value of the optimal solution. MROA can increase the mini-
mum and average revenue of miners and reduce miner revenue variance with the same 
number of miners. Because ABC uses the evaluation value as the only objective to eval-
uate the food source, it can get a larger evaluation value in the iterative solution pro-
cess. In terms of the evaluation value of optimal solution, MROA is better than NSGA2, 
MOPSO and ABC.

We select the number of miners 60, 90, 120, 150, 180 and other parameters in Table 1 
to analyze the spacing value SP of mining pools in MROA, NSGA2, MOPSO and ABC. 
As shown in Fig. 18, due to the increase in the number of miners, the disposable comput-
ing power in a single mining pool has increased significantly, and the difference among 
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Fig. 16  Influence of number of miners on the miner revenue variance
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Fig. 17  Influence of number of miners on the evaluation value of optimal solution
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the non-dominated solution sets of each algorithm decreases. The spacing value SP of 
each algorithm gradually decrease. Moreover, MROA can better balance the distribu-
tion of non-dominated sets. In terms of spacing value SP , MROA is lower than NSGA2, 
MOPSO. The specific reason is the same as the influence of number of attacking mining 
pools on the spacing value. Please refer to section 5.2.3.

6 � Conclusion
This paper proposes the miner revenue optimization algorithm (MROA) based on 
Pareto artificial bee colony in blockchain network. According to block withholding 
attack, MROA establishes revenue optimization model of each attacking mining pool 
and revenue optimization model of entire attacking mining pools with the mathemati-
cal formulas such as attacking mining pool selection, effective computing power, mining 
cost and revenue. Secondly, we propose a modified artificial bee colony algorithm based 
on the Pareto method to maximize the model, which includes employed bee operations, 
onlooker bee operations and scout bee operations. That is, MROA initializes algorithm 
parameters and population. The employed bee operations include the evaluation value 
calculation, selection probability calculation, crossover operation, mutation operation 
and Pareto dominance method, and can update each food source. The onlooker bee 
operations include the confirmation probability calculation, crowding degree calcula-
tion, neighborhood crossover operation, neighborhood mutation operation and Pareto 
dominance method, and can find the food source in multidimensional space with smaller 
distribution density. The scout bee operations delete the local optimal food source that 
cannot produce new food sources to ensure the diversity of solutions. Finally, we analyze 
the influence of honest mining cost and block withholding attack cost on the algorithm 
revenue and compare the difference of minimum revenue, average revenue, revenue var-
iance, spacing value and evaluation value of optimal solution in ABC, NSGA2, MOPSO 
and MROA.

The simulation results show that under the condition that the number of attacking 
mining pools and miners change, MROA increases the minimum revenue, average rev-
enue and evaluation value of optimal solution, and reduces the revenue variance and 
spacing value of the solution set. The overall performance of MROA is better than 
NSGA2, MOPSO and ABC. But it does not consider the miner as an independent 
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individual against other miners. Therefore, the next stage is to study the game problem 
among miners under block withholding attack with game theory.
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