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1  Introduction
With the development of wireless communications and networking, human-centered 
computing (HCC) in cloud, edge, and fog attempts to effectively integrate various com-
puting elements related to humans [1, 2], which becomes a common focus of atten-
tion in the academic and industrial fields. Unlike other ordinary computing, HCC pays 
more attention to the status of human in computing technology and the interaction of 
humans with cyberspace and physical world [3]. Therefore, the design of HCC systems 
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and algorithms needs to take into account the individual’s ability and subjective initiative 
[4, 5]. Among them, cloud computing uses a super-large-scale distributed computing 
method to adapt to the large number of examples and complex calculation requirements 
of current artificial intelligence (AI) algorithms, and it has become a computing method 
commonly sought [6, 7]. In the background of HCC computing and big data, there are 
many interesting and practical applications generating [8–10]. Privacy is also an impor-
tant norm that computing models must pay attention to, especially related to privacy 
perception and privacy protection [11–13].

Quantum cloud computing allows users to test and develop their quantum programs 
on local personal computers, and run them on actual quantum devices, thereby reducing 
the distance between humans and the mysterious quantum [14]. Under the influence of 
the AI wave, many technology companies are committed to establishing quantum cloud 
computing platforms that enable users to implement quantum machine learning algo-
rithms. Compared with the two major models of machine learning, the generative model 
and the discriminant model, the generative model is more capable of exerting human 
subjective initiative, so it has the potential to developed into the HCC paradigm. There-
fore, we consider the very creative quantum generative adversarial network model as a 
breakthrough in HCC computing in cloud.

Generative adversarial network (GAN) [15] evaluates generative models through a 
set of adversarial neural network frameworks, which is a hot topic in recent years about 
generative machine learning algorithm. The GAN algorithm bases on game theory sce-
nario, and the generator aims to learn the mapping from simple input distribution to 
complex training sample space by competing with discriminator. As the adversary, the 
discriminator should judge as accurately as possible whether the input data comes from 
the training set or the generator. Both participants of the game try to minimize their 
own loss, so that the adversarial network framework finally reaches the Nash equilib-
rium [16]. In recent years, GAN has been successfully used in the fields of the processing 
of image, audio, natural language etc., to achieve functions such as clear image gen-
eration [17, 18], video prediction [19], text summarization [20], and image generation 
of semantic [21]. Actually, it is difficult to ensure stable training of GAN in operation. 
Researchers use the relevant results obtained by deep learning to improve GAN, includ-
ing methods such as designing new network structures [22], adding regular constraints 
[23], integrated learning [24], and improving optimization algorithms [25]. However, the 
improved algorithms above are not human-centered, because the rules learned by the 
GAN algorithm are implicit. It is difficult to generate data that meets specific require-
ments by changing the structure or input of a trained generator. In 2014, Mirza et  al. 
proposed conditional generative adversarial network (CGAN) [26]. This method guides 
GAN to learn to sample from the conditional distribution by adding conditional con-
straints to the hidden variables of the input layer, so that the generative data can be 
guided by conditional inputs, thereby expanding the application scenarios of the GAN 
algorithm. In the construction, the setting of conditional constraints can make the sub-
jective initiative of people play a role, so it can be regarded as an HCC algorithm. Based 
on the CGAN algorithm, many human-centered applications have been constructed, 
such as objects detection [27], medical images processing and synthesis [28, 29].
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Quantum generative adversarial network (QGAN) is a data-driven quantum circuit 
machine learning algorithm which combine the classical GAN and quantum com-
puting [30]. In 2018, Lloyd proposed the concept of QGAN [31], which analyzed the 
effectiveness of three different QGAN frameworks from a theoretical perspective, 
and demonstrated that quantum adversarial learning can also reach the Nash equilib-
rium point when the generative distribution can fit real distribution. In the same year, 
Pierre’s team discussed QGAN in more detail, by giving the general structure of the 
parameterized quantum circuit (PQC) as a generator and the estimation method of 
the parameter gradient when training the network [32]. In 2019, Hu et al. used quan-
tum superconducting circuit physics experiments to prove the feasibility of QGAN on 
current noisy intermediate-scale quantum (NISQ) devices [33]. Additionally, the opti-
mization of the quantum generator structure is also one of the research priorities. For 
example, using matrix product state [34] and tree tensor network [35] to construct 
PQCs as generator and discriminator of QGAN respectively, the convergence and 
robustness to noise of these methods are all verified through experiments on quan-
tum hardware.

In terms of generating quantum data, the quantum supremacy means that classical 
information processors or neural networks sometimes cannot fit the data generated by 
quantum systems, and only quantum generator can complete such tasks. For the genera-
tion of classical data, the output of quantum generator can always meet the differenti-
able constraint. By sampling the output of quantum generator, classical discrete data can 
be obtained. In contrast, classical GAN cannot directly generate discrete data due to the 
influence of differentiable constraint. Therefore, as a complement to the classical GAN, 
QGAN with the ability to generate discrete data and the combination of other known 
variants of GAN and quantum mechanical mechanisms are of great research value.

Similar to classical GAN, QGAN also has the problem of uncontrollable training pro-
cess and random generative output. However, in practical applications, the intent output 
obtained by changing the input is a more common situation, so QGAN is less practical. 
In order to solve the problem that the QGAN algorithm lacks human-oriented thinking, 
this paper proposes a hybrid quantum-classical scheme based on conditional generative 
adversarial network. Conditional constraints are added to the QGAN algorithm to guide 
the training process. This method has both the controllability of CGAN and the discrete 
data generation capability of QGAN. By analyzing the performance of different GAN, 
it is proved that this algorithm is better than the classical CGAN in terms of time com-
plexity and algorithm functions. Through modeling and training experiments in cloud 
on classical data generation problem, the convergence of the model and the accuracy of 
the generative data verify the feasibility of applying quantum computing to the CGAN 
structure.

The rest of the paper is organized as follows. Section  2 describes the preliminar-
ies about classical GAN and QGAN. Section  3 presents the design focus of QCGAN, 
including the method of designing the PQCs and estimating the parameter gradients. 
The performance analysis of QCGAN and the comparison with other related algorithms 
are in Sect. 4. In Sect. 5, experiments are performed in the quantum cloud computing 
platform to verify the feasibility of the proposed QCGAN algorithm. Section 6 summa-
rizes what we find in this work and the prospects for future researches.
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2 � Principles of generative adversarial network algorithm
2.1 � Generative adversarial network

The core idea of the classical GAN is to construct a zero-sum game between genera-
tor and discriminator. Through the adversarial learning strategy, generator and dis-
criminator are alternately trained to obtain a better generative model. The structure 
and algorithm flowchart of GAN are shown in Fig. 1.

Specifically, the first step is to give training samples as generation target, assuming 
that the real data come from a fixed and unknown distribution preal(x) . The generator 
is a neural network that can map low-dimensional distribution to high-dimensional 
space, and the discriminator is a neural network with classification function. The 
parameters of generator and discriminator are denoted as 

−→
θ G and 

−→
θ D , respectively. 

The input of generator is a noise vector z, which is generally sampled from a normal 
distribution or a uniform distribution; x = G

(−→
θ G, z

)

 is the output of generator, 

which is transformed from the noise vector, and constitutes the generative distribu-
tion pG(x) . In the case of completing the ideal adversarial training, the discriminator 
will not be able to distinguish whether the input comes from the real distribution 
preal(x) or the generative distribution pG(x) . Therefore, the goal of training generator 
is to make discriminator distinguish the output of generator as real data as much as 
possible. On the other hand, when training discriminator, its input contains real data 
x ∼ preal(x) and the output of generator x ∼ pG(x) . At this time, the training goal is to 
accurately judge the two categories of input data. Combining these two aspects, the 
optimization of GAN can be described as the following minimax game problem

2.2 � Conditional generative adversarial network

In view of the uncontrollable shortcoming of the training process of GAN, the CGAN 
algorithm adds conditional variables to the input of generator and discriminator at 
the same time to play a constraining and guiding role. The structure and flowchart of 
CGAN algorithm are shown in Fig. 2. The conditional variables y are generally known 
information with specific semantics, such as feature labels. Under the CGAN frame-
work, the generator pays more attention to sample features that are closely related to 
conditional constraints, ignores other less relevant local features. Therefore, the addi-
tion of conditional variables can control the training process to generate higher qual-
ity data. The output of the generator can be regarded as sampling from the conditional 

(1)min
G

max
D

V (D,G) = Ex∼preal [logD(x)]+ Ex∼pG[log (1− D(x))].

Fig. 1  Schematic diagram of classical generative adversarial network
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distribution pG
(

x
∣

∣y
)

 , so the objective function of CGAN can be rewritten on the basis 
of the original GAN as

CGAN needs to sample from the noise vector and the condition variable at the same 
time, so the set of reasonable conditional variable according to the generation target 
plays a crucial role in the generator’s ability to fit the real distribution. The most com-
mon method is to directly extract the conditional variables from the training data, so 
that generator and discriminator get some prior knowledge about the training set when 
they receive the input. For example, the category label is used as a conditional variable 
and attached to the input layer of the adversarial network [26]. At this time, CGAN can 
be regarded as an improvement of the unsupervised GAN model into a weakly super-
vised or a supervised model.

2.3 � Quantum generative adversarial network

The QGAN is also a zero-sum game that constructed by generator and discriminator in 
principle. If one or more than one of the real data, the generator and the discriminator 
obey the quantum mechanism, the constructed algorithm scheme belongs to the QGAN 
concept. In general, the quantum data set is expressed in the form of a density matrix, 
which corresponds to the covariance matrix of the classical data set. Quantum genera-
tor and discriminator are composed of PQC. The selection, arrangement, and depth of 
quantum gates of PQC will affect the performance of it, so they are also the parts that 
can be optimized.

When QGAN is used for classical data generation tasks, if the goal of the generator 
is to reproduce statistical data on high-dimensional, QGAN with quantum generator 
has the potential to exponentially accelerate the convergence to Nash equilibrium [31]. 

(2)min
G

max
D

V (D,G) = Ex∼preal

[

logD
(

x
∣

∣y
)]

+ Ex∼pG

[

log
(

1− D
(

x
∣

∣y
))]

.

Fig. 2  Schematic diagram of classical conditional generative adversarial network
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Using classical neural networks as the discriminator in adversarial learning can avoid 
the input bottleneck of quantum machine learning, because it reduces the calculation 
and resource consumption of quantum state encoding when discriminate real classical 
data. Combining the above two aspects, the QCGAN algorithm proposed in this paper 
is based on the basic settings of the quantum generator and the classical discriminator 
to generate classical data. The structure and algorithm flowchart of this kind of QGAN 
algorithm are shown in Fig. 3.

3 � Quantum conditional generative adversarial network algorithm
The QCGAN algorithm proposed in this paper is a generative adversarial network 
model which is suitable for fitting classical data distribution, whose generation pro-
cess is controllable. The generator of QCGAN is constructed in the form of the 
parameterized quantum circuit, and the discriminator uses a classical neural network 
to complete the classification task. Different from the unconstrained QGAN algo-
rithm, the QCGAN algorithm adds conditional variables to the input of both genera-
tor and discriminator to guide the training process. The basic flow of the algorithm 
can be summarized as follows (as shown in Fig. 4): the first step is to prepare classi-
cal samples and introduce appropriate conditional constraints according to the data 
characteristics as well as the goal of generation task. These two parts are combined 
to form the training data set of the network. The classical conditional constraints, 
which reflect the statistical characteristics of the training data set, are encoded into a 
entangled quantum state through a well-designed quantum circuit. The next step is to 
construct the PQC of the generator and the classical neural network of discriminator. 
Finally, the generative distribution and the real distribution are sampled separately 

Fig. 3  Schematic diagram of quantum generative adversarial network

Fig. 4  Schematic diagram of quantum conditional generative adversarial network
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and input these data to the discriminator for classification, and then an adversarial 
strategy is formulated for training. If the objective function converges, it means find-
ing the best quantum generator. The output of the generator can be sampled to get a 
set of classical data, which is the result not only fits the target distribution but also 
meets the constraints.

3.1 � Entangled state coding of conditional information and circuit design

For the quantum scheme of CGAN, an important topic is how to input the classical 
conditional variables into the quantum generator, which involves the quantum state 
encoding of the conditional variables and the circuit design for preparing this quan-
tum state. In this paper, taking the representative category labels in the conditional 
variables as an example, the method of coding the entangled state of conditional 
information and designing corresponding circuit are explained in detail.

As shown in Fig. 4, the real data input to the discriminator are the data pairs 
(

x, y
)

 
sampled from the classical training set, where y represents the conditional variable. 
The generator obtains the representation method of the conditional variables and the 
probability distribution of various samples in the training set through 

∣

∣y
〉

 . Therefore, 
∣

∣y
〉

 is a quantum state entangled by m-categories conditional variables according to 
the probability distribution of real samples

where 1/αj =
(

p
(

x
∣

∣yj
))−1/2 , and 1/αj meets the normalization conditions: 

∑n
j=1

∣

∣1/αj
∣

∣

2 = 1.
The category labels of classical data samples used for machine learning tasks are 

generally coded by one-hot method. Assuming that three categories of data are gener-
ated, and the classical binary representations of three labels are: 001, 010, 100. Since 
the classical discriminator will perform classification processing on the generative 
distribution and the real distribution, it is most reasonable to use the same one-hot 
method to encode 

∣

∣yj
〉

 . It also happens to be similar in form to the quantum three-
particle W state, |W �3 = 1/3(|001� + |010� + |100�) . When designing a quantum cir-
cuit to prepare 

∣

∣y
〉

 , the quantum circuit of preparing a multi-particle W state can be 
used as a template, which reduces the complexity of circuit design to a certain extent.

Taking 
∣

∣y
〉

= |W �3 as an example, where m = 3 , αj =
√
3
(

j = 1, 2, 3
)

 , which means 
that the training set contains three categories of uniformly distributed data. The spe-
cific preparation process of |W �3 can be divided into two steps, and the correspond-
ing quantum circuit is shown in Fig. 5. The first step is to use a combination of single 
qubit rotation gates and CNOT gate. By adjusting the rotation angle, the qubits are 
prepared into a special state containing only three terms, i.e.,

According to the calculation rule of quantum circuit cascade, there is a equation

(3)
∣

∣y
〉

=
m
∑

j=1

1

αj

∣

∣yj
〉

,

(4)|QbQc� : |00� →
1
√
3
(|00� + |01� + |10�).
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By solving this equation, the parameters θ1 = θ3 = 0.55357436, θ2 = −0.36486383 in the 
quantum circuit can be obtained. The second step is to select the quantum gates without 
parameters to design circuit. Firstly perform the NOT gate (i.e., Pauli X gate) on |Qb� and 
|Qc� , then apply the Toffoli gate to set the |Qa� equal to |1� , when |Qb� and |Qc� equal to |1� . 
Finally, perform a NOT gate on |Qb� and |Qc� to restore the state at the end of the first 
step. After the above operations, the initial state |000� can be evolved into |W �3.

Using the one-hot method to encode the conditional information in the quantum 
state requires relatively more quantum resources, but it can reduce the workload of con-
verting the data into other encoding forms when the data is classically post-processed. 
When designing the circuit for preparing quantum state of the conditional information, 
as long as the fixed template is followed, the parameter value is obtained by changing 
the probability amplitude on the right end of Eq. 5, and the multi-class label information 
that meets any probability distribution can be expressed.

3.2 � Circuit design of quantum generator

Quantum computing forms a quantum circuit through the arrangement and combina-
tion of wires and basic quantum gates, which act on the quantum state to achieve the 
evolution of the system. The so-called parameterized quantum circuit is to choose a 
combination of parameterized quantum rotation gates and other quantum logic gates to 
constitute the circuit. Single-qubit gates are used to realize qubit rotation, while multi-
qubit gates mainly realize entanglement between qubits. Representing the quantum 
state and the quantum gate in the form of a vector and a unitary matrix, it means that 
the mathematical connotation of the quantum gate operation is linear transformation, 
which is similar to classical machine learning. In that, the roles of parameters in PQCs 
and classical neural networks are consistent.

Due to the unitary constraints of quantum gates, to generate N bits of data, 
N = Nd + Nc qubits resources are required, where Nd channels process sample data 
and Nc channels receive conditional information. For the quantum generator, the input 
|0�⊗Nd

∣

∣y
〉

 is converted into the final state |x�G
∣

∣y
〉

 after the LG layers combination uni-
tary operations, where the |x�G represents the generative distribution. Sampling the final 
state of the generator can collapse the quantum state to classical data. The quantum 

(5)EDCBA[1, 0, 0, 0]T =
1
√
3
[1, 1, 1, 0]T.

Fig. 5  The quantum circuit for preparation of three-particle W-state quantum circuit
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generator is realized by a PQC based on quantum gate computing mechanism, which 
is composed of rotation layers and entanglement layers alternately arranged. Due to the 
unitary nature of the quantum gate set, if the rotation layer and the entanglement layer 
alternately perform operations and form a sufficiently long layer sequence, any unitary 
transformation can be performed on the initial state in theory.

According to the decomposition theorem of single qubit unitary operation, a single 
rotation layer is composed of two Rz gates and one Rx gate arranged at intervals, that is 
∏N

i=1 Rz

(

θ il,3

)

Rx

(

θ il,2

)

Rz

(

θ il,1

)

 . The superscript i indicates that the quantum gate acts on 

the i-th qubit, and the subscript l indicates that the operations perform on the l-th layer. 
The matrix representations of Rx gate and Rz gate are

A single entanglement layer generally selects two-qubit controlled rotation gates (such 
as CRX, CRY, CRZ gate) and general two-qubits logic gates (such as CNOT gate) for 
permutation and combination. The arrangement of quantum gates is related to the con-
nectivity among qubits, thus affecting the expressiveness and entanglement capabilities 
of PQCs. There are three common connection topologies among qubits: circle, star, and 
all-to-all connectivity [36, 37]. For circle or star connectivity, the entanglement between 
certain qubits will not occur in a single layer, which means that more layers are required 
to fit the distribution of complex targets. This phenomenon undoubtedly increases the 
difficulty of parameters optimization. All-to-all connectivity is an ideal topology struc-
ture among qubits. Although the number of parameters of a single-layer will exceed the 
other two methods, a shallow all-to-all connectivity quantum circuit can achieve better 
generative results and the computational overhead of algorithm is cheaper.

When designing the PQC of quantum generator, it is necessary to ensure that the 
qubits are fully connected. According to the above rules, the quantum generator circuit 

Rx(θ) =
[

cos (θ/2) −i sin (θ/2)
−i sin (θ/2) cos (θ/2)

]

, Rz(θ) =
[

e−iθ/2 0

0 eiθ/2

]

.

Fig. 6  The template of quantum generator circuit
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of QCGAN is shown in Fig. 6. The “XX” in the Fig. 6 represents an operation involving 
two qubits, where any one is the control qubit, and the other is the target qubit. When 
the control qubit is |1� or |0� (specified by the operation), the target qubit is operated 
accordingly. The Nc qubits are only responsible for transmitting conditional information 
to the other Nd qubits, and continuing to pass the conditional information to the dis-
criminator in post-processing. Therefore, no rotation operation is performed on them, 
and they are only used as control qubits to affect the circuit for data generation.

3.3 � Adversarial training strategy

The training of the QCGAN is a parameter optimization quantum algorithm with a 
feedback loop. The parameters of quantum generator and classical discriminator are 
denoted by θ and φ , respectively. Similar to the classical CGAN, the objective function 
of QCGAN is

At the beginning of training, all parameters in quantum circuit and binary classification 
neural network are given random initial values. During the adversarial training process, 
the parameters of generator and discriminator are alternately optimized. The parame-
ters of the quantum generator circuit are fixed first to optimize the parameters of the 
discriminator. The discriminator simultaneously judges the randomly sampled batch 
training data and the data sampled from the quantum generator. The output value of the 
discriminator represents the probability that the corresponding input comes from the 
real distribution, and the gradient is calculated in the direction of maximizing the objec-
tive function of discriminator to optimize the parameter φ . Modifying the parameters 
of discriminator and repeating the above optimization operations, so that discriminator 
can not only learn the characteristics of real data distribution but also have the ability to 
discriminate the data from generative distribution. Then the parameters of discrimina-
tor are fixed, and the input of discriminator is only the results of the generator sampling. 
The larger the output of the discriminator, the smaller the gap between the generative 
distribution and the previously learned real distribution. In that, the gradient is calcu-
lated according to the direction of maximizing the objective function of generator to 
optimize the parameters θ . The ability of generator to fit the true distribution is continu-
ously improved by modifying the parameters and repeating the circuit on the quantum 
computing device. The alternate optimization of generator and discriminator parame-
ters must be iteratively performed until generator can reconstruct the state distribution 
of the training set.

According to the above connotation of adversarial training, Eq.  6 is decomposed into 
the unsaturated maximization objective function that generator and discriminator obeys 
respectively,

During the training process, the gradient descent method is used to optimize the param-
eters. This method needs to calculate the gradient information ∇θVGθ

 and ∇φVDφ . For 

(6)min
Gθ

max
Dφ

V (D,G) = Ex∼preal

[

logD
(

x
∣

∣y
)]

+ Ex∼pθ

[

log
(

1− D
(

xG
∣

∣y
))]

.

(7)
{

maxVDφ
= Ex∼preal

[

logD
(

x
∣

∣y
)]

+ Ex∼pθ

[

log(1− D
(

xG
∣

∣y
)

)
]

maxVGθ
= Ex∼pθ

[

log
(

D
(

xG
∣

∣y
))] .
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classical neural networks, backpropagation can be used directly to calculate the gradient 
value of the objective function effectively. But for quantum devices, only the measure-
ment results can be obtained, in that the output probability of discriminator cannot be 
directly accessed. Therefore, the gradient estimation of a parameterized quantum cir-
cuit needs to follow the theorem: for a circuit containing the parameter unitary gates 
U(η) = e−

i
2 η� , the gradient of the expectation value of an observable B with respect to 

the parameter η reads

The ��η± in Eq. 8 represents expectation value of observable with respect to the output 
quantum wave function generated by the same circuit with parameter η± = η ± 2

π
 [38]. 

This is an unbiased estimation method for the gradient of PQC. According to this theo-
rem, the gradient of the output of the discriminator with respect to the parameters θ can 
be calculated

where θ± = θ ± 2
π
ei and ei represents the i-th unit vector in the parameter state space, 

i.e., θi ← θi ± 2
π

 . In order to estimate the gradient of each parameter, every single param-
eter needs to be optimized and then evaluated repeatedly. In the case of small-scale 
numerical simulation, the wave function can be used to directly calculate the expecta-
tion value. Another method is to calculate the probability distribution based on the wave 
function, and then sample the gradient for estimation [39].

4 � Performance evaluation
In order to evaluate the performance of the algorithm proposed in this paper, the classi-
cal GAN [15] and CGAN [26], QGAN [31] and QCGAN are mainly compared from the 
perspectives of time complexity and algorithm function. The performance comparison 
of the four generative adversarial algorithms is shown in Table 1.

In the classical CGAN algorithm, the process of generator parameters optimization 
can be seen as performing gradient descent in the convex set of the normalized covari-
ance matrix of the data set to fit the real distribution. Therefore, the time complexity of 
generating data that fit the N-dimensional classical distribution is O(N 2) . In contrast, the 
time complexity of a quantum information processor to perform a linear transformation 
on an N-dimensional vector is O(N). Even if optimizing the each parameter needs to 

(8)
∂�B�η
∂η

=
1

2

(

�B�η+ − �B�η−
)

.

(9)
∂VGθ

∂θi
=

1

2
Ex∼pθ+

[

logD
(

x
∣

∣y
)]

−
1

2
Ex∼pθ−

[

logD
(

x
∣

∣y
)]

,

Table 1  Performance comparison of 4 generative adversarial network algorithms

Algorithm name GAN CGAN QGAN QCGAN

Time complexity O(N2) O(N2) O(N) O(N)

Generator resource consumption N bits Nd + Nc bits N qubits Nd + Nc qubits

Generate data type Continuous Continuous Continuous 
and discrete

Continuous and 
discrete

Whether human-center algorithm No Yes No Yes
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modify and execute the PQC twice, the calculation time complexity of QCGAN is still 
lower than that of CGAN when the same parameter optimization strategy is adopted 
(neglecting the time cost of preparing classical data into quantum states). On the other 
hand, the classical CGAN algorithm cannot directly generate discrete data due to the 
influence of differentiable constraints during parameter optimization, while QGAN can 
directly generate discrete data and also has the ability to generate continuous distribu-
tion [40]. In addition, the QCGAN algorithm proposed in this paper directly encodes 
classical data in quantum state, so its resource consumption is Nd + Nc the same as clas-
sical CGAN (where Nd is the resource consumption of generating target data, and Nc is 
the conditional information resource consumption). While the resource consumption of 
unsupervised GAN and QGAN algorithms is N, which is equal to the generative target 
data size.

Compared with unconstrained QGAN, the input of conditional information brings 
prior knowledge about the training set to the model, turning unsupervised QGAN into a 
weakly supervised or supervised adversarial learning model, thereby achieving control-
lable data generation process. The learning results of unconstrained QGAN are more 
inclined to present the average state of all data in training set. But due to adding the con-
ditional information, QCGAN will accordingly show an advantage in the fitness of the 
generated results to the real distribution. Moreover, the generator trained by QGAN is 
still purposelessly generated, which can only guarantee the authenticity of the generated 
data but cannot expand other functions. While QCGAN can achieve different purpose 
generation tasks by introducing different conditional information, which can fully reflect 
the subjective initiative of people and realize the interaction between people and algo-
rithms. It can be considered that QCGAN is a human-centered algorithm. Therefore, 
from a functional perspective, the generators trained by QCGAN have more extensive 
application scenarios and higher efficiency.

5 � Experimental
In this paper, the synthetic BAS(2, 2) (Bars and Stripes) data set is used for the experi-
ments and analyses of the classical data classification generation task. The TensorFlow 
Quantum (TFQ), an open source quantum cloud computing platform for the rapid pro-
totyping of hybrid quantum-classical models for classical or quantum data [41], is intro-
duced to realize the simulation experiments.

5.1 � BAS data set

The BAS(m, n) data is a composite image containing only horizontal bars or vertical 
stripes on a two-dimensional grid. For m× n-pixel images, there are only 2m + 2n − 2 
valid BAS images in all 2m×n cases. This defines the target probability distribution, where 
the probabilities for valid images are specified constants, and the probabilities for invalid 
images are zero. The generation goal of the experiment is the classical data of BAS(2, 2) , 
which seem to be a insufficient challenging for quantum computers intuitively. How-
ever, the effective quantum state represented by the BAS(2, 2) data set have a minimum 
entanglement entropy of SBAS(2,2) = 1.25163 and a maximum achievable entropy of 
SBAS(2,2) = 1.79248 , which is the known maximum entanglement entropy of four-qubit 
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states set [42]. Therefore, the data have rich entanglement properties and are very suit-
able as a generation target for quantum adversarial training.

The BAS(2, 2) images in the training set are divided into three categories. The horizon-
tal bar images and the vertical stripe images are respectively one category, and the image 
with pixel values of all 0 or all 1 is the other category. And the effective BAS images con-
form to the uniform distribution. According to the classification standard, the category 
labels are one-hot encoded and added to the basic data set as the conditional informa-
tion. Hence the generator require 7 qubits resources, as processing the pixel information 
of BAS data requires 4 qubits, receiving conditional information requires 3 qubits.

5.2 � Experimental setup

The codes synthesis 6000 samples to form the training set, including three categories of 
BAS data (a total of 6 valid images) that meet the above requirements and their category 
labels. During training, all data is out of order firstly, and then extracted by batch size. 
For the pre-training of the BAS data set, the discriminator and generator are alternately 
trained once in each iteration optimization. The batch size of each training is 40, and 
there are totally 100 epochs for iterative training. In each epoch, iterative training the 
network 150 times, so that the discriminator can traverse the entire training set. Con-
sidering that the improper setting of the learning rate will cause the network gradient to 
disappear/explode, setting the learning rate ×0.1 to reduce it every 10 epochs of train-
ing. The Adam (Adaptive Moment Estimation) optimizer provided by the open source 
library is introduced for both generator and discriminator, and the initial learning rate is 
set as 0.001.

Each epoch of training optimization completes, the output of generator is sampled to 
inspect the quality of the current generation distribution. The inspection mainly includ-
ing three points: 

1.	 whether the generated pixel data constitutes a valid BAS image;
2.	 whether the generated pixel data matches the conditional information;
3.	 whether the generated all data conform to the uniform distribution.

Since the training process of the adversarial network is relatively unstable, if the com-
prehensive accuracy of the above three investigation points reaches the preset threshold 
of 95% , the training process can be chosen to terminate early. If the threshold can not 
be reached all the training time, 100 epochs of alternate training are performed accord-
ing to the preset settings, and then analyze the convergence of the objective function in 
the whole training process. After that, the adversarial network can be trained again after 
reasonable adjustments to the training strategy and hyperparameters, by summarizing 
the reasons for the unsatisfactory training results.

6 � Results and discussion
In the simulation process, a series of comparative experiments are conducted on the per-
formance of the generator using circle, star, and all-to-all connected quantum circuits 
firstly. The results verified the superiority of designing an all-to-all connected topology 
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of the quantum generator in this scheme. According to the result of the comparative 
experiment, the PQC structure shown in Fig. 7 is used as the generator of QCGAN. The 
input 

∣

∣y
〉

 of the generator is |W �3 , which is prepared in advance with the circuit shown in 
Fig. 5.

The discriminator is classical so it is implemented using the classical deep learning 
framework, TensorFlow, which can form a hybrid quantum-classical model with TFQ. 
The discriminator has one input layer with dimension Nd + Nc = 7 , one hidden layer 
made up of 4 neurons and one output neuron. Since the discriminator directly judges 
the expectation value of the generator output, the hidden layer selects the linear ReLU 
activation function.

As shown in Fig. 8, in the overall trend, the loss function value of the discriminator 
gradually decreases and the loss function value of the generator gradually increases. 
After training, both the losses of generator and discriminator converge to near the 
expected equilibrium point. As the epoch of training increases, the model gradually sta-
bilizes and the relationship between generator and discriminator is more intense. So it 
shows in Fig. 8 that there is still a large oscillation around the expectation value after the 

Fig. 7  The quantum generator circuit diagram in this QCGAN experiment

Fig. 8  The discriminator (in orange) and generator (in blue) loss with respect to iterations
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convergence. This phenomenon is also related to the influence of noise on quantum sys-
tems which access through cloud platform.

After the pre-training of the BAS data set is completed, quantum generator result is sam-
pled 10, 000 times to analyze the generative distribution. The probability distribution of the 
generated data is shown in Fig. 9a. It can be seen that most of the generated data fall in 
the six valid BAS mode images, and the three categories BAS images basically conform to 
the uniform distribution with 97.15% accuracy. Figure 9b visualizes the first 100 generative 
samples in the form of pixel maps of 1, 70 and 100 epoch, which shows that the quantum 
generator gradually has the ability to generate BAS(2, 2) images after pre-training.

The parameters of quantum gates in the optimal generator are extracted after pre-
training, and then use the generator circuit shown in Fig. 7 to realize the task of generat-
ing classification images. The parameters of PQC in Fig. 5 are adjusted to set the input 
∣

∣y
〉

 as |001� , and then sample the output |x�G of generator. The result shows that two kinds 
of horizontal stripe images meet the uniform distribution, which means that the quan-
tum generator can generate data of multiple categories that meet the conditional con-
straints through the guidance of conditional information.

7 � Conclusion
Combining the classical CGAN algorithm with quantum computing ideas, this 
paper proposes a quantum conditional generative adversarial network algorithm for 
human-centered paradigm, which is a general scheme suitable for fitting classical data 
distribution. This paper gives a detailed interpretation of our design focus, including 
the configuration design of PQC as the generator, the parameter gradient estimation 
method of adversarial training strategy as well as the specific steps of the algorithm’s 
cloud computing implementation.

The effect of the QCGAN algorithm is that by adding conditional constraints 
related to the training data set in the input layer, which effectively guides the network 
to generate data that meets specific requirements. This step increases the controllabil-
ity of the generation process, but also more in line with the current human-centered 
requirements for machine learning algorithms. Compared with classical CGAN, the 

Fig. 9  2× 2 Bars-and-Stripes samples generated from QCGAN. a The final probability distribution of the 
generative BAS data. b BAS samples generated from QCGAN with different epoch (For illustrative purpose, we 
only show 10 samples for each situation)
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time complexity of the QCGAN algorithm proposed in this paper is lower, and it is 
more in line with the needs of actual application scenarios. Through experiments on 
the quantum cloud computing platform, the results show the QCGAN can generate 
the BAS data distribution effectively and the generator of QCGAN can output correct 
data guided by the conditional constraint in cloud.

Given that QGAN has the ability to generate discrete data and the potential to dig 
out data distributions that cannot be effectively summarized by classical calculations, 
QGAN and classical GAN are functionally complementary. Many known variants of 
GAN can generate very realistic images, audio, and video, in that the combination of 
these algorithms and quantum mechanics is undoubtedly the icing on the cake. Our 
future work will focus on the quantum schemes of some classical GAN variant algo-
rithms and constructing quantum machine learning algorithms that conform to the 
HCC paradigm and the corresponding cloud computing implementation.
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