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Abstract

The paper (Stefanski and Sadowski, EURASIP J. Wirel. Commun. Netw. 2018, Article 179) introduces a multilateration
algorithm for unsynchronized sensor networks. However, a very similar method has been proposed before that is not
cited. Furthermore, in the measurement model of Stefanski and Sadowski (EURASIP J. Wirel. Commun. Netw. 2018,
Article 179), an incorrect covariance matrix (Eq. (11) in Stefanski and Sadowski (EURASIP J. Wirel. Commun. Netw. 2018,
Article 179)) has been used that leads to inferior results. We summarize the context and explain the measurement
methodology proposed in Stefanski and Sadowski (EURASIP J. Wirel. Commun. Netw. 2018, Article 179), while referring
to themissing citation. Finally, we derive the correct covariancematrix of themeasurement error and demonstrate that
the covariancematrix proposed in Stefanski and Sadowski (EURASIP J. Wirel. Commun. Netw. 2018, Article 179) is incorrect.
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1 Context
Multilateration algorithms estimate the location of a tar-
get. This requires the target to actively emit electromag-
netic or acoustic signals that are then received by multiple
sensors on the ground. Based on the time of arrival (TOA)
of the target’s transmission at each sensor, the target can
be located. Because of the high propagation speed of elec-
tromagnetic signals in particular, the clocks of all sensors
must be accurately synchronized, which can be quite chal-
lenging. According to the speed of light, electromagnetic
signals travel around 30 cm in 1 ns. Depending on the
specific requirements for localization accuracy, the clock
offsets therefore must be in the order of 0.1μs, 10 ns,
or even 1 ns. In general, networks with rather low abso-
lute accuracy requirements span larger areas on the other
hand, which keeps synchronization difficult.

2 Key idea and prior work
The paper [1] presents a multilateration method for asyn-
chronous sensor networks. The basic idea is to always
use differences of TOA locally on one sensor, so the
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sensor’s individual clock offset is canceled. This principle
has first been proposed in [2], where always two trans-
missions were considered in one measurement equation.
In a follow-up publication [3], that method was extended
to combine an entire window of transmissions into one
measurement equation. Target transmission intervals are
assumed to be known, but this is just a minor issue as
the respective variables can simply be treated as additional
unknowns. Otherwise, [3] is in parts identical to [1] and
should be cited as an important reference.
Stefanski [4] also published his approach for only two

transmissions first. As an extension to that, the paper [1]
(under discussion here) now can utilize more than two
TOA in one measurement equation. For this purpose,
multiple local differences of times of arrival (L-DOTA) are
calculated by subtracting all pairs of successive TOA. As
correctly noted, this leads to a dependency of the error in
the individual lines in the measurement equation. How-
ever, unfortunately a wrong covariance matrix is stated for
these dependencies (Eq. (11) in [1]).

3 Methods
In order to derive the correct covariance matrix, we
first define a distinct notation for all occurring variables,
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i.e., positions, distances, points in time, and time dif-
ferences, which is consistent with the notation in [1].
Then we derive the measurement equation that connects
a sequence of target positions to L-DOTAmeasurements.
These measurements can be obtained by any number
of sensors, whereby the clocks of these sensors do not
need to be synchronized. Finally, using the definitions
of expected value and covariance, we derive the cor-
rect covariance matrix for said measurement equation. It
states how the individual measurements are correlated. Its
inverse should be used as a weighting matrix when solving
the system of equations for the target positions.

4 Notation
We consider a single moving target at different time steps
tMO
k , k ∈ {1, 2, . . . ,M} . The respective target positions are
denoted by

[
xk , yk , zk

]� ∈ R
3. The target emits messages

at the time steps tMO
k that propagate with uniform propa-

gation speed ν. Target transmission time intervals �tk =
tMO
k+1 − tMO

k do not need to be known beforehand. There-
fore, the target’s clock does not need to be synchronized
with any other clock, and transmissions can be periodic or
aperiodic.
A number of sensors is placed at known locations

[Xi,Yi,Zi]� , i ∈ {1, 2, . . . ,N} . After the signal propaga-
tion time ti,k , the transmission reaches the sensors. Each
sensor records the TOA tS,ik of the transmission,

tS,ik = tMO
k + ti,k ,

in terms of its own local clock. It is important to note that
theN receivers are not time-synchronized with each other
and also not synchronized with the target.
The goal is to determine the target position

[
xk , yk , zk

]�

at time steps k, based on the L-DOTA �ti,k = tS,ik+1 − tS,ik
measured by the N receivers.

5 Measurement equation
First, we state how the measured L-DOTA �ti,k is
obtained from the target transmission interval�tk and the
propagation times of the two transmissions ti,k and ti,k+1 ,

�ti,k = ti,k+1 − ti,k + �tk ,

see also Fig. 2 in [1].
The measured L-DOTA �ti,k can be multiplied with

the propagation speed ν and then interpreted as virtual
distance difference Di,k

Di,k = ν · �ti,k
= ν · (ti,k+1 − ti,k) + ν · �tk .

Furthermore, the signal propagation times ti,k and ti,k+1
by multiplication with ν become the respective Euclidean
distances between target and sensor, and their difference
then represents the distance difference of arrival di,k

di,k = ν · (ti,k+1 − ti,k)

=
∥
∥
∥
∥
∥∥

⎡

⎣
Xi
Yi
Zi

⎤

⎦ −
⎡

⎣
xk+1
yk+1
zk+1

⎤

⎦

∥
∥
∥
∥
∥∥
2

−
∥
∥
∥
∥
∥∥

⎡

⎣
Xi
Yi
Zi

⎤

⎦ −
⎡

⎣
xk
yk
zk

⎤

⎦

∥
∥
∥
∥
∥∥
2

=
√

(Xi − xk+1)2 + (Yi − yk+1)2 + (Zi − zk+1)2

−
√

(Xi − xk)2 + (Yi − yk)2 + (Zi − zk)2 ,

k ∈ 1, . . . ,M − 1 ,

resulting in

Di,k = di,k + ν · �tk , i ∈ 1, . . . ,N ; k ∈ 1, . . . ,M − 1 .
(1)

Suppose we have N = 5 sensors and M = 4 succes-
sive transmissions in 3D space (dimension D = 3), then
there are

(D · M) + (M − 1) = 15

unknowns from the M successive target positions and
M − 1 target transmission intervals. On the other hand,
there are also

N · (M − 1) = 15

measurements. We can write (1) in short form as

dp = fp(x) + qp , p = 1, . . . ,N · (M − 1) , (2)

where the dp correspond to noisy L-DOTAmeasurements
�ti,k multiplied by ν, i.e., a noisy measurement ofDi,k , and
qp is an additive random error. Looking at this in the con-
text of state estimation, the function fp(x) is the nonlinear
measurement function

fp(x) =
∥
∥∥
∥
∥
∥

⎡
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Xip
Yip
Zip

⎤
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⎡
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zkp+1

⎤

⎦

∥
∥∥
∥
∥
∥
2

−
∥
∥
∥
∥
∥
∥

⎡

⎣
Xip
Yip
Zip

⎤

⎦ −
⎡

⎣
xkp
ykp
zkp

⎤

⎦

∥
∥
∥
∥
∥
∥
2

+ ν · �tk ,

that maps the unknowns x

x =

⎡

⎢⎢
⎣

x1 x2 . . . xM−1 xM
y1 y2 . . . yM−1 yM
z1 z2 . . . zM−1 zM

�t1 �t2 . . . �tM−1 0

⎤

⎥⎥
⎦ ,

i.e., target positions and transmission time intervals, to the
L-DOTA measurements dp.

6 Covariance
We will take a closer look into that additive random error
qp now. The true expected measurement without any



Frisch and Hanebeck EURASIP Journal onWireless Communications and Networking         (2020) 2020:43 Page 3 of 4

error would be the L-DOTA�ti,k , i.e., the difference of the
recorded TOA tS,ik and tS,ik+1

�ti,k = tS,ik+1 − tS,ik . (3)

In contrast, in the actual real-world L-DOTA measure-
ment dp, the underlying real-world TOA measurements
tS,ik and tS,ik+1 have additional random errors qS,ik

1
ν
dp =

(
tS,ipkp+1 + qS,ipkp+1

)
−

(
tS,ipkp + qS,ipkp

)

= tS,ipkp+1 − tS,ipkp︸ ︷︷ ︸
�tip ,kp

+ qS,ipkp+1 − qS,ipkp︸ ︷︷ ︸
qp

.

The system of equations from (2) can be written in
vector form as

⎡

⎢
⎢
⎢
⎣

d1
d2
...

dN ·(M−1)

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸
d

=

⎡

⎢
⎢
⎢
⎣

f1(x)
f2(x)
...

fN ·(M−1)(x)

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸
f(x)

+

⎡

⎢
⎢
⎢
⎣

q1
q2
...

qN ·(M−1)

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸
q

,

d = f(x) + q .

The measurement error q is assumed to be a multivari-
ate random vector with covariance matrix

Q = E
{
(q − E{q}) (q − E{q})�

}
.

We assume the additional random errors qS,ik (and there-
fore also qp) to have a mean of 0,

E{q} = 0 ⇒ Q = E
{
qq�}

.

Now, we will derive the elements ofQ ,

[Q]p1,p2 = E
{
qp1 · qp2

} ∣
∣
∣ qp = qS,ipkp+1 − qS,ipkp

= E
{(

qS,ip1kp1+1 − qS,ip1kp1

)
·
(
qS,ip2kp2+1 − qS,ip2kp2

)}

= E
{
qS,ip1kp1+1 · qS,ip2kp2+1

}
− E

{
qS,ip1kp1+1 · qS,ip2kp2

}

− E
{
qS,ip1kp1

· qS,ip2kp2+1

}
+ E

{
qS,ip1kp1

· qS,ip2kp2

}
.

Assuming independent and identically distributed
errors

E
{(

qS,ik
)2} = σ 2 ,

we finally get the covariance matrix elements

[Q]p1,p2 = σ 2·
(

δ

([
ip1 − ip2

kp1+1 − (kp2+1)

])
− δ

([
ip1 − ip2

kp1+1 − kp2

])

−δ

([
ip1 − ip2

kp1 − (kp2+1)

])
+ δ

([
ip1 − ip2
kp1 − kp2

]))

= σ 2 · δ
(
ip1 − ip2

)

· (
2 δ

(
kp1−kp2

) − δ
(
kp1−kp2+1

) − δ
(
kp1−kp2−1

))
,
(4)

with the Kronecker delta function

δ(k) =
{
1 , k = 0 ,
0 , otherwise .

7 Results
According to (4), the covariance matrix Q is block-
wise diagonal as measurements from different sensors
ip1 , ip2 are uncorrelated. Furthermore, the local covariance
matrixQi of one sensor has the form

Qi = σ 2 ·

⎡

⎢
⎢
⎢⎢
⎢
⎣

2 −1 0
−1 2 −1

. . . . . . . . .
−1 2 −1

0 −1 2

⎤

⎥
⎥
⎥⎥
⎥
⎦

.

Equation (11) in [1] states a different and, hence, incor-
rect covariance matrix of the form

Qi = σ 2 ·

⎡

⎢
⎢
⎢
⎢
⎢
⎣

2 1 1
1 2 1

. . . . . . . . .
1 2 1

1 1 2

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

It would be the correct sensor-local covariance matrix
for a different type of L-DOTA, namely, taking time dif-
ferences to one fixed reference TOA, for example, the
earliest one,

�̃ti,k = tS,ik − tS,i1 , k ∈ 2, . . . ,M ,

instead of the L-DOTA between successive TOA (3)

�ti,k = tS,ik+1 − tS,ik , k ∈ 1, . . . ,M − 1 ,

that was also proposed in [1], see [1, Eq. (3)].
Using an incorrect covariance matrix for the solution

of the maximum likelihood problem can easily remain
undetected, as it does not always cause completely wrong
results, but it does lead to inferior results compared to
what could have been achieved with the correct covari-
ance matrix. A more detailed comparison between the
two L-DOTA types and the error caused by incorrect
covariance matrices can be found in [5].
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L-DOTA: Local differences of times of arrival; TOA: Time of arrival
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