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Abstract

Various smart connected devices are emerging like automated driving cars,
autonomous robots, and remote-controlled construction vehicles. These devices
have vision systems to conduct their operations without collision. Machine vision
technology is becoming more accessible to perceive self-position and/or the
surrounding environment thanks to the great advances in deep learning
technologies. The accurate perception information of these smart connected devices
makes it possible to predict wireless link quality (LQ). This paper proposes an LQ
prediction scheme that applies machine learning to HD camera output to forecast
the influence of surrounding mobile objects on LQ. The proposed scheme utilizes
object detection based on deep learning and learns the relationship between the
detected object position information and the LQ. Outdoor experiments show that
LQ prediction proposal can well predict the throughput for around 1 s into the
future in a 5.6-GHz wireless LAN channel.
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1 Introduction
Connected devices are improving our lives, and their roles are expanding with the

rapid enhancement of wireless communication systems [1]. Some connected devices

being developed operate autonomously such as self-driving cars, patrol robots, trans-

portation vehicles, and remote-controlled construction machines. These autonomous

operation devices need to perceive the surrounding environment by using their vision

systems to conduct their missions without trouble such as colliding with things.

Advances in deep learning technologies enable the connected devices to perceive the

environment information by using their cameras and sensors [2, 3]. The accurate

environment information thus created for is also useful for enhancing wireless

communications.

The enhancement of wireless communications is also being accelerated by demands

of greater wireless link capacities, latencies, and reliabilities [4]. The frequency of the

wireless communications is expanded to super high frequency (SHF) band (3~30 GHz)

and extremely high frequency (EHF) (30 GHz~3 THz) to obtain larger capacity [5–7].

As the radio frequency increases, the influence of the surrounding environment
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strengthens [8]. To counter the wireless link quality (LQ) variations caused by the sur-

rounding environment changes, LQ prediction plays an important role.

LQ prediction methods have been proposed to guarantee the quality of service (QoS)

in wireless communication systems. Machine learning–based LQ prediction has been

widely studied as surveyed in [9]. The network performance prediction and related

deep learning technologies for solving mobile networking problems are summarized in

[10], and the case studies and intelligent decision-making use of machine learning are

described in [11]. The prediction of channel state information (CSI) was proposed in

[10–14]. CSI is predicted by the position of the terminal, temperature, humidity, and

weather in [12]. The prediction scheme in [13] enables CSI estimation with minimal

pilot overhead. The CSI yielded by massive numbers of antennas was used to predict

the channel statistical characteristics in millimeter wave (mmWave) environments in

[14]. Xu et al. [15] showed that the future network performance could be predicted by

using the appropriate metrics in major cellular networks. Wei et al. [16] focused on the

transportation mode of the holder of the smart phone and predicted throughput by

using the moving history. The LQ related to autonomous connected devices has been

studied for connected vehicles [17] and unmanned aerial vehicles (UAVs) [18]. Yang et.

al. [17] proposed resource management to realize ultra-reliable and low-latency wireless

communication for connected vehicles, and Almeida et al. [18] proposed a quality of

service estimator using UAV base station positions and user traffic demand. Since these

works do not consider the influence of the surrounding objects, the LQ change caused

by large mobile objects such as trucks cannot be predicted.

To consider surrounding mobile objects, LQ prediction based on cameras and sen-

sors was studied in [8, 19–21]. RadMAC in [8] used radar to detect human obstacles

and switched the beam pattern of 60-GHz channel in a 4.65 m × 5.95 m room, and

Wang et. al. [19] proposed the mmWave beam prediction by using receiver location

and surrounding vehicles. Papers [20, 21] proposed machine learning–based LQ predic-

tion using depth cameras in a 60-GHz channel, and the LQ degradation created by hu-

man body blocking was predicted for a transmitter and receiver pair separated by 4 m.

Although the impact of mobile objects has been studied in UHF channels, the mobile

objects impact LQ even in microwave channels such as SHF. Since SHF has wider ser-

vice areas than UHF band, the vision system must recognize mobile objects in wider

regions.

Object detection technologies have been advanced significantly thanks to deep neural

networks [22, 23]. The precision accuracy and inference speed of object detection have

been improving every year, and many significant reports are now available. The typical

object detection output is the object bounding-box with classification result. The object

bounding-box indicates the position and size of a rectangular area delineating an object

in the image. Classifications are derived from annotated images, and some detection

algorithms also output confidence scores.

Autonomous connected devices have driven advances in object detection perform-

ance. Therefore, we present an LQ prediction scheme that uses the vision-based

advanced object detection methods. The LQ prediction proposal uses object bounding-

boxes and their classification provided by advanced object detection algorithms. Experi-

ments using HD cameras and wireless LAN systems are conducted in an outdoor envir-

onment, and LQ prediction performance is evaluated by using the relationship between
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the object bounding-box information and the throughput of SHF channels (5.6 GHz).

The LQ prediction proposal consists of two-step machine learning: the first step is ob-

ject detection using deep learning and the second step uses random forest regression to

predict the future LQ.

The key contribution of this paper is to introduce the two-step LQ prediction that

can take advantage of subsequent advances in object detection algorithms and yield ex-

plainable AI results by using the bounding-box information. It is confirmed that vision-

based LQ prediction can accurately predict the throughput 1 s into the future in low-

SHF channels (5.6 GHz) by using HD camera images captured in an outdoor environ-

ment in which various moving objects were present; the distance between the transmit-

ter and receiver is 42 m.

The rest of this paper is organized as follows. Section 2 describes the target region of

the vision-based LQ prediction and the system model. Section 3 details the LQ predic-

tion process. Section 4 shows the outdoor experiment setup. Section 5 details the per-

formance evaluation results and the discussions, and Section 6 concludes this paper.

2 System model
To satisfy the various requirements posed by wireless access services, LQ variation

should be predicted and countered as needed. LQ prediction is one foundation technol-

ogy of advanced wireless access management. The base station (BS) communicates with

the terminal-connected devices by wireless access, such as IEEE 802.11, long-term evo-

lution (LTE), and 5G. The LQ of the wireless access is determined by various factors,

which are categorized into two parts: communication network and radio-wave propaga-

tion condition. The communication network factors include the transmission power,

transmission beamforming, traffic, interference, modulation scheme, and error correc-

tion code. Their relationship with LQ has been well studied, and LQ can be improved

by advanced signal processing. The other aspect is the radio-wave propagation condi-

tion between the transmitter and receiver. We separate the radio-wave propagation

condition into three categories: surrounding mobile objects, static environment, and

connected device status. The factors of static environment and connected device status

such as position have been studied by papers [24, 25]. The remaining factor, the influ-

ence of the surrounding mobile object, was the last piece to achieve advanced wireless

access management based on the accurate LQ prediction.

The target radio frequency is important in considering the LQ prediction. Oguma et.

al [20] proposed LQ prediction for the millimeter wave communications by using depth

cameras. However, LQ prediction for the wireless systems in SHF is needed because

the major wireless systems are being operated in SHF. In SHF wireless systems, the ser-

vice area is likely be greater than that of the millimeter wave wireless systems and the

influence of the mobile object varies widely depending on the size, movement, and type

of the mobile objects. The object type denotes the category of the object such as car,

truck, and person. The object detection algorithms that use the vision information ob-

tained by the cameras and sensors are promising to provide accurate information of

the surrounding mobile objects. The state-of-art object detection achieves accurate and

real-time operations. In this paper, we used the leading object detection algorithms,

M2Det [26] and YOLO v3 [27], and these algorithms can process each frame in less

than 100 ms.

Kudo et al. EURASIP Journal on Wireless Communications and Networking        (2020) 2020:207 Page 3 of 21



Since the movement of a physical object does not change in periods of the order of

milliseconds, the vision-based object detection is expected to be used to predict LQ

with lead time of around 1 s. Such a lead time allows negative changes in LQ to be

countered effectively. The connected device switches to an expensive but more robust

wireless link only when the predicted LQ degradation is excessive. Since Lauridsen

et al. [28] showed that when transferring from the idle state to connected state in LTE

networks the round trip time of ping packets can be several hundreds of milliseconds,

long-term LQ prediction is attractive. In the other approach, the data-rate of the video

streaming service is decreased to avoid fatal errors such as monitoring video freeze.

Furthermore, this might, in combination with position information, yield enhanced

movement control of the autonomous robot to optimize LQ.

In this paper, we consider that the wireless environments around connected devices

are recognized using the images obtained by cameras and sensors, and the LQ of wire-

less communication can be estimated using the recognized environmental information.

Thus, we define our problem as accurately estimating the LQ about 1 s into the future

by using past images taken by cameras. To simplify the scenario, we use a fixed trans-

mitter and a fixed receiver with a dedicated wireless channel between them. In this sys-

tem model, the wireless channel is disturbed by mobile objects and the objects are

found in the camera images. The target LQ at timing t are taken to be L[t]. The camera

image images, Ω[t0], are obtained from the images at the current timing t0 and past

timings. The relationship between target LQ and the image features is denoted by

introducing function fI as follows,

L t½ � ¼ f I Ω t0½ �ð Þ ð1Þ

From the viewpoint of machine learning, our problem is to construct function fI,

given training dataset (L[t], Ω[t0]).

3 LQ prediction method
Figure 1 shows the structure of the proposed LQ prediction. The proposal uses two-

step machine learning: the first step realizes the object detection, and the second step

predicts the LQ using the bounding-box information, which consists of the object cat-

egory, position, and size in the processed image. The object detection block provides

the bounding-box information of the surrounding objects by using vision information

Fig. 1 Proposed two-step LQ prediction. The first object detection block uses the deep learning–based
object detection algorithm, and the second LQ prediction block determines the future LQ from the
bounding-box information
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from cameras and pre-trained object models. The second machine learning block pre-

dicts the future LQ, L[t], using the LQ model and the bounding-box information. The

LQ model and the bounding-box information are the function fI and camera image fea-

tures Ω[t0] in Eq. 1. The object model for the first block and the LQ model for the sec-

ond block were pre-trained by using the MS COCO dataset [29] and the measured

dataset of (L[t], Ω[t0]), respectively. In this paper, random forest regression is used to

implement the second machine learning.

The benefits of the proposal are that it allows us to take advantage of subsequent ad-

vances in object detection algorithms and that we can understand what condition alters

the LQ in the environment. The detection precision of object prediction using camera

images is improving continually [23], and novel object detection schemes are expected

to emerge in the future. Since the object bounding-box is used to measure object detec-

tion performance [23], it is expected that the future object detection algorithms will

also provide the object bounding-box information and this approach allows us to bene-

fit from future enhancements in object detection. LQ prediction must have explainable

features to encourage the development of the technologies. By using the object

bounding-box information, what condition impacts the LQ can be evaluated. Further-

more, we can separately consider the performance of the object detection block and

the LQ prediction block.

3.1 LQ definition

This paper takes normalized throughput as LQ to focus on the LQ variation caused by

the surrounding mobile objects. The downlink throughput was measured using User

Datagram Protocol (UDP) traffic with full buffer condition. The throughput at timing

ti, R[ti], was obtained every ΔT, (ti − ti−1 = ΔT) as the bit rate from ti−1 to ti,

R ti½ � ¼ 1
ΔT

X
ti − ΔT<t ≤ ti

B t½ �; ð2Þ

where B[t] is the bit amount of the UDP packets successfully received at timing t. To

focus on dynamic throughput changes, the normalized throughput, ~R½ti�, is defined as

~R ti½ � ¼ R ti½ �
Median R t½ �ð Þ

ti − TA ≤ t<ti

; ð3Þ

where Median() denotes the function that calculates the median value and TA is the

averaging time window (set to be greater than ΔT). Since the measured throughput

contains extremely low values but with at very low probability, we adopt the median

value instead of averaging to alleviate the influence of outliers. ~R½ti� (i > 0) is used as

the LQ, L[t], in Eq. 1. To consider the LQ prediction performance corresponding to the

difference between the target LQ timing and the current timing, the lead time, TF, is

defined as TF = ti − t0. In this paper, the time interval for the normalized throughput,

ΔT, and the averaging time window, TA, are set to 0.5 [s] and 30.0 [s], respectively.

Thus, the target normalized throughputs with the lead time, TF, of 1.0 and 1.5 [s] are

given by ~R½t2� and ~R½t3�, respectively.
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3.2 Object detection

The first machine learning block outputs detected object categories and object

bounding-box information. Figure 2 shows the generation of object bounding-box in-

formation in the time domain. The object bounding-box acquisition timing is assumed

to be asynchronous to LQ acquisition timing. Thus, term tn,m is defined as the m-th ob-

ject bounding-box acquisition timing in the time window from tn to tn + 1. The time

interval of object bounding-box acquisition, Δτ = tn,m − tn,m−1, is set to 0.1 [s].

The object bounding-box information consists of object category, detection reliability,

position, and size. Figure 3 shows an example of the object bounding-box data as gath-

ered in the outdoor experiment. We can see that mobile objects are detected by rect-

angular bounding-boxes. The positions and sizes were obtained as

φχ; j tn;m
� � ¼ Xχ; j tn;m

� �
;Zχ; j tn;m

� �
;W χ; j tn;m

� �
;Hχ; j tn;m

� �� �
; ð4Þ

where the term χ denotes the object class defined in MS COCO dataset, the term j is

the object serial number belonging to the same object class, and {Xχ,j[tn,m], Zχ,j[tn,m],

Wχ,j[tn,m], Hχ,j[tn,m]} are, respectively, x-axis position, z-axis position, width, and height,

of the j-th object of the object class, χ, at the timing tn,m. In this paper, object class χ

consists of “car,” “bus (truck),” and “person.” Since the observed number of “truck” was

only two in the experiments, “truck ” was merged into “bus” class. The object class, “all,

” which contains “car,” “bus,” “truck,” and “person” object classes, is defined to evaluate

the effectiveness of object detection. The performance of the LQ prediction using the

bounding-box information of the object class “all” corresponds to using bounding-box

information without the object categories.

Since the object detection block provides several object bounding-boxes for the same

object, the overlapped objects are deleted by using the Intersection over Union (IoU),

which is given by

Fig. 2 Diagram of object bounding-box information and the time intervals for Δτ = ΔT/5. The object class
is distinguished, and the object bounding-boxes are tracked by using Intersection over Union (IoU)
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IoU ¼ Aintersection

Aunion
; ð5Þ

where Aintersection and Aunion are the overlapping area and total area of the bounding-

boxes, respectively. To track the same object over consecutive timing intervals, IoU for

the past 2 frames were calculated, and objects whose IoU is greater than 0.6 are recog-

nized as the same object. The more recent object recognized as the same object is

assigned the same serial number as the earlier object. Since all combinations of the

bounding-boxes are checked by Eq. 5, it is not possible for the same object to belong to

several categories.

Since the object bounding-box information includes a reliability score that ranges

from 0 to 1.0, we chose the objects whose reliable scores are greater than threshold Sre-

cog. Increasing threshold Srecog reduces the number of detected objects. Although higher

thresholds prevent misrecognition, the detect detection can be delayed. The numbers

of the object class χ was defined as Nχ, which depends on the object detection algo-

rithm and threshold Srecog.

3.3 Object bounding-box information as input features

Since the throughputs are obtained every ΔT, the object bounding-box information is

translated to use as input features for the LQ prediction block. Since the time interval

of the object bounding-box acquisition, Δτ, is shorter than that of the LQ acquisition,

the bounding-box features, Φχ,j[tn], are calculated as median values of the positions and

sizes of the object bounding-boxes for LQ acquisition timing between tn − 1 and tn.

Φχ; j½tn� ¼ f~Xχ; j½tn�; ~Zχ; j½tn�; ~W χ; j½tn�; ~Hχ; j½tn�; g
¼ fMedian

tn − 1<t ≤ tn
ðXχ; j½t�Þ; Median

tn − 1<t ≤ tn
ðZχ; j½t�Þ; Median

tn − 1<t ≤ tn
ðW χ; j½t�Þ; Median

tn − 1<t ≤ tn
ðHχ; j½t�Þg

ð6Þ

Furthermore, the delta-value bounding-box features, ΔΦχ,j and Δ′Φχ,j, are also calcu-

lated to consider the velocity of the mobile objects. ΔΦχ,j and Δ′Φχ,j are given by

Fig. 3 The obtained image and detected object bounding-boxes. a one-truck, one-car, and one-person
case; b four-person case; c one-bus and one-person case; and d one-car and one-person case
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ΔΦχ; j½tn� ¼ fΔXχ; j½tn�;ΔZχ; j½tn�;ΔW χ; j½tn�;ΔHχ; j½tn�g

¼ fXχ; j½tn − 1;β� − Xχ; j½tn − 1;α�
tn − 1;β − tn − 1;α

;
Zχ; j½tn − 1;β� − Zχ; j½tn − 1;α�

tn − 1;β − tn − 1;α
;
W χ; j½tn − 1;β� −W χ; j½tn − 1;α�

tn − 1;β − tn − 1;α
;
Hχ; j½tn − 1;β� −Hχ; j½tn − 1;α�

tn − 1;β − tn − 1;α
g;

ð7Þ
Δ0Φχ; j tn½ � ¼ Δ0Xχ; j tn½ �;Δ0Zχ; j tn½ �;Δ0Wχ; j tn½ �;Δ0Hχ; j tn½ �� �

¼
~Xχ; j tn½ � − ~Xχ; j tn − 1½ �

ΔT
;
~Zχ; j tn½ � − ~Zχ; j tn − 1½ �

ΔT
;
~W χ; j tn½ � − ~W χ; j tn − 1½ �

ΔT
;
~Hχ; j tn½ � − ~Hχ; j tn − 1½ �

ΔT

( )
;

ð8Þ

where ΔΦχ,j[tn] is the delta value of the object bounding-box information between tn −

1 and tn, the timings tn − 1,α and tn − 1,β are the first and last acquisition timing of the

bounding-box information in the time region tn − 1 < t ≤ tn, and Δ′Φχ,j[tn] is the delta

values of (Φχ,j[tn] − Φχ,j[tn− 1]). ΔΦχ,j can be obtained when there are at least two pieces

of object bounding-box information between t− 1 and tn, and Δ′Φχ,j requires the object

bounding-box information in the previous time slot tn − 1. In Fig. 2, ΔΦper,2[t0] and

Δ′Φper,2[t0] are calculated as (φper,2[t− 1,4] − φper,2[t− 1,1])/(3Δτ) and (Φper,2[t0] − Φper,2[t

− 1])/ΔT, respectively. The terms α and β for ΔΦper,2[t0] are 1 and 4, respectively, since

the object bounding-box information of the second person object was not observed at t

− 1,0. Δ′Φχ,j corresponds to a longer time average than ΔΦχ,j.

3.4 LQ prediction block

The second machine learning block predicts the future LQ by using the object

bounding-box information. In this paper, the random forest regression with 500 deci-

sion trees is used to evaluate the LQ prediction performance. The input features for

the LQ prediction block, Ω[t0], were chosen from the bounding-box features Φχ,j[tn],

ΔΦχ,j[tn], and Δ′Φχ,j[tn], where n ≤ 0. The LQ model fI in Eq. 1 is pre-trained by using

the dataset of (~R½ti�, Ω[t0]), and the future normalized throughput is given by

R̂ ti½ � ¼ f I Ω t0½ �ð Þ: ð9Þ

In random forest regression, the output of function fI is obtained as an average of

outputs of 500 decision trees. The prediction error, E[ti], is defined as

E ti½ � ¼ ~R ti½ � − R̂ ti½ ��� ��; ð10Þ

where |A| denotes the absolute value of A.

For performance comparison, the prediction performance of the LQ prediction using

past LQ features, Θ[t0], which are chosen from the past normalized throughput infor-

mation ~R½tn� ðn≤0Þ , is also evaluated. The relationship between the target normalized

throughput and the past normalized throughputs is pre-trained as function fL by using

dataset (~R½ti�, Θ [t0]), while the relationship between the target normalized throughput

and both bounding-box information and past normalized throughputs is also pre-

trained by using datasets ( ~R½ti� , {Ω[t0], Θ[t0]}) as function fI&L. The prediction errors

are evaluated by the predicted normalized throughputs fL(Θ[t0]) and fI&L(Ω[t0], Θ[t0]).

4 Experiment and dataset
The experiments evaluated the LQ prediction performance in an actual outdoor envir-

onment. The major parameters are shown in Table 1. The throughputs in 5.660-GHz
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channels were measured in IEEE 802.11 ac [30]. No interference signals were observed

in this environment. The bandwidth was set to 20MHz. The normalized throughput, ~R

½tn�, was measured every 0.5 ms (ΔT = 0.5 s), and time interval for image acquisition, Δτ

, was set to 0.1 s, which corresponds to 10 frames per second (FPS). Figure 4 shows a

photo of the connected device. The environment surrounding the connected device

was captured by 2 HD cameras with fisheye lens, providing a 360° view. The cameras

and laptop PC with LQ measurement function were set at 1.2 m and 0.4 m height, re-

spectively. A map of the experiment environment is shown in Fig. 5. A road and side-

walk lay between the connected device and the base station, separated by 42m, and

vehicles and pedestrians passed through the area.

Figure 6 shows examples of the images captured and the coordinate system. The ob-

ject was detected by the object detection block, and the object bounding-box informa-

tion was used in the LQ prediction block. The ranges of the x-axis and z-axis were set

to from − 1 to 1 and from 0 to 1, respectively. To evaluate LQ prediction performance

in the event of surrounding mobile objects, we defined an object transit event. In this

paper, the output of the object detection block was used as the dataset to evaluate the

LQ prediction performance in the LQ prediction block. The object transit event is the

timing at which some object was detected in the transit window with the x-axis bound-

aries of − 0.15 to 0.35, see Fig. 6. The dataset for the LQ prediction block was generated

at the transit event timing, which is the period from 5 s before the transit event to 5 s

after the transit event for all objects: “car,” “bus (truck),” and “person.” The vehicle

event and person event correspond to the transit event timing of vehicle-related objects

(“car” and “bus (truck)”), and people (“person”), respectively. By using the dataset, we

generated the LQ model and evaluated the LQ prediction performance.

4.1 Dataset and LQ prediction performance evaluation

The dataset for the LQ prediction block totaled 3490 s of data, containing transit events

of 288 cars, 20 buses/trucks, and 36 persons. The vehicle-event data totaled 3061.5 s,

while the person-event data held 976 s. The dataset includes 547.5-s data corresponding

to both vehicle event and person event. LQ prediction performance was evaluated by

the metric of k-cross validation. The dataset was divided into 10 parts, and 9 of tenths

were used for training to generate the LQ model. LQ prediction was conducted using

the remaining one-tenth dataset.

Table 1 Outdoor experiment parameters

Wireless systems IEEE 802.11 ac

Radio frequency 5.660 MHz

Frequency bandwidth 20 MHz

Link quality indicator Normalized throughput (every 0.5 s)

Antenna height of connected device 0.4 m

Distance from the base station 42m

Camera High-definition camera (1920 × 1080 pixel)

Frames per second 10

Lens Focal distance: 1 mm (fisheye)

Camera height 1.2 m
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4.2 Measured normalized throughput

The cumulative distribution functions of the normalized throughput, ~R½ti�, of all-transit-event
timing, vehicle-event timing, and person-event timing are shown in Fig. 7. We can see that

the distribution is far from Gaussian; this is considered to be due to the moving objects. The

probabilities of the normalized throughputs falling below 0.8 were 0.113, 0.105, and 0.280 for

Fig. 4 A photo of the developed connected device in the experiment environment. The base station is
located in the line-of-sight

Fig. 5 Outdoor environment for the experiment. The distance between the base station and terminal was 42m;
its horizontal distance and the height offset were 41m and 9m, respectively. The road is uphill from left to right
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all event, vehicle event, and person event, respectively. Since the time when the moving per-

sons affect the normalized throughput is longer than that caused by the vehicles because of

their low moving speed, they have high probability of low normalized throughput.

4.3 Object detection and object bounding-box

M2Det in 2019 [22] and YOLO v3 in 2018 [23], which are used as the object detection

block in Fig. 1, are state-of-the-art detectors based on deep neural networks. The image

processing speed and average precisions of M2Det are stated to be 30 ms and 37.6 in

[22], while those of YOLO v3 are 51ms and 33.0 in [23]. The average precision of the

object detection denotes the detection performance, and M2Det has better performance

than YOLO v3. Both object detectors output object bounding-boxes, their categories,

Fig. 6 The view from the connected device and the x-axis and z-axis definition

Fig. 7 CDFs of the normalized throughputs of all-event dataset, vehicle dataset, and person dataset for
5.6-GHz channel

Kudo et al. EURASIP Journal on Wireless Communications and Networking        (2020) 2020:207 Page 11 of 21



and reliability scores. We used the bounding-box information whose reliability score is

greater than the threshold value, Srecog. Thus, the number of detected objects depends

on Srecog. Table 2 shows the maximum number of objects detected by M2Det [26] and

YOLO v3 [27] for several threshold values, Srecog. We checked the maximum number

of objects by watching the video, and the number of the maximum numbers of “car,”

“bus (truck),” and “person” were 2, 1, and 4, respectively. Therefore, the large number

of the detected objects means the object detection block generated unnecessary

bounding-boxes. We can see the object number increases as the threshold was set to

be low. We can see that the error of the detected number becomes 1 or 0 when the

threshold Srecog is 0.5 and 0.8, respectively, for M2Det and YOLO v3.

4.4 Feature importance evaluation

Since the LQ prediction block uses the object bounding-box information to predict the

LQ, the relationship between the elements of Φχ,j[t0], ΔΦχ,j[t0], and Δ′Φχ,j[t0] and LQ

was studied using the feature importance of random forest regression [31]. The random

forest regression used 500 decision trees, and the normalized throughput with the lead

time TF of 1.0 [s] and 1.5 [s], ~R½t2� and ~R½t3� , were used as target parameters. Φχ,j[t0],

ΔΦχ,j[t0], and Δ′Φχ,j[t0] were generated by M2Det with Srecog of 0.5. The number of in-

put features from Φχ,j[t0], ΔΦχ,j[t0], and Δ′Φχ,j[t0] was 132, where Ncar, Nbus, and Nperson

were 4, 2, and 5, respectively. Figure 8 shows a summation of the feature importance

corresponding to the object categories, and the bounding-box component elements, in

the dataset. The object “bus (truck)” has the highest importance among the objects.

The largest metallic structure has the biggest impact on the normalized throughput.

Among the bounding-box information, the x-axis position has the largest weight since

all objects came from left to right or from right to left. The feature importance of

ΔΦχ,j[t0] and Δ′Φχ,j[t0] depends on TF. When TF is 1.0 [s], ΔXχ,j and ΔHχ,j in ΔΦχ,j[t0]

were the largest among ΔΦχ,j[t0] and Δ′Φχ,j[t0]. However, Δ′Xχ,j and Δ′Hχ,j of Δ′Φχ,j[t0]

became the largest for TF = 1.5 [s]. This means that the instant information is needed

to accurately predict the near future condition, and the accuracy of the delta is more

important for predictions with greater lead times.

Figure 9 plots the feature importance for the target normalized throughputs with TF

of 1.0 [s] when the vehicle event and person event were picked up from the dataset.

The feature importance of boundary-box features in the vehicle event was similar to

that of the all-event dataset, and the x-axis information is the most important. In the

person event, height information Hχ,j is more important than the x-axis position, Xχ,j.

This is because the width information of people is unstable compared to that of the ve-

hicle. People with their arms spread wide are detected as large width structures, and

the x-axis position can be biased.

Table 2 Maximum number of recognized objects (“car,” “bus (truck),” and “person”)

Threshold, Sobject M2Det YOLO v3 Manually counted

0.1 19 cars, 4 buses, 19 persons 8 cars, 4 buses, 14 persons 2 cars, 1 bus, 4 persons

0.3 3 cars, 2 buses, 5 persons 3 cars, 2 buses, 8 persons

0.5 2 cars, 2 buses, 4 persons 2 cars, 2 buses, 4 persons

0.8 2 cars, 2 buses, 4 persons 2 cars, 1 bus, 4 persons
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4.5 Input feature set for LQ prediction block

The input feature sets for LQ prediction block were generated by

ΩBB t0½ � ¼ Φχ; j t0½ �� �
where χ∈ “car”; “bus truckð Þ”; “person”f g and 1≤ j≤Nχ ; ð9Þ

ΩBBA t0½ � ¼ Φχ; j t0½ �� �
where χ∈ “all”f g and 1≤ j≤N all; ð10Þ

ΩBV t0½ � ¼ Φχ; j t0½ �;ΔXχ; j t0½ �;ΔHχ; j t0½ �;Δ0Xχ; j t0½ �;Δ0Hχ; j t0½ �� �
where χ∈ “car”; “bus truckð Þ”; “person”f g and 1≤ j≤Nχ :

ð11Þ

ΩBB[t0] is the basic boundary-box information set of the objects, “car,” “bus (truck),”

and “person.” The feature number is given by 4 × (Ncar + Nbus + Nperson). ΩBBA[t0] is

the boundary-box information with single object class “all.” The feature number is 4 ×

Nall. ΩBV[t0] is the advanced boundary-box information that contains the delta values,

ΔXχ,j, ΔHχ,j, Δ′Xχ,j, and Δ′Hχ,j where χ ∈ {“car”, “bus (truck)”, and “person”}. ΔZχ,j,

ΔWχ,j, Δ′Zχ,j, and Δ′Wχ,j, were not used because of their low feature importance.

Fig. 8 Feature importance of Φχ,j[t0], ΔΦχ,j[t0], and Δ′Φχ,j[t0] for TF of 1.0 and 1.5 [s]

Fig. 9 Feature importance of Φχ,j[t0], ΔΦχ,j[t0], and Δ′Φχ,j[t0] for TF of 1.0 in the vehicle event and person event
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As conventional LQ prediction approach, past LQ information use [15] was also eval-

uated. The input feature set of current and past LQ information is given by

ΘTH t0½ � ¼ ~R t0½ �; ~R t − 1½ �; ~R t − 2½ �; ~R t − 3½ �; ~R t − 4½ �; ~R t − 5½ �� �
; ð12Þ

where ~R½t − 5� corresponds to 2.5 s past normalized throughput. The effectiveness of

the past feature use is discussed in Section 5.3. Furthermore, the input feature set for

the combination of the object bounding-box and past LQ was also generated as

ΩBVT t0½ � ¼ ΩBV t0½ �;ΘTH t0½ �f g ð13Þ

4.6 Calculation complexity in LQ prediction block

The computation time of LQ prediction block was evaluated by using the all-event

dataset of 3490 s. The training dataset ( ~R½ti�;ΩBB[t0]), which consists of 3141 s (nine

tenths of all the data), is used to construct function fI, and the predicted throughput

data R̂½ti� is calculated by using the remaining 349-s data (one-tenth of all the data). It

takes 0.51 s to provide the normalized throughput ~R½ti� for a 349-s data by using the

LQ model. One-second bounding-box information can be processed in 1.4 ms by ran-

dom forest regression. This shows that the dominant computation load of the two-step

LQ prediction proposal is the object detection block. Regarding the training computa-

tion load for LQ model, it takes 218 s to generate function fI by using the training

dataset.

5 Results and discussion
5.1 LQ prediction in time domain

The normalized throughput was predicted by using the input feature set, ΩBV[t0], pro-

vided by M2Det with Srecog of 0.5 and TF of 1.0 [s]. Figure 10 shows the measured and

predicted throughput in the 5.6-GHz channel for the 500-s dataset, and the red solid

line and black dashed line correspond to the predicted throughput and actual through-

put, respectively. If the prediction is perfect, the lines overlap. The timing of the objects

being present in the transit window shown in Fig. 6 is indicated as horizontal stripes.

The yellow and blue stripes indicate the transit events of vehicles and persons; they

were detected by M2Det with Srecog = 0.3. The threshold setting and dependencies on

the object detection algorithms are discussed in Section 5.5. Figure 10 shows that the

throughput degradation of the 5.6-GHz channel was predicted by using the 1 s past

boundary-box information. In particular, the vehicle-related throughput degradation

was more clearly predicted than people movement. This is because vehicle movement

was stable over time while the people walking around the terminal changed movement

speed and body position more freely.

5.2 CDF of the prediction error

Figure 11 shows the CDFs of the prediction errors for the 5.6-GHz normalized

throughput with TF = 1.0 [s] using the input feature set, ΩBB, ΩBBA, ΩBV, ΩBVT, and

ΘTH. The object bounding-boxes were detected by M2Det with Srecog of 0.3. The num-

bers of input features of ΩBB, ΩBBA, ΩBV, ΩBVT, and ΘTH were 52, 32, 104, 110, and 6,

respectively. Figure 11 a and b show the CDFs of the prediction errors for the
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probability range from 0 to 1.0 and 0.8 to 1.0, respectively. The distribution from 0 to

80% in CDF mainly corresponds to the timing when the moving object does not affect

the LQ while that from 80 to 100% denotes that the moving object does impact the

LQ. The horizontal distribution at 99.99% value of the CDF denotes the LQ change

which cannot be predicted by using the proposed LQ prediction. Since Fig. 7 shows

that about 20% of the normalized throughputs of the all-event dataset are degraded by

the mobile object, the highest 20% of the prediction error (80 to 100%) is considered to

correspond to the LQ degradation caused by the mobile object. Thus, we focus on the

90% value of the CDF of the prediction error as the middle value between 80 and

100%. Figure 11 a shows that the prediction performance using ΩBVT has the best per-

formance and the median value of ΩBVT is 49.3% less than that of ΘTH. Figure 11 b

shows 90% values of ΩBVT and ΩBV were 31.1% and 31.9% less than those of ΘTH. The

prediction performance using ΩBV was slightly better than that using ΩBVT at 90% out-

age. This indicated that past LQ information did not contribute to the prediction

performance for the 5.6-GHz channel with TF = 1.0 [s] when ΩBV was available. The

90% outage values of ΩBB and ΩBBA were 19.5% and 13.3% less than those of ΘTH, re-

spectively. Thus, the object classification improves 6.2% at 90% value (ΩBB over ΩBBA),

and the delta value information improves 12.4% (ΩBV over ΩBB). Figure 11 c and d

show the CDFs of the prediction errors corresponding to vehicle event and person

event, respectively, for the range from 0.8 to 1.0. In the vehicle event (c), the 90% out-

age values for ΩBVT and ΩBV were 31.6% and 31.4%, respectively, less than those for

ΘTH. In the person event (d), the 90% outage values for ΩBVT and ΩBV were 16.2% and

20.3%, respectively, less than those for ΘTH. This suggests that LQ prediction is more

effective for vehicle transit events than for person transit events. In the person event,

Fig. 10 The predicted throughput using ΦBV[t0] and the actual normalized throughput, ~R½t2� for TF = 1.0 [s].
The blue and yellow horizontal strips denote the person passing event timing and vehicle passing event
time, respectively

Kudo et al. EURASIP Journal on Wireless Communications and Networking        (2020) 2020:207 Page 15 of 21



the accuracy of the LQ prediction using ΩBB and ΩBBA was less than that of ΘTH-based

LQ prediction, and the prediction error using ΩBB was greater than that using ΩBBA.

This is caused by the shortage of training data of person transit event. Considering all

objects as a single category in ΩBBA yielded more efficient training of the LQ prediction

model in the second machine learning block for our datasets.

5.3 Past information use

LQ prediction performances with past information was evaluated for the lead time TF

of 1.0 [s] by using M2Det with Srecog of 0.3. In this evaluation, the input feature set

from t0 − Tpast to t0 was used. Thus, the lines of ΩBV and ΘTH denote LQ prediction

performance with {ΩBV[t0], …, ΩBV[t0 − Tpast]} and {~R½t0�, …, ~R[t0 − Tpast]}. The num-

bers of input features of ΩBV and ΘTH were 104, 208, …, 624, and 1, 2, …, 6, for Tpast

of 0, 0.5, …, 2.5 [s], respectively. Figure 12 shows that LQ prediction using past LQ in-

formation improved the prediction performance while the past bounding-box informa-

tion yielded no improvement. This shows that the latest object bounding-box

information is the most important features in predicting LQ.

5.4 Lead time dependency

The prediction performance against lead time TF was evaluated by using M2Det with

Srecog of 0.3. Figure 13 a, b, and c plot the 90% values of LQ prediction with ΘTH, ΩBV,

and ΩBVT versus TF for all-transit events, vehicle events, and person events, respect-

ively. Although the prediction error with ΩBV increases as TF becomes large, the rate of

degradation in LQ prediction performance with ΩBV and ΩBVT was gentle and the

Fig. 11 CDFs of the prediction error using the input feature sets for TF of 1.0 [s]. a CDF in the range from 0
to 1.0 for all-event dataset, b CDF in the range from 0.8 to 1.0 for all-event dataset, c CDF in the range from
0.8 to 1.0 for vehicle event, and d CDF in the range from 0.8 to 1.0 for person event
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prediction error for TF of 2.0 [s] was much better than that with ΘTH for TF of 1.0 [s].

We can see that old LQ information was less effective for lead times greater than 1 s

since there was no advantage to using ΩBVT rather than ΩBV.

5.5 Impact of detection threshold and algorithm

The proposed LQ prediction adopts the two-step machine learning, and each machine

learning block must prepare its own model. Since the pre-trained model has much

higher training cost than the prediction phase, the dependencies on the object detec-

tion model and detection threshold setting must be evaluated. If the relationship be-

tween the bounding-box information and the LQ depends on the detection algorithm

and threshold setting, the second LQ prediction block must prepare all combinations

to cover all possible object detection algorithms and threshold settings. The resulting

computation load for training will be significant. On the other hand, if the dependency

on object detection algorithms and threshold setting is not critical, the prediction

model of the second machine learning block can be common and it is also expected

that the second machine learning block can be developed independently by using the

bounding-box information. Furthermore, it is also important to confirm that better ob-

ject detection algorithms will enhance the LQ prediction performance. Therefore, the

impact of the object detection algorithm used and threshold Srecog was evaluated to

confirm that the proposal can take advantage of advances in object detection

algorithms.

The bounding-box information was generated by using M2Det and YOLO v3 with

Srecog values of 0.1, 0.3, 0.5, and 0.8, and 8 all-event datasets were generated for the

input feature set ΩBV. Eight all-event datasets were divided into 10 sub-datasets to con-

duct the k-cross validation and duplicated for 10 test sub-datasets and 10 training sub-

datasets. Then, 9 of the training sub-datasets were used as the training data to make

the LQ prediction model, and the normalized throughput was determined for the

remaining one of the test sub-datasets, which corresponds to different timing.

Fig. 12 The 90% values of prediction error CDF when past information was used
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Table 3 shows the 90% outage value of the prediction error corresponding to all the

combination of the object detection algorithm pairs. Since 90% absolute error of LQ

prediction with old LQ information was 0.183, some of the combinations were worse

than that with ΘTH. We can see that M2Det with Srecog of 0.8 for training and M2Det

with Srecog with 0.1 for test provided bad prediction performances, and the same algo-

rithm combination with Srecog of 0.3 and 0.5 provided the best performances. Although

almost all combinations outperformed LQ prediction with the old LQ information,

using the same algorithm for training and test yielded better performance than using

the different algorithms for test and training. Since M2Det has better detection

Fig. 13 The 90% values of CDFs of the absolute prediction error for lead time TF. a All-transit event,
b vehicle event, and c person event
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accuracy than YOLO v3, the best 90% error of M2Det (Srecog of 0.3) is better than that

of YOLO v3 (Srecog of 0.5). This shows that the LQ prediction scheme can take advan-

tage of advances in object detection algorithms if the LQ prediction model is updated

by using the advanced object detection algorithms.

The averaged values of each column and row are also listed in Table 3. The averaged

prediction error for training sub-datasets decreases as Srecog is set to a lower value. On the

other hand, the detection accuracy becomes more important for the prediction phase.

The averaged prediction error for the test sub-dataset shows that Srecog of 0.5 yielded the

lowest error for both M2Det and YOLO v3. When training the LQ prediction model,

many mobile objects should be used even if the misrecognition number increases.

6 Conclusion
This paper presented a wireless link quality prediction scheme that uses the two-step ma-

chine learning; the first machine learning block realizes object detection while the second

block predicts the future LQ using bounding-box information. Although the structure is

simple, the proposed LQ prediction can well predict throughputs with lead times of more

than 1 s. Proof of concept experiments were conducted in 5.6-GHz WLAN channels, and

the relationship between the type of passing object and its impact of measured throughput

was shown. Performance evaluation in the 5.6-GHz channel clarified the dependency on

the future time, the input feature sets, and the advantages compared to LQ prediction

based on the past throughput information. By using the object bounding-box information,

the 90% values of the absolute prediction error in the proposed LQ prediction were 31.1%

less than those of the LQ prediction using past LQ information. By using the LQ predic-

tion, the connected device side can recognize the surrounding environment precisely. So

far, wireless management techniques have been developed on the network side as in LTE

and 5G because the network side can monitor the data traffic and obtain various types of

information. The network side has much more abundant information than the terminal

side, while the connected device wins in terms of freshness of obtained information. The

vision of the smart connected devices is expected to be one of keys for raising the next-

generation wireless systems to a whole new level of service.

Table 3 The 90% value of absolute error with ΩBV using different object detection algorithm and
threshold
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