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Abstract
Underwater wireless sensor networks (UWSNs) have played an increasingly important
role in the fields of ocean exploration, underwater environmentmonitoring, underwater
navigation target tracking, terrain-assisted navigation, and so on. However, UWSNs are
a dynamic network, which are unlike terrestrial wireless sensor networks, and the
complexity of underwater environment poses many challenges for the positioning of
sensor nodes. Aiming at the difficulty of location update, this paper proposes a UWSN
positioning technology based on iterative optimization and data position correction
(IO-DPC). Firstly, particle swarm optimization technology is used to perform the rough
positioning stage of sensor nodes, and iterative optimization is performed for many
times. Then, data position correction work is carried out, and a scheme is designed for
correcting underwater sensor data position when base station receives the data packet.
An underwater ocean current model is established, and IO-DPC technology is simulated
in various underwater simulation environments. Experimental results show that IO-DPC
technology has higher positioning accuracy than other traditional technologies.
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1 Introduction
In recent years, with the development of marine engineering and underwater commu-
nication technology, underwater wireless sensor networks (UWSNs) have been widely
used in marine environment monitoring, marine biological research, disaster forecast-
ing, auxiliary navigation, resource exploration, and military purposes [1, 2], which have
attracted the focus of researchers. In order to collect accurate data for these applications,
UWSNs use a variety of sensors andmobile vehicles, such as unmanned underwater vehi-
cles (UUV), autonomous underwater vehicles (AUV), surface beacons, and ships [3, 4].
However, UWSNs still face many challenges, including high transmission delay, limited
available bandwidth, large propagation loss, the time-varying multipath effect is serious,
and the energy of sensor nodes is limited [5, 6], etc., which makes underwater positioning
more challenging.
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Similar to terrestrial wireless sensor networks (TWSNs), UWSNs are composed of fixed
nodes with known locations and ordinary nodes with unknown locations. Communica-
tion and collaboration between sensor nodes is the key to achieving self-localization of
nodes [7]. However, UWSNs are a dynamic network, which are unlike TWSNs. In most
UWSN positioning methods, positioning system communicates by considering the num-
ber and density of nodes deployed, the limited energy between nodes, the speed of water
flow, and the presence of obstacles in the water [8, 9]. Due to the large number and density
of UWSN nodes deployed, base station cannot accurately obtain the location information
of all nodes. Therefore, the location information of sensor nodes needs to be obtained
by accurate positioning technology. In order to provide accurate location information to
system users, beacon nodes need to transmit their own location information and data
information received from their neighbor nodes. In the process of communication, sen-
sor nodes must determine their own position before transmitting data to their neighbors;
therefore, these nodes must be self-locating. In underwater environment, the static net-
work positioning scheme needs to run regularly so as to update locations of sensors in
real time, which leads to high positioning system overhead and high sensor power loss
[10, 11].
In view of the complex underwater positioning environment, we have carried out

a lot of research and found that position coordinates are only useful at discrete time
point in applications such as environmental monitoring. Therefore, the sensor will report
its observation data to base station periodically, which has greatly reduced the cost
of positioning system while maintaining the positioning accuracy [12, 13]. Based on
the above problems, we designed a positioning technology based on iterative optimiza-
tion and data position correction (IO-DPC) in underwater wireless sensor networks.
Instead of relying on continuous self-positioning of sensors, the stage of base station
correcting data position is added when the packets are received. The data period of
IO-DPC can be expanded by multiples. On the basis of assuming clock synchroniza-
tion between nodes, time of arrival (ToA) technology is used to send data packets
containing transmission time information from one node to another to achieve point-
to-point timing transmission. The positioning process of IO-DPC is divided into two
parts: the rough positioning stage of sensor nodes and the position correction stage of
observation data. The rough positioning stage is performed by the node itself, and the
observation data position correction and positioning stage is performed by base sta-
tion. Performance simulation shows that IO-DPC has higher positioning accuracy and
lower communication cost than other schemes. The contributions made by this article are
as follows.

1. In view of the disadvantages of dynamic networks in underwater sensor networks,
using position-aware data, an underwater positioning technology based on iterative
optimization and data position correction (IO-DPC) is designed.

2. IO-DPC is simulated in the established ocean current model; the performance
analysis is carried out in positioning errors, positioning coverage, and other aspects
and compared with other systems. Experimental results show that the proposed
method has better improvement in positioning precision.

The rest of the article is organized as follows. Related works are introduced in Section 2.
Section 3 introduces the network architecture and data model structure of IO-DPC. The
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positioning stage of IO-DPC is introduced in Section 4. Section 5 conducts experimental
simulation and result analysis. Section 6 gives conclusions and future research work.

2 Related works
Each node deployed in the underwater sensor network has proper functions, such as
wireless communication with neighbor nodes, data sensing, storage, and processing. At
present, underwater sensor network positioning algorithms can be classified as follows
[14, 15].
Centralized positioning and distributed positioning [16]. In centralized positioning,

the central base station is used to calculate the location of unknown nodes, while in
distributed positioning, sensor nodes need to perform self-positioning, and nodes will
transmit information to each other to estimate their location. Zhou et al. [17] proposed
an underwater positioning scheme based on node prediction. Buoys were arranged on the
sea surface, and buoy coordinates were used for trilateration or the mobility prediction
algorithm was run to estimate the position of anchor node. Zhu et al. [18] proposed a col-
laborative positioning scheme that used an anchorless node method. Node coordination
can autonomously determine its position without using surface buoys or ships. Initially,
all nodes were positioned by GPS, but the coverage and accuracy of positioning depends
on trajectory of the node to be measured, which is not suitable for large-scale underwa-
ter wireless sensor positioning networks. Mirza et al. [19] used the relationship between
data and location to implement the corresponding application program through central
base station in post-processing stage. Sensor node collected the distance estimation data
between itself and its neighbors, and then sent all data to central station for offline pro-
cessing. Iterative algorithms were used to obtain the position information of nodes. But
its positioning time was long and the receiver energy loss was large.
Range-based and range-free positioning technology [20]. Firstly, range-based position-

ing systems will use TDoA, ToA, AoA, or RSSI techniques to estimate the distance or
angle from ordinary nodes to anchor nodes. Then, apply polygon method or triangu-
lation method to convert the range to different coordinates. On the other hand, the
range-free based positioning algorithm queries local topology and location estimates of
sensor nodes, which are estimated from the positions of nearby anchor nodes and sen-
sor nodes [21]. Biao et al. [22] proposed a TDoA estimation algorithm for underwater
acoustic targets of micro-underwater positioning platforms. The core technology is to
find acoustic target of sensor array in the sparse signal representation model. This solu-
tion can be applied to both narrowband and broadband underwater scenarios. Yan et al.
[23] used distance estimation as a response variable so as to solve the closed-loop problem
of underwater target positioning, which combined the high-noise physical characteris-
tics of underwater field with the mobility of nodes. According to the control theory, a
proportional integral calculator for sensor nodes was manufactured to obtain the dis-
tance information of nodes through indirect estimation. Lee et al. [24] proposed a mobile
beacon-based range-free positioning scheme for UWAN, which used mobile beacons to
compensate for the problem of low positioning accuracy, and used geometric feature
estimation to determine the final position of candidate nodes.
Cheng et al. [25] proposed an underwater positioning scheme (UPS) based on robust

quadrilateral constraints. This method used four BNs to locate one UN, which is
suitable for static water environment. UPS used TDoA technology to solve the time
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synchronization problem, which can be seen as an expansion of three-dimensional under-
water environment under the two-dimensional model. However, this method is not
suitable for large underwater networks. Erol et al. [26] designed a Dive‘N’Rise beacon and
proposed a DNR localization method. DNR is an underwater network positioning algo-
rithm based on distributed location estimation, which has high positioning coverage and
accuracy. However, due to the slow movement of sensor nodes, the nodes which near
bottom have a long delay.
The existing UWSNs positioning techniques reviewed above combine centralized posi-

tioning with distributed positioning, based on range and range-free positioning. Based on
the defects in the above positioning technology, this paper designs a positioning technol-
ogy based on iterative optimization and data position correction (IO-DPC) in UWSNs.
Based on the defects in the above positioning technology, IO-DPC adopts the range-based
positioning scheme and uses a hybrid centralized and distributed method. The position
of the sensor nodes in the rough positioning stage is calculated by themselves. Data posi-
tion in the precise positioning stage is calibrated by base station to decrease the energy
loss of nodes. The positioning accuracy is improved without increasing communication
overhead and power consumption of sensor nodes.

3 Design of IO-DPC system structure
In view of the complexity of underwater environment, the problems of excessive posi-
tioning error, long positioning time, and large energy loss caused by underwater dynamic
network, this paper proposes a UWSN positioning technology based on iterative opti-
mization and data position correction (IO-DPC). In this section, the design scheme
of IO-DPC system is described, which includes network architecture and data model
structure.

3.1 Network architecture

The network architecture of IO-DPC system is composed of 4 parts, as shown in Fig. 1,
which includes base station, water surface buoys, beacon nodes, and sensor nodes.
Base station is used to collect and correct packets transmitted through surface buoy.

Water surface buoys are the nodes deployed on the sea surface, and their actual position
can be obtained through GPS signals. Beacon nodes will communicate with water surface
buoys through the GPS smart buoy system and obtain their locations [27, 28]. Therefore,
it is assumed that the positions of buoys and beacons in this paper are absolutely precise.
Their main function is to assist sensor node positioning and data transmission through
sensor nodes. Sensor nodes are those that are unable to communicate directly with buoys
due to constraints such as distance, but they can contact with beacon nodes to evaluate
their own location. Some sensor nodes that have passed the message and obtained the
calculated position can further help other unknown nodes to estimate their positions.
The presets of IO-DPC system are as follows. Firstly, all nodes are initially synchro-

nized in time in IO-DPC system. Secondly, time synchronization is combined with node
positioning on each node [29]. Initially, only water surface buoy and beacon nodes can
use GPS system to fix their position. And all sensor nodes are functionally the same.
In order to avoid data packet conflicts, all nodes are separately transmitted at the data
packet transmission rate per second according to Poisson distribution. For a given num-
ber of n beacon nodes, the collision-resistant packet scheduling [30] is used to achieve
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Fig. 1 Network architecture of UWSNs

the expected probability of successful self-location. At the same time, the number of data
packets and the minimum positioning time can be determined. In order to avoid broad-
cast storms, the sensor node can only broadcast the data packets it observes. Then, the
received data packet is forwarded to reference node, and the reference node is updated at
intervals.

3.2 Data packet format and data structure

In IO-DPC system, base station depends on the position information stored in received
data packet and the information of neighbor nodes to perform position correction. In
order to get a better balance between the capacity of data packet and the amount of
positioning information, we made changes to data packet format as shown in Fig. 2.

(a) “Observing Nodes ID” stores the information of observed data of sensor nodes, and
data packet will be broadcasted to base station.

(b) “Observed Database” stores the data information observed by sensor nodes in each
cycle. In the actual positioning process, we set sensors to observe the data
periodically.

(c) “Location Database” stores the locations of observation nodes.
(d) “Observation Time” is defined as the time when the observation data is received. It

is assumed that sensor will broadcast the data packet immediately after observing
the data [31].

(e) “First Received ID” is defined as the ID of the first node that received data packet
among those neighbor nodes that stored in the packet.
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Fig. 2 Improved format of data packet

(f) “First Receive Time” stores the time when the “First Receive ID” received from data
packet.

In all UWSN applications, the four fields, (a), (b), (c), and (d), are indispensable. This
paper improves the existing data format. Two fields, (e) and (f ), are added to correct the
data position so as to obtain more accurate positioning results.
After several data transfers, the data will be grouped and sent to base station. Then, base

station classifies the received data packets according to “Observation Time,” and these
data packets with the same or close to the “Observation Time” will be classified into the
same group.
As shown in Table 1, this example groups the received data packets whose “observa-

tion time” is the second moment, when the number of data packets reaches saturation
or reaches a predetermined time of data transmission, base station will initiate the data
position correction.
Figure 3 shows the structure of the packet grouping in Table 1. The data information of

sensor nodes and beacon nodes is in the same data packet. The “data transmission node”
and “data receiving node” in the packet are adjacent to each other. We represent them as
node a and node b and use a set of undirected edges to represent their relationship in the
data structure diagram of IO-DPC.

3.3 IO-DPC data initialization

Assuming that the nodes are clock synchronized, the ToA technology is used to send data
packets between nodes and include the information of transmission time. The calculation
of the transmission distance is shown in Eq. (1).

dToA = v × �tToA (1)

Table 1 Packets are grouped at the second “observation time”

Observation node ID Observed database Location data Observed time First received ID First received time

4 . . . (58, 34) 2 1 2.0072

4 . . . (58, 34) 2 2 2.0023

4 . . . (58, 34) 2 3 2.0056

5 . . . (41, 40) 2 3 2.0076

6 . . . (42, 30) 2 7 2.0035

7 . . . (38, 37) 2 8 2.0066

8 . . . (40, 28) 2 6 2.0039

9 . . . (51, 27) 2 1 2.0067

9 . . . (51, 27) 2 2 2.0071

9 . . . (51, 27) 2 4 2.0078

9 . . . (51, 27) 2 6 2.0056

9 . . . (51, 27) 2 8 2.0023
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Fig. 3 The packet structure diagram corresponding to Table 1

where v denotes the acoustic velocity in sea water, v = 1500m/s , and �tToA represents
arrival time. However, there is a transmission delay of sound waves in seawater and the
transmission rate is constantly changing. The transmission delay makes the distance error
larger measured by ToA. Equations (2) and (3) describe the relationship between the
authentic distance and the distance measured by ToA.

dToA = dreal × ξ (2)

ξ = dreal × N
(
ρ, σ 2) (3)

where dreal represents the true distance between two sensor nodes, ξ represents the error
between Gaussian distribution simulation and the distance measured by ToA, ρ indicates
positional parameter, and σ indicates scale parameter.
Each node in IO-DPC data structure diagram is an entry in the packet grouping table.

In the initial rough positioning stage, in each self-positioning period Pself , the position of
node by self-positioning will be set as the position of data packet. The confidence of the
position of the data packet in each data observation period Pdata is set to 1/(1+T), where
T is the time of receiving observation data, and the range of T is 0 to Pself /(Pdata − 1).
With the increase in positioning time and energy consumption during data transmis-
sion, Pself will even be a multiple of Pdata, so the accuracy of positioning will decrease
accordingly. The ID of the two neighbor nodes are respectively represented as aid and
bid ; dToA (aid, bid) represents the ToA distance between nodes and their neighbors. Its
confidence coefficient c (aid, bid) is shown in Eq. (4).

c (aid , bid) =
{
0, dToA(aid, bid) > R
1 − dToA(aid ,bid)

R , otherwise
(4)

where R indicates the communication radius of nodes.Whenmeasured distance is greater
than R, the confidence coefficient of ToA distance is 0, because it is unreasonable that the
measured distance greater than communication radius.
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As shown in Eq. (5), the Euclidean distance dEuc(a, b) between neighboring nodes of
“data transmission node” and “data reception node” is calculated according to the posi-
tions of the two nodes; dEuc(a, b) will be updated when the position of data package has
been updated.

dEuc(a, b) = dEuc(b, a) =
√

(a1 − b1)2 + (a2 − b2)2 + · · · + (ai − bi)2 (5)

For example, B1, B2, and B3 are beacon nodes in Fig. 4, and their position coordinates are
B1 (58.26, 28.86), B2 (54.36, 32.40), and B3 (52.36, 41.86). Their confidence is 1, because
the position of the beacon node is known, so it is considered to be very accurate. The list of
their neighbors is empty because they do not need other nodes to correct their positions.
In this example, the data observation period Pdata is set to 1. Since the self-localization
time of the last sensor is 0 and the observation time of data packet is the second time, the
confidence of data packet position is 0.33. The neighbor nodes of node 9 include node 1,
node 2, node 4, node 6, and node 8. Node 1 first received the data packet at time 2.0066.
In this case, we set the communication radius to 13. Therefore, the ToA distance between
node 1 and node 9 is 9.900, and the confidence coefficient of ToA distance is 0.238.

4 Positioning phase of IO-DPC
IO-DPC positioning technology proposed in this paper includes two parts: rough posi-
tioning stage performed by the node itself and data position correction stage performed
by base station.

4.1 Rough positioning of sensor nodes

4.1.1 Particle swarm optimization

Particle swarm optimization (PSO) algorithm [32] is a simulation of simplified swarm
agent model. The algorithm can make particles fly to the solution space and land at the
best position to get the optimal solution. PSO algorithm selects the number of initial
random particles to bem, and each particle represents a solution. Each particle has posi-
tion and velocity information and an adaptive value determined by objective function to
judge the particle quality. It is supposed that the absolute position coordinate of the ith
particle is Xi = [xi1, xi2, · · · , xim] and the velocity is vi = [vi1, vi2, · · · , vim]. In each itera-
tion, particles update themselves by tracking the individual optimal solution Ibest and the

a b

Fig. 4 The shift vector is determined in two cases. a dToA(Naux , refid) > dEuc(Naux , refid). b
dToA(Naux , refid) < dEuc(Naux , refid)
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global optimal value Gbest . When these two optimal values are found, particles update
their speed and position according to Eqs. (6) (7) (8).

vij(k + 1) = ω · vij(k) + ϕ1γ1
[
Sbest − xij(k)

]
(6)

xij(k + 1) = xij(k) + vij(k + 1), j = 1, 2, · · · ,m (7)

ωk = ωmax − iter (ωmax − ωmin) /itermax (8)

where ω denotes the inertial weight, and iter represents the number of iterations. ϕ1
represents learning factor, and γ1 is the random number between 0 and 1.

4.1.2 Iteration

The optimization starts from common nodes around the initial beacon node. If there
are three or more optimized nodes or initial beacon nodes around a certain node, the
optimization of positioning of this node can be achieved. When a node is located and
optimized, it is converted into a localized beacon node to participate in the optimization
of positioning of other nodes. This process is followed by iteration until all nodes have
been optimized or the number of nodes that have not been optimized no longer increases.
If there are not more than three beacon nodes around, it cannot be optimized. After all
other nodes are located and optimized, redetect the number of optimized points around
nodes that have not been optimized. If there are three or more, it will be located according
to the above method, and less than three cannot be located.

4.2 Data packet position correction

4.2.1 Search for auxiliary nodes

When a node’s confidence coefficient is less than the specified threshold, the node will be
considered as a correctable candidate node. As the number of candidate nodes increases,
base station will select one of them to determine whether it is eligible to become an aux-
iliary node Naux. For example, in the example shown in Fig. 4, base station will first select
node 9 because it has enough neighbors. Base station calculates the credibility of each
neighbor of node 9. The credibility is calculated by Eq. (9), and the four most reliable
neighbors can be quickly selected as the reference node refid.

credibility = cpos (bid) ∗ cToA (aid, bid) (9)

In order to check whether these reference nodes are trusted enough to modify position of
the data package, base station recalculates confidence coefficient of the corrected node 9
of the reference node according to Eqs. (10) and (11).

cpos(Naux) = 1
4

∑ [
cpos(refid) ∗ (1 − α) + cToA(aid, refid) ∗ α

]
(10)

α = cToA(aid, refid)
cpos(refid) + cToA(aid, refid)

(11)

where α represents the adjustment parameter; it is the weight used to adjust the confi-
dence coefficient of ToA distance. When the measured distance is more precise, the value
of α is greater than 0.5. System uses the average confidence coefficient of three reference
nodes as the confidence coefficient of Naux and calculates the position of Naux according
to the three reference nodes.
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If the value of cpos (Naux) is greater than cpos(refid), the node will be defined as an aux-
iliary Naux; the position will be calculated according to the scheme introduced in the
following portion. If not, the base station will skip the node, re-select the other candidate
for calculation, and use the recursive method to select auxiliary node. When there is no
candidate node, the recursive selection of auxiliary nodes will be stopped. Table 2 shows
the results of selecting auxiliary nodes.

4.2.2 Calculate the location of auxiliary node

IO-DPC uses Eq. (12) to calculate the displacement vector of auxiliary node.

−→Vi = α ∗ (
dToA

(
Naux, refid

) − dEuc
(
Naux, refid

)) ∗
−−−−−−−→(
refid,Naux

)
∣
∣
∣
∣
−−−−−−−→(
refid,Naux

)
∣
∣
∣
∣

(12)

where α represents the adjustment parameter, which has been given in Eq. (11). The
determination of shift vector also requires the following two cases.

i. When ToA distance between auxiliary node and reference node is greater than its
Euclidean distance [33], that is, dToA

(
Naux, refid

)
> dEuc

(
Naux, refid

)
. As Fig. 4a

shows, under the circumstances, auxiliary node 9 will be shifted in the direction
shown in the figure.

ii. When ToA distance between auxiliary node and reference node is less than its
Euclidean distance, that is, dToA

(
Naux, refid

)
< dEuc

(
Naux, refid

)
. As Fig. 4b shows,

on this occasion, auxiliary node 9 will be shifted to a position closer to its reference
node (node 6).

According to the above method, each reference node around the auxiliary node will
generate a shift vector. The position of the auxiliary node Naux after data correction is
denoted as N ′

aux. As shown in Fig. 5, also taking node 9 as an example, the position after
data correction is determined by the total force of the three displacement vectors shown
in Fig. 5. It is computed according to Eq. (13).

−−→
N ′
aux = −−→Naux +

∑ −→Vi (13)

When there are no candidate nodes in positioning system, the average and variance of
the confidence coefficient of all nodes will be calculated at this moment.Whenmean vari-
ance of cpos (aid) is less than the set threshold θc, the process of data position correction of
IO-DPC has been completed. Table 3 shows the final results of data position correction.

4.3 Ocean current model

In UWSNs, sensor nodes will move with ocean currents, which affects the accuracy of
positioning. Ocean currents have the characteristics of continuously changing movement

Table 2 Auxiliary node screening results

Naux bid dToA(aaux , bid) c(aaux , bid) dEuc(aaux , bid) Credibility Reference node

1 9.900 0.238 5.382 0.202 Auxiliary node

2 10.653 0.181 10.980 0.118 Auxiliary node

9 4 11.710 0.099 7.156 0.016 None

6 8.382 0.355 8.253 0.087 Auxiliary node

8 3.451 0.735 9.050 0.192 None
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Fig. 5 Results of data position correction of the auxiliary node

speed and semi-periodic motion, and their motion characteristics are correlated in space
and time [34], as shown in Fig. 6. Therefore, the ocean current model is used to describe
the motion of nodes.
Considering that there are many factors that affect the movement of ocean currents

in seawater and the positioning process is complicated, therefore, underwater motion
model is difficult to establish. The ocean current motion model used in the literature
[35] is adopted here. It is assumed that underwater acoustic nodes are only affected by
jet and vortex flow, and they only move with the current in the same flat. The speed of
node movement is continuously changing. The node motion model is shown by Eqs. (14)
and (15).

�(x, y, t) = -tanh
[

y − D(t)sin(q(x − ct))
√
1 + q2D2(t)cos2(q(x − ct))

]

(14)

D(t) = E + μcos(� t) (15)

Table 3 Results of data position correction

aid Location data cpos(aid) bid dToA(aid , bid) c(aid , bid) dEuc(aid , bid)

1 (58.26, 28.86) 1 N/A N/A N/A N/A

2 (54.36, 32.40) 1 N/A N/A N/A N/A

3 (52.36, 41.86) 1 N/A N/A N/A N/A

1 10.800 0.169 9.281

4 (57.36, 34.96) 0.78 2 3.450 0.735 3.569

3 8.400 0.354 10.340

9 11.730 0.098 11.427

5 (41, 40) 0.33 3 11.350 0.126 14.756

7 5.280 0.594 7.068

6 (42, 30) 0.33 8 5.800 0.554 2.182

9 8.580 0.340 3.650

7 (38, 37) 0.33 6 5.260 0.595 7.102

8 9.820 0.245 8.046

6 3.420 0.737 4.300

8 (40, 28) 0.33 7 5.780 0.555 2.256

9 9.820 0.245 8.046

1 9.900 0.238 8.562

2 10.653 0.181 9.196

9 (46.28, 29.56) 0.66 4 11.710 0.099 11.406

6 8.382 0.355 10.338

8 3.451 0.735 4.358
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a

b

Fig. 6 Relationship between coastal velocity and time. a East-west velocity. b North-south velocity

where q indicates the number of jets per unit length, c indicates the angular velocity,
D(t) represents the width of ocean current, E represents the average width, μ denotes the
amplitude of modulation, and � denotes the frequency of modulation.

5 Experimental and simulation analysis
5.1 Experimental deployment

The performance evaluation of IO-DPC system is carried out in this section. The exper-
imental parameters are shown in Table 4. The area of the simulated experimental scene
is 120m × 120m × 120m. The number of buoy nodes, beacon nodes, and sensor nodes
deployed in the experimental area are 25, 50, and 425 respectively. The average data cal-
culation time of 500 nodes is about 3 s, communication radius is 23 m, data observation
period is set to 1 s, and the threshold is set to 0.001. It can be seen from the existing
underwater ranging technology that the measured distance between nodes is subject to
average value as actual distance. The normal distribution with a standard deviation of 2%
of the actual distance is reasonable [36]. The result of the experimental simulation is the
average value of 100 simulation experiments. The smart device used for the experiment
is Lenovo G50-80, Intel (R) Core (TM) i5-5200U.
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Table 4 Experimental environment and ocean current parameter settings

Parameter settings Values Parameter settings Values

Experimental area 120m × 120m × 120m Confidence threshold 0.98

Number of buoys 25 Average width 1.2

Number of beacon nodes 50 Angular velocity 0.12

Number of sensor nodes 425 Number of jets per unit time π/4

Communication radius 23m Amplitude of modulation 2,3,4,5

Data observation period 1s Frequency of modulation 0.5

5.2 Experimental results and analysis

5.2.1 Positioning error

Figure 7 shows the experimental results of positioning errors varying with the modula-
tion amplitude in ocean current model over 10 data observation periods. In the process of
experimental simulation, the self-positioning period is set to 10 times of data correction
period, so as to measure the cumulative results of positioning errors within 10 periods.
For the parameters of ocean current model, we set the amplitude of modulation to 2, 3, 4,
and 5 respectively. At this time, the corresponding ocean current velocities are 0.92 m/s,
1.68 m/s, 2.06 m/s, and 3.32 m/s respectively. It can be seen from the results that errors
will accumulate with the increase of data observation period. And the meander width
of ocean current model will increase as the modulation amplitude increases. The move-
ment speed of sensor node will gradually increase, and the density of nodes will gradually
decrease. Therefore, the positioning error becomes an increasing trend. However, in four
cases, the errors within 10 cycles are controlled within the range of 0.85R. It indicates that
the positioning performance of IO-DPC technology is relatively good.

Fig. 7 Change of positioning error with current amplitude during 10 periods
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5.2.2 Location coverage

Location coverage indicates the proportion of positioned nodes to all nodes, with ζ =
npos/n×100%, where npos indicates the number of ordinary nodes that have been located,
and n denotes the number of all ordinary nodes. Figure 8 shows the experimental results
of location coverage varying with the modulation amplitude in ocean current model over
10 data observation periods. It can be seen that with the increase of meandering width
of ocean current, the moving speed of sensor nodes gradually increases. The density of
nodes gradually decreases, so the location coverage shows a decreasing trend. However,
the location coverage of the nodes in the four cases is controlled above 98%. It shows that
the stability of IO-DPC technology is high.

5.2.3 Proportion of beacon nodes

We compared the influence of proportion of beacon nodes on positioning error in 10
periods by taking the beacon nodes at initial experimental deployment as a reference. The
simulation results are shown in Fig. 9. In ocean current model, the modulation amplitude
is set to μ = 5. It can be seen that the more beacon nodes, the smaller positioning error
and the higher positioning accuracy. For example, when beacon nodes account for 10%
of total nodes, the cumulative positioning error in 10 periods is about 0.9R, and when
beacon nodes account for 20%, the cumulative positioning error is about 0.65R. It shows
that in sparse underwater wireless sensor networks, we can increase positioning accuracy
by increasing the proportion of beacon nodes. For all range-based underwater position-
ing technologies, positioning accuracy will increase as the proportion of beacon nodes
increases. However, when the number of beacon nodes reaches saturation, adding too
many beacon nodes will lead to the increase of communication cost.

Fig. 8 Change of location coverage with current amplitude during 10 periods
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Fig. 9 Change of positioning error with the proportion of beacon nodes in 10 periods

5.2.4 Iteration

Four iterations are set for IO-DPC system. Figure 10 shows the position estimation results
under different iteration times. (a) reflects the positioning result when the number of iter-
ation is 1, (b) reflects the positioning result when the number of iteration is 4. The number
of iterations can continue to increase, but it will lead to an increase in workload, so 4 iter-
ations is optimal in this experiment. It is found that the average estimation error obtained
is dynamic after four iterations, and the average positioning error is about 0.07R–0.15R.
The positioning accuracy has been significantly improved after iterative optimization.

a b

Fig. 10 Position estimation results at different iteration times. a The number of iterations is 1. b The number
of iterations is 4
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5.2.5 Comparisonwith other systems

IO-DPC technology was compared with two other typical technologies: large underwa-
ter network localization scheme (LSLS) [37] and underwater layered localization scheme
(LSHL) [38]. In the simulation experiment, the self-positioning period of the node is
set to 2 times of data correction period. Figures 11 and 12 clearly show the impact of
nodemigration on positioning performance and communication cost in underwater wire-
less sensor networks. The simulation results show that positioning errors of all schemes
increase with the increase of node moving speed. IO-DPC corrects the position of data
packets more accurately and reduces the communication cost. This is because the data
position correction of IO-DPC is performed on base station. Therefore, the time for
sending positioning information is extended, thereby reducing the communication cost.

6 Conclusion
Aiming at the complex underwater dynamic positioning environment and the message
propagation delay, excessive positioning error, and excessive positioning time caused
by the mobility of sensor nodes, this paper proposed an underwater wireless sensor
network localization method based on iterative optimization and data position correc-
tion (IO-DPC), which compensated for the deviation of distance estimation caused by
the continuous self-positioning of nodes. Firstly, the particle swarm optimization algo-
rithm was used to carry out self-positioning of nodes in the rough positioning stage,
and multiple iteration optimization was performed. Then, ToA technology was used to
achieve point-to-point timing transmission of data packets on the basis of assuming clock
synchronization between nodes. Finally, after receiving the data packet containing posi-
tion information of node’s self-positioning, the data position correction was performed

Fig. 11 Comparison of positioning error between IO-DPC and the other two technologies
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Fig. 12 Comparison of average communication cost between IO-DPC and the other two technologies

by base station. In addition, an ocean current model was designed to test the perfor-
mance of IO-DPC in different underwater simulation environments. Experimental results
show that IO-DPC has higher positioning accuracy and lower communication cost than
other schemes, which verifies the effectiveness of IO-DPC. Future research will consider
simulation in an obstacle space with irregular underwater activities.
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