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Abstract

Human-computer interaction under the cloud computing platform is very important,
but the semantic gap will limit the performance of interaction. It is necessary to
understand the semantic information in various scenarios. Relation classification (RC) is
an import method to implement the description of semantic formalization. It aims at
classifying a relation between two specified entities in a sentence. Existing RC models
typically rely on supervised learning and distant supervision. Supervised learning
requires large-scale supervised training datasets, which are not readily available. Distant
supervision introduces noise, and many long-tail relations still suffer from data sparsity.
Few-shot learning, which is widely used in image classification, is an effective method
for overcoming data sparsity. In this paper, we apply few-shot learning to a relation
classification task. However, not all instances contribute equally to the relation
prototype in a text-based few-shot learning scenario, which can cause the prototype
deviation problem. To address this problem, we propose context attention-based
prototypical networks. We design context attention to highlight the crucial instances in
the support set to generate a satisfactory prototype. Besides, we also explore the
application of a recently popular pre-trained language model to few-shot relation
classification tasks. The experimental results demonstrate that our model outperforms
the state-of-the-art models and converges faster.

Keywords: Attention mechanism, Few-shot learning, Language model, Relation
classification

0.0.0.1 Introduction In a cloud-computing scenario, human-computer interaction oper-

ations occur frequently [1–4]. However, there usually exists a semantic gap between hu-

man and computer's understanding of mutual behaviors. The contradiction of semantic

understanding greatly limits human-computer interaction. It is a feasible method to solve

the semantic gap of human-computer interaction by using artificial intelligence technol-

ogy [5–10]. Among all of the AI technologies, semantic understanding is an effective way

to solve the semantic gap [11, 12]. The semantic cognitive formal description is the main

method, and it is the core of data collection, analysis and processing in human-computer

interaction. Named entity recognition (NER) and relation classification (RC) are used to

capture semantic information and implement the description of semantic formalization.
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NER has made great progress in knowledge acquisition, but RC is still difficult to solve

when data is sparse. Our research focuses on the classification of relations in few-shot

scenarios.

RC is an important task in knowledge acquisition, which aims at identifying a type of

relation between two specified entities based on their related context. Because it bene-

fits many natural language processing (NLP) applications (e.g., question answering [13]

and knowledge base completion [14]), many approaches have been proposed for this

task. Of these approaches, supervised models have been widely used in this task [15–

19]. However, these models are typically limited by the quantity and quality of the

training data because manual labeling of high-quality training data is time-consuming

and labor-intensive. Besides, in computing paradigms, the model should be fast and

take up less space.

To overcome the problem of insufficient data, distant supervision (DS) was proposed

by Mintz [20]. DS is a heuristic rule: for an entity pair in knowledge graphs (KGs), the

sentences that mention both entities will be labeled with their relations in KGs. A

large-scale training dataset can be obtained via DS. However, DS inevitably introduces

noise. Many efforts have been devoted to reducing this noise [21–26]. Although DS re-

alizes satisfactory results on common relations, its performance will degrade for long-

tail relations [27]. Hence, it is necessary to study the RC model when the data is

insufficient.

Intuitively, people can learn new knowledge after being taught just a few instances.

Therefore, Han et al. (2018) [27] formulated RC as a few-shot learning (FSL) task,

which required models that can handle a classification task with a handful of training

instances. They adopted the most recent state-of-the-art few-shot learning methods for

RC. Gao et al. (2019) [28] proposed hybrid attention-based prototypical networks for

noisy few-shot RC. Many additional efforts have also been devoted to FSL. Caruana

(1995) [29], Bengio (2012) [30], and Donahue et al. (2014) [31] used transfer learning

methods to fine-tune the pre-trained model. Metric learning methods [32–34] have

been proposed for learning the distance distributions among classes. Recently, meta-

learning is proposed and encourages models to quickly learn from previous experience

and to rapidly generalize to new concepts [35, 36]. However, most of these FSL

methods are concentrated on image classification. In contrast to images, the text is di-

verse and not directly computable; hence, current FSL models cannot be used directly

for NLP tasks. In these methods, the prototypical networks [34] are simple and effect-

ive. However, we find that not all instances are equal in support set when the prototyp-

ical networks are used for relation classification tasks. So, it brings the prototype

deviation problem. One of the main tasks of this paper is to generate a satisfactory

prototype for a few-shot relation classification task in a text-based support set.

To solve the problem, we propose context attention-based prototypical networks for

few-shot RC. The prototypical networks [34] must identify a feature vector from sup-

port set as the prototype for each relation and classify the relation between the entity

pair in a query instance by measuring the distances between the query instance embed-

ding and the relation prototype. For the prototype representation of each relation, the

contribution of each support instance is not equal. Therefore, directly adopting the

average vector of all instances in the support set as the relation prototype is not a satis-

factory approach. As listed in Table 1, the current relation prototype is the “subsidiary”
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in the support set, which represents the affiliation between companies. In instances 1

and 2, the relation between two entities is an affiliate relation between companies;

hence, the score is the highest. In instance 3, the relation between two entities is also

an affiliate relation between companies; however, it is not as clear as in instances 1 and

2 and the score is lower. In instance 4, the relation between two entities is an affiliate

between schools; hence, the score is the lowest. According to the above description, for

the instances in the support set, the diversity of the text will cause prototype deviation.

To generate a satisfactory prototype in practice, we propose a method, namely, the con-

text attention mechanism, for determining the prototype of a relation class. The main

strategy of the context attention mechanism is to score each instance in the support set

according to the importance of the instance to the prototype.

In addition, we also explore the utilization of a pre-trained language model to further

improve the performance of the few-shot RC task. In previous works, word embedding

tools (e.g., Word2Vec [37] and Glove [38]) have been used to obtain word vectors dir-

ectly, whereas language models transform words into distributed representations ac-

cording to context information. Recently, pre-trained language models have performed

well in common language representations by using large amounts of unlabelled data

(e.g., ELMo [39], OpenAI GPT [40], and BERT [41]). Of these models, bidirectional en-

coder representations from transformers (BERT) [41] are the most representative. Al-

though BERT has yielded amazing results on eleven natural language processing tasks,

it has not yet been explored for the few-shot relation classification task. Thus, we have

conducted relevant investigations in this paper. To the best of our knowledge, we are

the first to apply the BERT model to the few-shot RC task.

Our main contributions in the paper are as follows:

1) Context attention (CATT) mechanism is proposed, which can effectively alleviate

the prototype deviation problem by scoring different instances in support set to

indicate the importance of the instance to the prototype. It doesn't take any extra

parameters.

2) The application of pre-trained language model BERT in the few-shot RC task is ex-

plored. Combining the context attention and the pre-trained language model not

only makes our model more efficient but also converges faster.

3) We conduct experiments on a real-world dataset for a few-shot RC task by using

our proposed model. The experimental results demonstrate that our model outper-

forms state-of-the-art models and meets the requirements of the computing

paradigms.

Table 1 Main strategy of the context attention mechanism, which is to score instances in the
support set

The current prototype in the support set is the subsidiary

Score Instance

0.35 Toyota Australia is a subsidiary of Toyota Motor Corporation, which is based in Japan.

0.35 Beijing Enlight Pictures was a subsidiary of Beijing Enlight Media for 100% stake.

0.25 In 2006, Rykodisc was bought by the Warner Music Group.

0.05 The building houses the astrophysics and particle physics sub - departments of the Department of
Physics at Oxford University.

The colors indicate the entity types: blue for head entity and red for tail entity
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The remainder of the paper is arranged as follows. Section 2 introduces the related

works of relation classification, few-shot learning and language model. We detail our

methodology in Section 3. The experimental results are shown in Section 4. Conclusion

and future work are given in Section 5.

1 Related works
Except for a few unsupervised clustering methods [42, 43], most methods [44] on rela-

tion classification are based on supervised learning, which is typically cast as a multi-

class classification task. Traditional methods often rely on handcrafted features and

NLP upstream tasks [44–46]. These methods were limited to specified domains and do

not exhibit satisfactory generalization performance.

In recent years, many works have utilized deep learning. Deep neural networks

(DNN) have performed well on supervised tasks and been widely used in NLP domains.

RC has also benefited from DNN. Zeng et al. (2014) [18] used a convolutional neural

networks (CNN) to extract lexical and sentence-level features without complicated pre-

processing. To model a sentence with the complete and sequential information of all

words, Zhang et al. (2015) [47] combined bidirectional long short-term memory net-

works (BLSTM) and features that are derived from the lexical resources. Zhou et al.

(2016) [48] proposed an attention-based BLSTM for capturing the most important se-

mantic information in a sentence. Wang et al. (2016) [49] proposed a CNN with two

levels of attention for this task to better discern patterns in heterogeneous contexts.

When the data is insufficient, Mintz et al. (2009) [20] proposed the DS method for con-

structing large-scale datasets. To alleviate the wrong label problem and capturing struc-

tural and other latent information in DS, Zeng et al. (2015) [23] designed piecewise

convolutional neural networks (PCNNs) with multi-instance learning. Lin et al. (2016)

[24] built sentence-level attention over multiple instances to dynamically reduce the

weights of noisy instances. To enhance the robustness of neural networks and improve

their generalizability, Wu et al. (2017) [25] applied adversarial training in RC within the

multi-instance multi-label learning framework. Feng et al. (2018) [26] utilized

reinforcement learning techniques to select high-quality sentences from a sentence bag.

These approaches reduce noise in DS by using various techniques; however, they can-

not handle long-tail relations in practice.

FSL can generalize to new classes that are not seen during training given only a few in-

stances of each new class. Hence, FSL can also learn high-quality features with insufficient

data of a relation class. Many works use transfer learning methods to fine-tune pre-trained

models for FSL, which transfer latent information from the common classes with sufficient

instances to the uncommon classes with only a few instances [29–31]. Metric learning

methods are popular in FSL [50]. For example, Koch et al. (2015) [32] presented a strategy

for performing one-shot classification via learning deep convolutional siamese neural net-

works on the Omniglot dataset [51]. Vinyals et al. (2016) [33] built matching networks for

one-shot learning by combining metric learning that is based on deep neural features and

the augmentation of neural networks with external memories. Snell et al. (2017) [34] pro-

posed a simple method, namely, prototypical networks, for few-shot learning. Prototypical

networks represent each class in terms of examples of the class in a representation space

that is learned by a neural network. The meta-learning approach is another relevant FSL

method. Ravi et al. (2016) [34] proposed an LSTM-based meta-learner model that learns an
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exact optimization algorithm, which is used to train another learner neural network classi-

fier in the FSL. Munkhdalai et al. (2017) [35] proposed a novel meta-learning method,

namely, meta-networks, that learns meta-level knowledge across tasks and shifts its induct-

ive biases via fast parameterization for rapid generalization.

Currently, the major FSL methods are focused on image domains, only a few works

are devoted to NLP applications. Han et al. (2018) [27] introduced FSL into the RC task

and systematically adopt the most recent state-of-the-art FSL methods for RC. To deal

with the diversity and noise of few-shot relation classification tasks, Gao et al. (2019)

[28] designed instance-level and feature-level attention schemes that are based on

prototypical networks for highlighting the crucial instances and features, respectively,

thereby significantly improving the performance and robustness of RC models in a

noisy FSL scenario. In previous FSL approaches, the prototypical networks [34] are

considered effective. The prototype is calculated for each class and query instances are

classified by calculating the Euclidean Distance between the prototype and query in-

stances. Therefore, the prototype is highly important in prototypical networks.

In the application of deep neural networks in NLP, word embedding is essential.

Word2Vec and Glove have long been popular. Word2Vec is introduced by [37], which

is an efficient method for learning high-quality vector representations of words from

large amounts of unstructured text data. Pennington et al. (2014) [38] proposed Glove

for word representation. Glove is a weighted least-squares model that trains on global

word-word co-occurrence counts. However, polysemy cannot be represented in these

models. Until recently, the language model is pre-trained on a large network with a

large amount of unlabeled data. Many downstream tasks of NLP have been realized by

fine-tuning on a pre-trained language model. Peters et al. (2018) [39] proposed the

ELMo model, which is a new type of deep contextualized word representation that at-

tempts to address the polysemy and the complex characteristics of word use. ELMo uses

a vector that is derived from a bidirectional LSTM that is trained with a coupled language

model objective on a large text corpus to represent a word. OpenAI GPT was proposed

by Radford(2018) [40], and it combines unsupervised pre-training and supervised fine-

tuning methods to understand language. Devlin et al. (2018) [41] proposed a BERT model

that is pre-trained on a masked language model task and a next sentence prediction task

via a large cross-domain corpus. BERT yields state-of-the-art results for a range of NLP

tasks, thereby demonstrating the enormous potential of pre-trained language models.

In this paper, to generate a satisfactory prototype in prototypical networks, we

propose the context attention-based prototypical networks. Our solution is to score the

instances in the support set via a context attention mechanism to highlight the import-

ance of the instances. Another objective of this paper is to explore the pre-training lan-

guage model BERT that is used for the few-shot RC task.

2 Methodology
This section introduces the context attention-based prototypical networks in detail. In

addition, we also demonstrate the combination of pre-trained language models in our

model.

Before we start, we give the notation and the definition. Formally, the few-shot rela-

tion classification is designed to obtain a function F : ðR ; xÞ→y. This function repre-

sents a mapping relation: given a set of relation labelsR and a text instance x, the

Hui et al. EURASIP Journal on Wireless Communications and Networking        (2020) 2020:118 Page 5 of 17



predicted relation labelyis output. Here, R ¼ fr1; r2;…; rmg; ðm∈N

denotes the number of relations:Þ defines the relation set into which all instances are

classified. In this paper, S is used to represent the support set in few-shot learning:

S ¼
x11; r1
� �

; x21; r1
� �

;…; xn11 ; r1ð Þ;
x12; r2
� �

; x22; r2
� �

;…; xn22 ; r2ð Þ;
…;

x1m; rm
� �

; x2m; rm
� �

;…; xnmm ; rm
� �

8>><
>>:

9>>=
>>;

ð1Þ

which includes ni instances for each relation ri∈R , where x j
i is a sentence instance

with a pair of entities, i represents a relation, and j represents an instance in relation i.

The query data x is an unlabelled instance to classify. y∈R is the prediction of x that is

given by F .

The N-way K-shot setting is widely adopted to FSL. We also use this setting for the

few-shot RC problem, where N is the size of the relation set, and K is the number of in-

stances in each relation set.

N ¼ m ¼ Rj j;K ¼ n1 ¼ … ¼ nm ð2Þ

2.1 Framework

Here, we introduce the main modules of our model. As illustrated in Fig. 1, the model

consists of three parts:

(1) Sentence encoder: given a sentence that mentions two entities, we must extract

features from the sentence and represent the sentence with a low-dimensional real-

valued vector. The sentence encoder consists of an embedding layer and an encoding

layer. In this paper, we use a pre-trained language model as the embedding layer and

implement the encoding layer with convolutional neural networks.

(2) Prototypical networks: we use prototypical networks to compute a prototype for

each relation in the support set. To classify a query instance, we compute the Euclidean

Distance between the query instance and each relation prototype and the relation

prototype that corresponds to the smallest distance is selected as the predicted relation

of the query instance.

(3) Context attention: to further enhance the RC performance and the convergence

speed, we propose the context attention-based prototypical networks. The main strat-

egy of the context attention mechanism is to score instances in a support set.

First, the sentence encoder is used to obtain the vectorized representation of each

sentence. Then, the relation prototype is generated by the context attention. Finally,

the prototypical networks are used to classify the relation between entities.

2.2 Sentence encoder

For a sentence x = {w1,w2,…,wn} that mentions two entities, we use a pre-trained lan-

guage model, namely, BERT, to embed each word. Then, CNN is used to encode these

embedded word vectors into a continuous low-dimensional vector as the sentence vector.

2.2.1 Embedding layer

The main function of the embedding layer is to map words in the instance to continu-

ous input embeddings. In general, we use a trained tool directly as word embeddings,
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such as Word2Vec [37] and Glove [38]. However, polysemy cannot be represented

using these static models. In our model, we use BERTBASE [39] as the embedding layer.

In BERT, to more effectively represent the semantic information of a word, its context

is combined. Therefore, the distributed representations of a word can differ among

sentences.

To highlight the entities in a sentence, we use entity indicators [52]. Given a sentence

x = {w1,w2,…,wn} with four marked indicators of entity position, we encode each word

wi in the sentence to a real-valued embedding ei∈ℝdw to express semantic and syntactic

meanings of the word via BERTBASE.

2.2.2 Encoding layer

The encoding layer extracts features from the word vector ei∈ℝdw , which are used to

construct a sentence feature vector. Recurrent neural networks (RNN) and the convolu-

tional neural networks (CNN) are both widely used in deep neural networks (DNN). In

this paper, to be consistent with the previous methods and to facilitate the comparison

of the following experiments, we use a CNN to extract sentence features.

A CNN slides a convolution kernel with the window size of m over the word vector

{e1, e2,…, en} to obtain the dh-dimensional hidden embeddings,

Fig. 1 Architecture of our proposed model. Shows the model structure proposed in the paper, which is
mainly composed of three parts, namely, the sentence encoder, prototypical networks, and
context attention
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hi ¼ CNN ei−m−1
2
;…; eiþm−1

2

� �
ð3Þ

where CNN(.) is a convolution operation.

To output the final instance embeddings, a max-pooling operation is applied over

these hidden embeddings,

s½ � j ¼ max h1½ � j; h2½ � j;…; hn½ � j
� �

ð4Þ

where [.]j is the jth value of the specified vector.

We express an instance encoding operation, which includes both the embedding and

encoding layers, as the following equation:

s ¼ f ϕ xð Þ ð5Þ

where ϕ denotes the learnable parameters of the instance encoding. f is a function, it

is a scalar. x is an instance of a sentence, also a scalar. s is the embedded vector of the

output.

2.3 Prototypical networks

The prototypical networks [32] are few-shot classification models that assume that for

each class there exists a prototype that represents a relation. The prototype is com-

puted by averaging all the instance embeddings S in the support set for each relation

ci ¼ 1
ni

Xni

j¼1
s ji s ji∈S
� �

ð6Þ

where ci is the prototype that is computed for a relation ri; s
j
i is the embedded vector

of instance j in the support set relation ri, it is a low-dimensional real-value vector that

represents the vectorized form of each text sentence; and ni denotes the number of in-

stances in a relation ri in the support set.

Then, we can compute the probabilities of the relations in R for a query instance x

as follows:

pϕ y ¼ rijxð Þ ¼
exp −d f ϕ xð Þ; ci

� �� �
PjR j

j¼1 exp −d f ϕ xð Þ; c j
� �� � ð7Þ

where d(., .) is the distance function for two specified vectors, the prototypical net-

works [34] adopt the Euclidean distance.

2.4 Context attention

In the prototypical networks [34], each relation prototype is determined by the average

vector of all instances. However, in practice, the meaning of a relation is rich, namely, a

relation can express multiple meanings. In a support set, not all instances express the

same relational meaning. Therefore, the prototype that is produced via the vector aver-

aging approach is not a satisfactory prototype. Vector averaging of all instances in the

support set results in the prototype deviation problem.

We argue that not all instances are of equal importance in a support set. To deter-

mine a satisfactory prototype, we propose a context attention approach that focuses

more attention on prototype-related instances. To represent the correlation between
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instances S in a support set, we calculate a matrix product between instances, divide

each by
ffiffiffiffiffiffi
dw

p
, and apply a softmax function to obtain the weights between instances.

The final instance Snew is obtained via another matrix multiplication between the

weights and the instances. The equation is as follows:

Snew ¼ CATT Sð Þ ¼ softmax
ssTffiffiffiffiffi
dw

p
� �

S ð8Þ

The meaning of equation (8) is the new embedded vector Snew obtained by using

context attention(CATT) on embedded instance S. The exact calculation of CATT is

determined by the softmax function that follows. Now, the prototype is obtained by the

following equation:

ci ¼ 1
ni

Xni

j¼1
s ji s ji∈Snew
� �

ð9Þ

To make better use of the features in instances, we use multi-head attention [53] in

our model. The equation is as follows:

MultiHead S; S; Sð Þ ¼ Concat head1;…; headhð Þ ð10Þ

where headi=Attention(Sdm ; Sdm ; Sdm )

In this work we employ h = 12 parallel attention heads, the dimension of each head

is dm ¼ dw
h :

The proposed context attention mechanism can assign to each instance a weight cor-

responding to their contribution for the current relation prototype. Therefore, our

framework can avoid the prototype deviation caused by the average instance

embeddings.

3 Experiments
This section evaluates the performance of our model on a real dataset in terms of the

accuracy rate and the convergence speed. We will also analyze the roles of the context

attention mechanism and the pre-trained language model in several cases.

3.1 Datasets and parameter settings

We evaluate our models on the FewRel dataset in this paper, which is developed by

Han [27]. The FewRel dataset consists of 100 relations, each of which has 700 in-

stances. It has 64 relations for training, 16 relations for validation and 20 relations for

testing. There are no overlapping relations among the training, validation and test sets.

Since the test set is not available directly, we evaluate our models on the training and

validation sets. To evaluate the performance of our model, we conduct two sets of con-

trol experiments: a comparison between our model and previous models and an ana-

lysis of the influences of the modules in our model.

All the hyperparameters are listed in Table 2. For the input, we set the maximum

length of a sentence to 64. Limited by the performance of our machine, the batch size

is set to 1 and the number of training classes for each batch is set to 8. The learning

rate is set to 2E−5. We set the number of training iterations to 10000 to yield the opti-

mal result. The convolution window size is set to 3. In the CNN operation, the dimen-

sion of the hidden layer is consistent with the dimension of the word embeddings,
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which is set to 768. In the multi-head, the number of heads is set to 12. All models are

trained on the training set and compared in terms of accuracy on the validation set; in-

stances in the validation set are not used in the training process.

3.2 Overall evaluation results

Before we discuss the results, it should be noted that the metric adopted in this paper is accur-

acy. Accuracy is one metric for evaluating classification models. Informally, accuracy is the frac-

tion of predictions our model got right. Formally, accuracy has the following definition:

Accuracy ¼ Number of correct predictions
Total number of predictions

� 100% ð11Þ

We compare the models in terms of accuracy in Table 3. CNN in the model name in-

dicates that the convolutional neural networks are adapted for feature extraction in the

encoding layers of these models. In this paper, the proposed model is denoted as

Proto_CATT_BERT(CNN), which indicates that our model is composed of context

attention-based prototypical networks and that the BERT is used as a pre-trained lan-

guage model in the embedding layer of the model. Model Proto_HATT(CNN) is pro-

posed by [28] and uses hybrid attention-based methods to solve noisy few-shot RC

tasks. The other models (Meta Network (CNN), GNN(CNN), SNAIL(CNN), and Proto-

typical Networks(CNN)) are provided by Han [15], which are all current state-of-the-

art FSL models. According to the table, our model, namely, Proto_CATT_BERT, out-

performs the others on several N-way K-shot tasks. The values of other models in the

table above are the results that are obtained by retraining on the training set and test-

ing in the validation set according to the source codes that are provided in the related

papers. In the 5-way 5-shot task, five relations need to be distinguished, and each rela-

tion type has only five instances, which is in line with the application scenario with the

few-shot learning. The accuracy of our proposed model is 94.86%, which is 7.6% higher

Table 2 Parameter settings

Max length of a sentence 64

Batch size 1

Training classes for one batch 8

Learning rate 2e-5

Train iterations 10000

Convolutional window size 3

Hidden layer dimension dh 768

Number of multihead 12

Table 3 Accuracy comparison among models (%)

Model 5 way 5 shot 5 way 10 shot 10 way 5 shot 10 way 10 shot

Meta network(CNN) 80.03 ±0.52 82.96 ± 0.50 70.31 ± 0.48 73.03 ± 0.44

GNN(CNN) 77.75 ± 0.44 80.56 ± 0.38 66.02 ± 0.40 69.30 ± 0.42

SNAIL(CNN) 80.57 ± 0.24 81.62 ± 0.21 68.03 ± 0.22 71.32± 0.20

Prototypical networks(CNN) 85.57 ± 0.14 88.17 ± 0.10 75.01 ± 0.16 78.50 ± 0.11

Proto_HATT(CNN) 87.23 ± 0.08 89.53 ± 0.06 77.45 ± 0.06 80.98 ± 0.08

Proto_CATT_BERT(CNN) 94.86 ± 0.04 95.74 ± 0.05 90.01 ±0.04 91.60 ± 0.03
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than the model Proto_HATT(CNN). In other N-way K-shot tasks, our model is far su-

perior to other models.

To evaluate the effects of the modules in our model, we report the results in Table 4. Ac-

cording to Table 4, adding the context attention (CATT) mechanism directly to the prototyp-

ical networks can improve the accuracy of the model, namely, the Proto_CATT(CNN) model

outperforms the prototypical networks(CNN) model. This demonstrates that the CATT

mechanism can improve the performance of the few-shot RC model by scoring instances to

generate a satisfactory prototype for each relation. According to the first and third rows of

Table 4, the accuracy of the Proto_BERT(fine-tuning) model is 91.86%, and that of the Proto-

typical Networks(CNN) model is 85.57%, more than 6.3%. This indicates that BERT can fur-

ther improve the accuracy of the task. In addition, the accuracy of the Proto_BERT(CNN)

model exceeds that of the Proto_BERT(fine-tuning) model. We conclude that the model that

is built by adding a layer of CNN after BERT outperforms the result of fine-tuning on BERT.

Therefore, the pre-trained language model is also effective on few-shot RC tasks. In other N-

way K-shot tasks, BERT, and CATT modules also outperformed other modules.

3.3 Convergence speed

We compare the convergence speeds of the models to explore the efficiency of these models

in terms of time, as shown in Figs. 2 and 3. According to these figures, the Proto_CATT

model that uses CATT outperforms the baseline model proto in terms of the speeds of both

loss decrease and accuracy increase. By adding the pre-trained language model, namely,

BERT, the model converges faster. By adding CATT to the original prototypical networks,

the prototype deviation can be alleviated in the support set. When classifying query in-

stances, the accuracy is higher and the loss is lower; hence, the convergence is faster. The

pre-trained language model is obtained after training on a large corpus. It can directly repre-

sent the vector distribution of words or sentences. Therefore, initially, the accuracy will be

very high, thereby rendering the convergence faster after iterations. Finally, CATT and

HATT [28] converge at the same rate. However, according to Eqs. 7 and 8, it can be con-

cluded that CATT does not need additional parameters compared with HATT [28].

3.4 Result analysis

To further evaluate the roles of the modules, this section analyses the impacts of the context

attention mechanism and the pre-trained language model on the network in special cases.

3.4.1 Effect of context attention

Via examples, we find that our model can produce a satisfactory prototype, whereas the ori-

ginal prototypical networks produce a poor prototype. In Fig. 4, marker “x” corresponds to

Table 4 Accuracy comparison among modules (%)

Model 5 way 5 shot 5 way 10 shot 10 way 5 shot 10 way 10 shot

Prototypical networks(CNN) 85.57 ± 0.14 88.17 ± 0.10 75.01 ± 0.16 78.50 ±0.11

Proto_CATT(CNN) 87.48 ± 0.12 89.28 ± 0.08 77.46 ±0.13 80.39 ± 0.14

Proto_BERT(fine-tuning) 91.86 ± 0.02 93.34 ± 0.04 85.44 ± 0.03 87.51 ± 0.04

Proto_BERT(CNN) 93.54 ± 0.05 94.68 ± 0.04 88.85 ± 0.06 90.18 ± 0.05

Proto_CATT_BERT(CNN) 94.86 ± 0.04 95.74 ± 0.05 90.01 ± 0.04 91.60 ± 0.03
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Fig. 2 Losses of models on the training set.. Shows the change curves of different models during the
training phase

Fig. 3 Accuracies of models on the validation set. Shows the change curves of the accuracy of different
models during the validation phase
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the “part of” relation prototype and solid circle corresponds to 40 query instances. Because

the prototypical networks are kind of metric models, the results of model depend on the dis-

tance between the query instance and the prototype. Therefore, the smaller the distance, the

better the model performance. According to Fig. 4a, b, the prototype that is generated with

CATT is more accurate than the prototype that is generated without CATT, which has devi-

ated. The CATT can select instances with high correlation with the relation prototype and

reduce the influence of those with low correlation. Hence, The CATT can facilitate the iden-

tification of a satisfactory prototype by networks and improve the performance of the model.

3.4.2 Effect of pre-trained language model

To evaluate the effect of the pre-trained language model, we select two relations from the

validation set, namely, constellation and sport, which have 60 instances per relation. Our

model encodes all instances to obtain instance feature vectors of dimension dw. Then, we

Fig. 4 Prototype comparison (red corresponds to a prototype and blue to query instances). a shows that
the prototype that is generated with CATT. b shows that the prototype that is generated without CATT
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map them to 2D points by using principal component analysis (PCA). Comparing the two

plots in Fig. 5a, b, the solid box and marker “+” indicate two relations, respectively. In-

stances that are embedded with BERT are easier to classify. Since RC is a kind of classifica-

tion tasks, the model whose results are more easily linearly separable performs better.

Hence, BERT can help encoders learn embeddings that improve the performance of the

model.

4 Conclusions and future work
In this paper, we propose context attention-based prototypical networks for few-shot rela-

tion classification tasks. The main strategy of the context attention mechanism is to assign

weights to instances to highlight the importance of instances under relation prototypes,

which can generate a satisfactory prototype to alleviate the prototype deviation problem. In

addition, we explore how the pre-trained language model can be used in the few-shot RC

task. We evaluate our model on a real dataset. The experimental results demonstrate that

our model can increase the accuracy and the convergence speed on the RC task. In the fu-

ture, we will explore whether it is possible to map a relation prototype to another vector

Fig. 5 Comparison between instance embeddings (red and blue represent instances of a relation). a shows
that instance embeddings with BERT. b shows that instance embeddings without BERT
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space by using only one projection of that vector as the relation prototype, to solve prob-

lems in which relation has multiple meanings.
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