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Abstract

Reservoir computing (RC) is considered as a suitable alternative for descending gradient methods in recursive
neural networks (RNNs) training. The echo state network (ESN) is a platform for RC and nonlinear system simulation
in the cloud environment with many external users. In the past researches, the highest eigenvalue of reservoir
connection weight (spectral radius) was used to predict reservoir dynamics. Some researchers have illustrated; the
characteristics of scale-free and small-world can improve the approximation capability in echo state networks;
however, recent studies have shown importance of the infrastructures such as clusters and the stability criteria of
these reservoirs as altered. In this research, we suggest a high clustered ESN called HCESN that its internal neurons
are interconnected in form of clusters. Each of the clusters contains one backbone and a number of local nodes.
We implemented a classical clustering algorithm, called K-means, and three optimization algorithms including
genetic algorithm (GA), differential evolution (DE), and particle swarm optimization (PSO) to improve the clustering
efficiency of the new reservoir and compared them with each other. For investigating the spectral radius and
predictive power of the resulting reservoirs, we also applied them to the laser time series and the Mackey-Glass
dynamical system. It is demonstrated that new clustered reservoirs have some specifications of biologic neural
systems and complex networks like average short path length, high clustering coefficient, and power-law
distribution. The empirical results illustrated that the ESN based on PSO could strikingly enhance echo state
property (ESP) and obtains less chaotic time series prediction error compared with other works and the original
version of ESN. Therefore, it can approximate nonlinear dynamical systems and predict the chaotic time series.

Keywords: Reservoir computing, Echo state networks, Complex networks, Clustering, Time series prediction, Scale-
free analysis

1 Introduction
Unlike feed-forward neural networks, it is costly and
challenging to train recurrent neural networks with trad-
itional methods such as gradient descent in the presence
of feedback loops. The echo state network (ESN) is con-
sidered to be a suitable alternative for gradient descent
algorithms [1] in for cloud-based services [2]. Given that
in ESN, both the input and internal connections weight

matrix are constant, but the network output matrix is
trained by the linear regression method; this efficient
training method causes ESN has a highly dynamic be-
havior with little learning complexity. However, the ran-
dom structure of the reservoir may reduce its accuracy
of the estimation. Nevertheless, many effective schemes
of reservoir production have proposed. Some works use
the analytical method to construct the reservoirs but use
these methods to solve the complex problems or discrete
functions is difficult. To further improve the reservoir’s
performance, some other works are looking for evolution-
ary techniques [3–5]. Furthermore, echo state property
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(ESP) [6] is the astonishing capabilities in ESN. As men-
tioned by Jaeger [7], only provided the current reservoir
state is exclusively specified by the long-time history of in-
puts after running; the ESN has echo state property (ESP).
Such a way that, for ESN, the maximum eigenvalue of
reservoir connection matrix, spectral radius, must be no
larger than 1 in such a way that the ESP is main-
tained [8]. It should be noted that the bigger the
spectral radius, the slower the network response to
the input pulses, and the network memory capacity
is enhanced. Hence, the ESN can have a better ap-
proximation ability and a more efficient computing
power. In some sense, the spectral radius has an
extraordinary effect on the approximation abilities of
the ESN. To guarantee ESP without the reservoir
weight scale, a reservoir production method has been
proposed using the eigenvalue decomposition, and
the convergence of the algorithm is also theoretically
guaranteed. However, eigenvalues are still generated
randomly [9].
In recent years, small-world phenomenon and scale-

free property in many complex systems of real-world,
like immune systems, biological networks, transport
networks, internet backbone, citation networks, and
many other networks have been discovered [10–17]. The
small-world feature refers to the short characteristic
path length as well as the high clustering coefficient in
the network. It is noteworthy that the complex artificial
neural networks such as associative memory systems
[18] using the small-world phenomenon, and the scale-
free property [19, 20] have better efficiency in time and
memory capacity than the randomly connected networks
with similar connections. Also, the chaotic time series
prediction problem by the small-world trait and the
scale-free property can be solved more efficiently
[21–24]. It is noteworthy that the forecast precision
of a chaotic time series using ESN substantially increases
with a ratio of 2400 compared with former methods [25].
Deng and Zhang [26] suggested a complex ESN model

with a gradual growth state reservoir called HCESN,
which included a lot of internal nodes with sparse con-
nections. Their experimental results showed that the
echo state property could be improved by permitting a
large-scale spectrum of the acceptable spectral radius.
Jarvis et al. [27] investigated the impact of clusters,

hierarchies, and interconnections between clusters on
the spectral radius prediction ability. Their experimental
results showed that hierarchy and almost small cluster
size increments the amplitude of the spectral radius in
the reservoir. Also, they showed that the size of the en-
tire reservoir and the connection between the clusters
effect on the allowed range of spectral radius. As well as,
for clustering reservoir neurons in [28] classical cluster-
ing algorithms have been used.

In this article, we suggest four new (ESNs) and com-
pare them with each other and previous works towards
cloud computing. Then, the best network is selected as
the desired reservoir. We showed that four suggested
reservoirs have scale-free property, small-world trait,
and distributed structure. Neurons in the first network
are clustered using the K-means clustering technique,
and the resulting reservoir is called HCESN-KM. The
second network is clustered by the genetic algorithm
(GA), and the created reservoir is named HCESN-GA.
In the third network, clustering is done using the algo-
rithm of differential evolution (DE), and the resulting
reservoir is called HCESN-DE. And in the fourth net-
work, neurons are clustered by particle swarm
optimization (PSO) and are named HCESN-PSO. In
each cluster, the meaningful nodes are considered as
backbone neurons and other nodes as local neurons.
Hence, connections between neurons have small-world
topology and follow a power-law distribution so that the
resulting models can reflect the learning mechanism of
most biological systems. We also applied the new reser-
voirs to challenging difficulties like Mackey-Glass (MG)
and laser time series prediction problems and evaluated
them with each other and with previous works. The em-
pirical results show that the suggested methods, particu-
larly HCESN-PSO, outperform the previous ones in
terms of the capability of approximating nonlinear dy-
namic systems and prediction accuracy of chaotic time
series.
Other sections include the following. In Section 2,

the classical clustering and three evolutionary cluster-
ing algorithms are briefly described. In Section 3, the
proposed new state reservoirs using the small-world
and the scale-free topologies are explained, and in
Section 4, the complexities of HCESNs are analyzed.
Dynamic approximation ability and enhanced echo
state property are investigated and compared with
previous works in Section 5. In the long run, the last
section is devoted to conclusions.

2 Related work
2.1 Classical clustering
Clustering is an unsupervised learning issue because it
classifies unlabeled data into classes or clusters, in such
a way that the data within the same clusters have the
most similarity and between different clusters have the
most difference. Hence, it is needed to define a measure-
ment criterion for these similarities and established a
benchmark for allocating data to particular cluster cen-
ters. One of these criteria is the Euclidean distance of
two data x and y or dist(x, y). The smaller the interval
between x and y, the higher the similarity between them
and vice versa [29]. This method attempt to assign the
data in the dataset D to k-clusters Ci ,…, Ck so that Ci ⊂
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D, and Ci ∩Cj = 0 for 1 ≤ i, j ≤ k. The clustering quality of
Ci is measured as follows:

MSE ¼
Xk
i¼1

X
p¼Ci

dist p; cið Þ2 ð1Þ

Here, MSE is the mean square error between all data
in Ci and the centroid of ci.
Although the K-means clustering algorithm is a simple

and well-known method, it may get stuck at local
optimum solutions, depending on the selection of the
primary cluster centers. To overcome such a challenging
problem, many evolutionary computation techniques
have been suggested. In the next section, the proposed
clustering algorithms are described. We employ these al-
gorithms for clustering the internal neurons of proposed
HCESNs in Section 3 [29].

2.2 Genetic algorithm-based clustering technique
Genetic algorithm (GA) is the initial conjecture-based
search and optimization algorithm that is inspired by
biological evolution. The algorithm searches for multiple
paths simultaneously and hence reduces the probability
of getting stuck in the local optimum solutions.
A cluster similarity metric, or a fitness function, can

be used to search for optimal cluster centers in the fea-
ture space. To use the genetic algorithm to solve
optimization problems, unknown variables are encoded
in string structures. Each string is called a chromosome.
Chromosomes are considered to encode many fixed
cluster centers [29]. A set of strings (chromosomes) is
called a population. At first, a population is created ran-
domly that denote different objects. Each of them is re-
lated to an objective or fitness function that is optimized
based on the principle of genetics and natural evolution.
Inspired by biological factors like crossover and muta-
tion, a new generation of the chromosome is produced.
The mentioned process is to continue until conditions
are met [30].

2.3 Differential evolution (DE)
This algorithm is a multipurpose optimization method
that can find almost optimal solutions to real and math-
ematical problems. Individuals in differential evolution
are indicated by d-dimensional vectors vi, i ∈ [1,…, np],
where d is the number of nonlinear optimization opera-
tors, and np is the population size. This method is pro-
posed to overcome the local search problem in the
genetic algorithm. The main difference between GA and
DE is the order of crossover and mutation operators, also
in how the selection operator works. According to [31],
the classic evolutionary process of DE is as follows. For
more details, see [32, 33].

2.3.1 Generation of initial population
Using uniform distribution, the value of each individual
is selected within the range [vmin, vmax].

vi jð Þ ¼ vmin
j þ unifrnd 0; 1ð Þ vmax

j −vmin
j

� �
ð2Þ

unifrnd (0,1) function is used to generate a random
number with [0,1] using uniform distribution.

2.3.2 Mutation
The mutation process delivers vector yi as an outcome
by applying a strategy like yi = vi1 + F. (vi2 − vi3)
Randomly select three individual vi1, vi2, vi3, from the

current generation where i1 ≠ i2 ≠ i3 are an integer, F > 0
is the mutation factor and controls the difference of the
mutation di = vi2 − vi3.

2.3.3 Crossover
In the crossover, to get the trial vector ui(j), an element
is taken either from donator vector yi(j) or target vec-
tor vi(j) based on the following expression

ui jð Þ ¼ yi jð Þ; if uj 0; 1ð Þ < CR
vi jð Þ; otherwise

�
ð3Þ

where uj(0, 1) denotes the uniform random distribution
among (0,1), and CR is the rate of crossover.

2.3.4 Selection
If get vector, the individual of the next generation is
replaced.

v0i ¼ ui; if f uið Þ < f við Þ
vi; otherwise

�
ð4Þ

where v′i means the offspring of vi for the later gener-
ation [31].

2.4 Particle swarm optimization (PSO)
This algorithm is an evolutionary calculation method
and a population-based stochastic search process in-
troduced by Kenney and Eberhart (1995) [34]. The
PSO models the social behavior of a group of birds
or fish and is a subset of swarm intelligence. Each
particle represents a position and a velocity in Q-
dimensional search space G, and it adjusts its position
to the best particle position ever (pbest) and the best
position in the particle population (gbest). Initially,
the positions and velocities of all individuals are ran-
domly determined. In each phase, first, the particle
velocity and then its position are updated. Hence,
each of the particles has a memory keeping their best
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position. The velocity and position of the particles are
adjusted as follows:

viq tð Þ ¼ φv t−1ð Þ
iq þ ω1r

t−1ð Þ
1q pbest t−1ð Þ

iq −p t−1ð Þ
iq

� �

þω2r
t−1ð Þ
2q gbest t−1ð Þ

iq −p t−1ð Þ
iq

� �
pi tð Þ ¼ p t−1ð Þ

i þ v t−1ð Þ
i

ð5Þ
where φ is the inertia weight, ω1 and ω2 are the acceler-
ation constants, and both r1 and r2 are uniform random
distribution in the range of [0, 1].
In this section, we consider three optimization algo-

rithms, such as GA, DE, and PSO, as well as the K-
means clustering algorithm. We apply these algorithms
to several standard datasets from the University of Cali-
fornia Irvine (UCI) database like Iris, Wine, CMC, Bupa,
Vowel, Cancer, and Thyroid and analyze their results.
Here, the Euclidean distance is used to the sum of the
mean square error. The algorithms mentioned above
have separately implemented 30 times for each UCI
dataset by the Matlab 2016 software. The result is illus-
trated in Table 1.
The comparison results show that the PSO and K-

means algorithms have the lowest and the highest cost
functions in six datasets, respectively. On the other
hand, the DE algorithm in the Wine dataset has the least
cost function among the six datasets, and the GA has
less cost function than the DE algorithm in the Bupa
and Vowel datasets. The results in Table 1 show that
PSO clustering methods have lots of potentials. As well
as, in the general case, Fig. 1 shows the cost function for
the K-means, GA, DE, and PSO algorithms with validity
indices CS [35] and DB [36].

3 Proposed method
3.1 HCEAN’s reservoir architecture
The reservoir architecture is illustrated in Fig. 2, which
includes input units (I), internal units (N), and output
units (Q).
The network activations for input units at the time step t

are U(t) = [u1(t). u2(t). …. ui(t)]
T through an N × I input

weight matrix Win. The reservoir nodes are sparsely con-
nected, and the output of each internal node is known as
a state and denoted by X(t) = [x1(t). x2(t). …. xn(t)]

T

through an N ×N internal reservoir weight matrix Wres.
The output layer is collected all the inputs ui(t) in the
layer one, and all the states xi(t) in the new state network
via a Q × (N × I) output connection matrix Wout, and in
the long run, generate an output vector y(t) = [y1(t). y2(t).
…. yq(t)]

T of the HCESNs. At the same time, the output
vector y(t) has feedback to whole the internal nodes via an
n × q connection weight matrix Wback. The activation
function of tanh() is set for the last two layers. The weight
matrices of input and feedback Win and Wback are deter-
mined using uniform random distribution, as well as, the
output connection weight matrix Wout is tuned with su-
pervised learning. Even so, the reservoir connection
matrix Wres is generated corresponding to our proposed
evolutionary rules instead of the merely random methods
used in [7, 25]. The readout y(t) of HCESNs is imple-
mented as follows:

x tð Þ ¼ tanhðW resx t−1ð Þ þW inu tð Þ þW fby t−1ð Þ þ v t−1ð Þ

y t−1ð Þ ¼ tanh W out x t−1ð Þ
u t−1ð Þ

� �� �

ð6Þ
where v(t) is a threshold noise. Production of new state
reservoirs includes

1. First, create a H × H grid space and initialize it.
2. Generate backbone neurons in the grid space by the

uniform distribution.
3. Produce synaptic relationships using the clustering

methods for recently added local neurons. Here, a
classical clustering algorithm like K-means and
three metaheuristic optimization algorithms
including genetic algorithm (GA), differential
evolution (DE), and particle swarm optimization
(PSO) for clustering the internal neurons are used.
The mean local neurons in each cluster are called
the backbone unit. The number of backbone
neurons is approximately 1% of local neurons [26].
The backbone neurons coordinate on the grid space
are randomly created. And also, the resulting
domains were separated. The distance among the
backbone neurons should not be less than a
specified basis. Adding the new local neurons to the

Table 1 Comparison of four proposed algorithms on the UCI dataset

Algorithms Criteria UCI dataset

Iris Wine CMC Bupa Vowel Cancer Thyroid

K-means MSE 97.27 18090 321.3 5543.99 152501.2 3056.4 1980.3

GA MSE 96.67 16298 312.5 5532.5 149121 3041.9 1891.5

DE MSE 96.67 16296 312.5 5638.22 160171.2 3041.9 1882.1

PSO MSE 96.67 16298 312.5 5532.21 148971 3041.7 1867.5

Akrami et al. EURASIP Journal on Wireless Communications and Networking         (2020) 2020:64 Page 4 of 14



reservoir space creates a fully connected grid of
the backbone neurons Nbackbone. In this process,
we randomly selected the coordinates (X, Y) of
one of the backbone neurons and placed the
coordinates x and y of the local neurons
associated with the backbone of the grid space to
distribute the unbalanced power law of outdegree
using the algorithms mentioned above. This
spatial distribution of neurons is very similar to
the function of the human brain system [37, 38].

4. Applying preferential attachment rules [11]. The
rule causes the neurons that recently added are
attached to the neurons that have the most
synaptic connectivity. If the coordinates of the

new local neuron are considered as the center of
the circle where the environment is the location
of the backbone neurons, then the radius of that
circle is regarded as the Euclidean distance. As a
result, the backbone neurons have the most
distance with new local neurons in the candidate
neighbors. Our preferential attachment rules
include the following steps:

Assuming that the Nlink is the number of links for
new local neurons. Also, ncandidate and ncurrent are the
number of neurons in the candidate region and the
current region of a new local neuron, respectively.
( ncandidate ≤ ncurrent ).

Fig. 1 Comparison graph of four proposed algorithms using DB and CS index

Fig. 2 HCESN’s architecture
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1. If Nlink ≥ ncurrent, so, the link among the new local
neurons to all neurons in the current region is
complete.

2. If Ncandidate ≤Nlink <Ncurrent, then the link among
the new local neurons to all candidate
neighborhood is generated with the probability of
Oi=

P
j∈Cneighbor

Oj [39] where Oi and Oj are the

outdegrees of neurons i and j, and Cneighbor is the
candidate neighborhood for new neurons.

If nconection < ncandidate, the process of connecting can-
didate neurons to local neurons is the same as before.
Generally speaking, candidate neurons can help improve

network clustering coefficient and preferential attachment
rules to both small-world and scale-free features.

4 Experimental results and discussion
4.1 Computational complexity
The HCESN topology with the reservoir capacity of Q =
300 × 300 is generated according to the following parame-
ters: the number of interior nodes Ninterior = 1000, the
links of local nodes Nlink = 5, and the number of backbone
nodes Nbackbone = 10. The spectral radius of this new
reservoir is 0.979%, and its sparse connection is 2.105%.

4.2 Distributed and hierarchical architecture
As illustrated in Fig. 3, the new reservoir contains 1000
internal neurons in a 300 × 300 grid and 10 clear clus-
ters or domains. Each of the color dots denotes an inter-
ior neuron created with the normal growth rules and
clustering methods. In this paper, DB and CS clustering
indices are used for clear clustering [40]. In each cluster,
the backbone neurons are surrounded by a set of local
neurons. The clusters are considered as macro-neurons
at the top of the reservoir network hierarchy, and the

number of interconnections within clusters is usually
much greater than those that are between clusters.
Therefore, dynamic behaviors are relatively independent
of each cluster. The input connection matrix Win be-
tween input and interior neurons is determined using a
uniform random distribution, and those input connec-
tions that are not linked to the interior neurons of the
network are converted to zero. Therefore, the connec-
tion weight distribution of the input in the reservoir is a
spatial distribution. Hence, our network architecture has
a distributed and hierarchical spatial structure.

4.3 Small-world property
In graph theory, the clustering coefficient C and the
minim characteristic path length L are used to describe
the phenomenon of the small-world [10, 41]. The reser-
voir network that is growing naturally consists of 103

internal neurons. Accordingly, it has a 103×103 reservoir
connection matrix Wres, by the sparse connection of
0.979%. Therefore, it is a complex and extensive net-
work. In general, the minim characteristic path length
denotes the gauge of a graph or complex system. As well
as, it is referred to as the average interval overall pairs
between two interior nodes.
The average short characteristic path length is specified

as L ¼ ðN2Þ
−1P

ði≠ jÞlij . In which N is the number of neu-

rons, lij is the minimum interval between neurons i and j,
and ðN2Þ demonstrated all possible pairs of neurons [42].
The average short characteristic path length for HCESN-
KM, HCESN-GA, HCESN-DE, and HCESN-PSO reser-
voirs was computed as LHCESN-KM = 3.4011, LHCESN-GA =
3.3801, LHCESN-DE = 3.1795, and LHCESN-PSO = 3.1401.
The clustering coefficient is determined as the mean

part of pairs of neighbor neurons of an interior node
that are adjacent to each other. The clustering coeffi-

cient is computed by C ¼ 1=N
PN

i¼1Ci where Ci is the
clustering coefficient for node i specified as Ci = 2Ei/
Ki(Ki − 1). Here, Ei is the real edges of the neighbor node
i, Ki is the total neighbors connected to the neuron i,
and Ki (Ki − 1)/2 is the maximum number of possible
connectivities between the neighbor neurons. Hence, Ci

denotes a ratio of real neighbor neuron connectivity to
the maximum possible connectivities [42]. The cluster-
ing coefficient for HCESN-KM, HCESN-GA, HCESN-
DE, and HCESN-PSO reservoirs was computed as
CHCESN-KM = 0.4727, CHCESN-GA = 0.4811, CHCESN-DE =
0.4827, and CHCESN-PSO = 0.4916.
Deng and Zhang [26] represented a reservoir named

SHESN. For this network, they computed the average
path length L = 3.7692 and the clustering coefficient C =
0.2303. As well as, they calculated a random system with
a similar size. For this network, they computed the smallFig. 3 Spatial distribution of 1000 neurons in grid space
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characteristic path length and the clustering coefficient,
respectively, LR = 32668 and CR = 0.0112.
Our experimental results denote that the short charac-

teristic path length L related to four new reservoirs is
approximately as near as Lrandom, and the clustering co-
efficients C are immensely more extensive than Crandom.
Hence, our new HCESNs are the complex network with
the small-world phenomenon.
Besides, Table 2 illustrates the short characteristic path

length and coefficient of clustering for each of the ten
clusters in four networks. According to the table, it is
observed that each cluster is also a sub-network of the
small-world.

4.4 Scale-free property
Recently, it has been observed that the specific features
of internet topologies can be described using the power
law in the form of y = xγ [43], where γ, as an index or
degree of the power law, is used to describing some of
the properties of the global network topologies. So that,
reservoirs with power-law distribution are called scale-
free [26]. Deng and Zhang [26] observed the gradient of
the resulting linear plot between (x, y) on a log-log scale
as the power law of γ. They also used Pearson's correl-
ation coefficient (p) to ensure that the power law existed.
The closer the correlation coefficient is to 1, the more
the data follow the power-law distribution [39].

We investigate two types of power-law distributions as
follows: the number of nodes against outdegree and out-
degree of nodes against rank. It should be noted that the
rank of a node is defined as the number of connections
of one node to another and can be calculated using the
corrcoef in MATLAB. The correlation coefficients for
HCESN-KM, HCESN-GA, HCESN-DE, and HCESN-
PSO reservoirs with the p value of 0, were calculated as
0.987, 0.982, 0.986, and 0.984 respectively. Also, the
correlation coefficient relationship between outdegree
and number of nodes for HCESN-KM, HCESN-GA,
HCESN-DE, and HCESN-PSO reservoirs was calculated
as 0.968, 0.971, 0.978, and 0.989, respectively. As well as,
we calculated the correlation coefficient for each of the
10 clusters. As shown in Table 2, for each cluster as a
low-level sub-networks, power-law properties exist.
Hence, the proposed HCESNs have some biological fea-
tures, such as scale-free distribution [38].

4.5 Supervised learning
As mentioned in Section 3, to maintain the echo state
property, the connection matrix Wres of the new reser-
voirs must be attentively selected. And the input and the
feedback connections (Win and Wfb) could be arbitrarily
determined using the uniform distribution. The output
connection matrix Wout using supervised learning must
be adjusted. In such a way that the RNN with the echo

Table 2 The characteristics of the scale-free and small-world for ten clusters

Clusters 01 02 03 04 05 06 07 08 09 10

Reservoir type HCESN-KM

Cluster size 121 115 99 92 103 86 88 108 85 103

Average path length 2.0370 2.0713 1.9376 1.9741 1.9987 1.9586 1.9321 2.0119 1.9836 1.9989

Clustering coefficient 0.3955 0.4001 0.4828 0.4767 0.4097 0.4495 0.4698 0.4711 0.4247 0.4092

Correlation coefficient 0.9851 0.9897 0.9848 0.9860 0.9881 0.9898 0.9824 0.9875 0.9802 0.9825

Reservoir type HCESN-GA

Cluster size 94 102 86 110 93 95 127 108 103 82

Average path length 1.9801 1.8813 1.9616 2.0751 1.9668 1.9696 2.0833 2.0041 1.8874 1.8931

Clustering coefficient 0.4604 0.4101 0.4186 0.4369 0.4867 0.4491 0.4554 0.4798 0.4366 0.4287

Correlation coefficient 0.9889 0.9834 0.9811 0.9799 0.9871 0.9810 0.9900 0.9839 0.9834 0.9812

Reservoir type HCESN-DE

Cluster size 98 105 104 101 78 116 93 117 85 103

Average path length 1.9789 2.0854 2.0156 1.8809 1.8857 2.0015 1.9411 2.0048 1.9607 1.8787

Clustering coefficient 0.3454 0.4605 0.4251 0.4249 0.4357 0.4491 0.4854 0.3981 0.4257 0.4602

Correlation coefficient 0.9801 0.9800 0.9802 0.9851 0.9891 0.9901 0.9889 0.9813 0.9864 0.9860

Reservoir typ HCESN-PSO

Cluster size 83 107 99 103 121 84 99 108 87 109

Average path length 1.9121 2.0103 1.9526 1.8214 1.9678 1.9423 1.9512 1.9943 1.8837 1.9949

Clustering coefficient 0.4221 0.4787 0.4874 0.4609 0.4112 0.4425 0.4824 0.4842 0.4214 0.4782

Correlation coefficient 0.9827 0.9881 0.9953 0.9910 0.9871 0.9890 0.9959 0.9893 0.9872 0.9901
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state property can approximate the following sample
dataset with the length of nr.

u n1ð Þ; yd n1ð Þf g: u n2ð Þ; yd n2ð Þf g:…: u nrð Þ; yd nrð Þf g
ð7Þ

After throwing away the initial transition n0, we must
find Wout to reduce the mean square error (MSE).

MSE ¼ 1
.

nr−n0ð Þ
Xnr

t¼n0þn1
d tð Þ−W out x tð Þ

u tð Þ
� �� �2

ð8Þ
where u(t) and yd(t) is input and desired output vectors
at the time(t), respectively. It should be noted that d(t) =
tanh−1yd(t), x(t) = [x1(t), x2(t)…xn(t)]

T and (n) denotes the
echo state parameters. An inverse matrix is used to
predict this linear regression model. Hence, the matrix
Wout is obtained as follows:

W out ¼ MG
−1D

	 
T ð9Þ
where T is the transpose. The (N + 1) × (nr − n0) dimen-
sional matrix is given as follows:

MG ¼
x1 n0 þ n1ð Þ… xn n0 þ n1ð Þ u n0 þ n1ð Þ

⋮ ⋱ ⋮
x1 nrð Þ… xn nrð Þ u nrð Þ

2
4

3
5

ð10Þ

D ¼ d n0 þ n1ð Þ…d nrð Þ½ �T ð11Þ
It should be noted that the generalized inverse matrix

computation (MG) has been performed with the pinv
function in MATLAB [26].

5 Test criteria
5.1 Assessment of HCESNs capabilities
5.1.1 Mackey-Glass dynamic system
Mackey-Glass (MG) dynamic system, with a long
time-delay δ, is an appropriate test-bed for the pre-
diction of nonlinear chaotic systems [26, 44–46]. This
system has been used by a challenging problem to
verify the efficiency of the new HCESNs. The MG
differential equation is given by

ds
dt

¼ 0:2� s t−δð Þ
1þ s t−δð Þ10 −0:1s tð Þ ð12Þ

where s and δ denote the state and the time-delay,
respectively. A chaotic time series occurs in the Mackey-
Glass when δ ≥ 17. The reason for the turbulence of this
system is that the slightest change in the initial

conditions has the most significant impact on the system
output.
Also, for solving differential equations with constant

delay, the function of the dde23 in MATLAB, which
contains a set of training and test data, is used. In par-
ticular, instead of the predefined value of the dde23
function, we determine absolute precision with (1e–16).
To compare, we perform our experiments, according to
datasets supported by Jaeger and Haas [25] and as well
as Deng and Zhang [26] (Table 3).

5.1.2 Laser time series
The laser time series is broadly employed to testing a
variety of prediction methods of the real-world chaotic
time series [25, 44, 47–49]. We used datasets 18 and 19
as used by Deng and Zhang [26].

5.2 Formulations of the problem
At this stage, the accuracy of HCESNs is evaluated in
100 independent runs, either at an identified observation
point or for whole specified points. In particular, for the
MG system, 84 instances from the learning dataset by
length nk were selected as follows: {u(nr + 1); yd(nr + 1)} ,
u(nr + 2); yd(nr + 2)} to {u(nr + 84); yd(nr + 84)}.

NRMSE84 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP100

i¼1 yid nr þ 84ð Þ−yi nr þ 84ð Þ	 
2
P100

i¼1 yid nr þ 84ð Þ	 
2
vuut

ð13Þ

where yi(t) denotes the network output in the ith test to
predict the laser time series problem. Also, we consid-
ered the observation point t = nr + 84 and performed 100
separate experiments. To compute the normalized root
mean square error (NRMSE). This time, we use all 200
data points in the experimental dataset, namely nt +
1 to nt + 200, to calculate NRMSE for 100 unique
implementations.

NRMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP100

i¼1

Pnrþ200
m¼nrþ1 yid mð Þ−yi mð Þ	 
2

P100
i¼1

Pnrþ200
m¼nrþ1 yid mð Þ	 
2

vuut ð14Þ

Table 3 Mackey-Glass training and testing datasets

Sample datasets (δ) Delay Conversion

1 17 tanh(s − 1)

2 30 (0.3 tanh (s − 1)) + 0.2)

3-17 17-31 (0.3 tanh (s − 1)) + 0.2)
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5.3 Enhanced echo state property
According to the definition given by Jaeger in [25], if
the maximum eigenvalue of the reservoir connection-
weight matrix |⋋max|(W

res) or spectral radius is no
more than one, then ESN has echo state. It is fully
compatible with the experimental studies of Deng and
Zhang [26], that is, when the network has a spectral
radius of more than one, the ESN is not able to work
correctly. But they succeeded in enhancing the echo
state property by increasing the spectral radius till the
boundary of 6.0 in SHEEN.
Here, we performed 4 experiments using the datasets 1,

2, 18, and 19 on the Mackey-Glass system and laser time
series prediction to check the echo state properties of

the HCESNs. We calculated the NRMSE84 exam errors
by increasing the spectral radius by the step size of 0.1.
Our empirical results are illustrated in Figs. 6, 7, and 6,
respectively. The following parameters are considered for
testing HCESNs in datasets 1 and 2.
Reservoir capacity H ×H = 200 × 200, number of in-

ternal nodes nin = 500, number of new local node con-
nections nlocal = 5, number of backbone nodes
nbackbone = 5, input connection-weight Win, and feedback
connection Wfb were tuned by uniform distribution from
− 1 to 1. The output connection-weight Wout was ob-
tained by supervised learning. The empirical results in
the Mackey-Glass system for HCESNs are illustrated in
Figs. 4 and 5, respectively.

Fig. 4 NRMSE84 test error on dataset 1

Fig. 5 NRMSE84 test error on dataset 2
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The parameters used in datasets 18 and 19 are the
same as those used in datasets 1 and 2, except that
the number of new local neuron connections nlocal =
1, input connection weight Win, and feedback connec-
tion Wfb were tuned by uniform distribution from −
1 to 1. Our empirical results in the Mackey-Glass
system for HCESNs are illustrated in Figs. 6 and 7,
respectively.
The results demonstrate that the HCESN based on

PSO clustering is capable of having a more extensive
range of the spectral radius than the other three net-
works discussed in this paper. Even at a spectral radius

more significant than 1, this reservoir can significantly
enhance the echo state property.

5.4 HCESN’s capability to nonlinear approximation
5.4.1 Mackey-Glass system
As mentioned above, for an MG system, by increasing
time-delay δ, the system becomes extremely nonlinear.
In particular, a chaotic time series occurs when δ ≥ 17.
Therefore, the approximation of the Mackey-Glass sys-
tem using the echo state network or any other model
with increasing δ is almost impossible, and it is undoubt-
edly a significant challenge. Deng and Zhang [26]

Fig. 6 NRMSE84 test error on dataset 18

Fig. 7 NRMSE84 test error on dataset 19
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applied the SHESN dynamic nonlinear approximation
capability first to model a dynamic MG system with a
high delay. To compare SHESN with ESN, they used
datasets 3–17, which included variable time delays of
17 to 31, respectively. In Table 5, the standard devi-
ation for our HCESNs and other ESNs are listed. By
increasing δ to 26 and beyond, the nonlinear approxi-
mation of ESN dramatically increases, which means
that the nonlinearity dynamics of the system are
much more critical, and it is very complicated to deal
with this problem. For instance, when δ = 29, the
SHESN and new HCESNs have a suitable perform-
ance. However, HCESN-PSO has higher accuracy than
SHESN (Fig. 8).

5.4.2 Laser time series prediction
In Figs. 6 and 7, the prediction capability of HCESNs
was evaluated based on datasets 18 and 19. Then, the
prediction accuracy of HCESNs with SHESN in the
spectral radius of 4.0 was compared, as mentioned by
Deng and Zhang [26]. The results were also compared
with the prediction accuracy of the entirely random ESN
reservoir with a spectral radius of 0.9 in [26]. In Table 4,
the list of NRMSE test errors in 100 independent runs is
shown.
The standard deviation for ESN, SHESN, and HCESNs

is also shown in Table 5 for delays of 17 to 31.
As shown for ESN in [7, 25], if the spectral radius

|⋋max|(W
res) is greater than 1, the echo state property

(ESP) does not continue. But Deng and his colleagues
[26] have shown that in the natural growing SHESN net-
work, by permitting a wide scope of the acceptable spec-
tral radius, the ESP increases.

According to [26], the largest eigenvalue in (i = 1)
for both ESN and SHESN is considered 1.5. The
slope of the curve corresponding to the ESN reser-
voir is very slow, and the size of each 100 eigen-
values is about 1.5. At the same time, SHESN
reservoir eigenvalues are heavily decreased. And
only 1.2% of all eigenvalues are larger than 1. How-
ever, the distribution of all eigenvalues follows the
power law, in which the correlation coefficient with
p = 0 is 0.989. We also achieved this fantastic
phenomenon at HCESNs. So, we calculated the
average of the total eigenvalues in 100 independent
runs. Experimental results confirm that magnitudes
of maximum eigenvalues are less than 1 and follow
the power law. The correlation coefficients for
HCESN-KM, HCESN-GA, HCESN-DE, and HCESN-
PSO were 0.9671, 0.986, 0.988, and 0.992, respect-
ively, as shown in Fig. 9.

6 Conclusions
In this study, an enhanced ESN was proposed, which
includes a classic clustering algorithm and three

Fig. 8 The NRMSE test error against time-delay δ for HCESNs in MG

Table 4 NRMSE test error for prediction accuracy of laser time
series

Network type Dataset 18 Dataset 19

Original ESN 0.1422 0.0804

Natural growth SHESN 0.1148 0.0558

HCESN-KM 0.1140 0.0510

HCESN-GA 0.1138 0.0497

HCESN-DE 0.1132 0.0501

HCESN-PSO 0.1107 0.0442

Akrami et al. EURASIP Journal on Wireless Communications and Networking         (2020) 2020:64 Page 11 of 14



evolutionary optimization algorithms called as
HCESN-KM, HCESN-GA, HCESN-DE, and HCESN-
PSO. Results showed that PSO-based clustering is
faster and has a lower cost function than the other
proposed clustering. Therefore, HCESN-PSO is rec-
ommended for reservoir design. As well as, results in
Section 4.3 denote that HCESN-PSO has the shortest
characteristic path length and the highest clustering--

coefficient, which includes the scale-free property and
small-world phenomenon. We investigated two kinds
of power-law distribution, such as the number of
nodes vs. outdegree and outdegree of nodes vs. rank.
We presented several natural incremental growth rules
that include such as (a) average path length, (b) high
clustering-coefficient, (c) scale-free property, (d) dis-
tributed and hierarchical architectures. We reviewed
all the behaviors of HCESNs and applied them to the
Mackey-Glass system and the laser time series predic-
tion. The empirical results confirm that, compared
with the utterly random ESN by Jaeger [7], as well as

the SHESN proposed by Deng and Zhang, our new
HCESNs networks, specially HCESN-PSO, which in-
clude thousands of neurons or even more, can signifi-
cantly enhance the echo state property (ESP) and
approximate the highly complex nonlinear dynamic
systems. Such an efficient system is likely to represent
some biological neural properties, such as the small-
world phenomenon and scale-free distribution. In
order to applications in other areas of research and
applied developments, we suggest applications of the
proposed method in environmental and energy studies
which uses soft computing techniques [50–52]. This
study also tried to make the HCESNs architecture
more robust against noise on specific (hub) neurons
by searching for the best centers of the backbone neu-
rons. Undoubtedly, optimization methods with math-
ematical proofs and accurate statistical analysis of
improved echo state property of ESNs are some of the
most exciting and important issues that will be investi-
gated in the future.

Table 5 Standard deviation for Mackey-Glass system

Time deley δ(x10−4) 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Orginal ESN 0.032 0.159 0.053 0.181 0.068 0.276 0.398 0.117 0.794 0.233 0.271 0.624 2.551 0.968 2.755

Natural Growth SHESN 0.037 0.149 0.031 0.268 0.048 0.384 0.364 0.171 1.769 0.171 0.337 0.847 0.689 0.889 2.191

HCESN-KM 0.038 0.136 0.021 0.189 0.035 0.375 0.353 0.169 1.365 0.138 0.315 0.738 0.588 0.811 2.121

HCESN-GA 0.037 0.149 0.061 0.235 0.058 0.380 0.369 0.172 1.475 0.175 0.338 0.891 0.690 0.891 2.195

HCESN-DE 0.039 0.148 0.057 0.221 0.042 0.375 0.385 0.138 1.487 0.179 0.327 0.898 0.694 0.910 2.194

HCESN-PSO 0.036 0.141 0.045 0.215 0.069 0.371 0.391 0.168 1.451 0.169 0.331 0.824 0.701 0.881 2.178

Fig. 9 HCESNs in a wide range of 100 eigenvalues with a spectral radius of 1.5
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