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Abstract

High-performance remote sensing payload communication is a vital problem in air-borne and space-borne
surveillance systems. Among different remote sensing imaging systems, video synthetic aperture radar (ViSAR) is a
new technology with lots of principal and managerial data which should be compressed, aggregated, and
communicated from a radar platform (or a network of radars) to a ground station through wireless links. In this
paper, a new data aggregation technique is proposed towards efficient payload transmission in a network of aerial
ViSAR vehicles. Our proposed method is a combination of a recent interpolation-based data hiding (IBDH)
technique and visual data transformation process using discrete cosine transform (DCT) which is able to outperform
the reference method in terms of data aggregation ability.
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1 Introduction

Video synthetic aperture radar (ViSAR) is a new imaging
mode of SAR to generate video sequences [1, 2]. ViSAR is
recently used for aerial remote sensing imaging with air-
borne radar platforms. Despite the conventional SAR
sensors for capturing still images, communication data rate
needed for ViSAR sensors is extremely more of which the
current implemented systems mostly do not send their
acquired data through wireless communication links. In fact,
they have to store the data into memory and after landing,
data is transferred physically to remote sensing surveillance
centers to be analyzed. This shortfall is caused by two rea-
sons; at first, frame formation process (like SAR image
formation) is a relatively complicated and time-consuming
procedure. Thus, while the imaging system in ViSAR mode
has to generate many frames, for example 16—24 frames per
second, this issue would be a big challenge. Researchers who
are working on ViSAR imaging techniques have a substan-
tial focus on this point that computational complexity must
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be reduced alongside improving the frame acquisition
quality. In addition, using powerful computers, high-
performance hardware implementation and benefits of par-
allel programing can speed up the formation process. The
second issue that can be noted is to have a large data size
for video frames (including processed frames from raw data
and other related data for control and managerial informa-
tion) that should be compressed and aggregated to be trans-
ferable for wireless transmission through a low-bandwidth
link. Otherwise, we have to use the ViSAR technology just
for non-real-time applications whereas the main idea behind
ViSAR is to apply it for real-time monitoring and surveil-
lance in remote sensing, smart cities, and civil applications
in all the time and all weather (for instance, natural hazards
and traffic control even in dark environment without any
light source). Here, we do not work on efficient image/frame
formation because it is a problem for signal processing ex-
perts to process raw data of radar sensing. Instead, we try to
aggregate relevant managerial and control data and embed
this data into the video frames considering specific features
of SAR videos. This can reduce the data size significantly
and is indeed a process towards data compression.
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Therefore, in order for ViSAR data to be communi-
cated between two aerial radar platforms or an air-borne
imaging radar and a ground control station (they can be
assumed as a ViSAR sensor network), we should use
such compression or aggregation techniques to reduce
remote sensing data size. In details, remote sensing data
always includes some payload information about geo-
graphic systems, control data, and so on, in addition to
the main images and videos. Because of the low band-
width in radar communication systems, there is no solu-
tion except to apply lossy/lossless data aggregation
techniques to integrate the payloads and radar data (raw
data or processed videos). On the other hand, sending
compressed raw data is difficult and not sufficiently ef-
fective for real-time systems, so our preference is to con-
vert raw data into formed video frames and then to
compress and transmit the frames along with some pay-
loads aggregated in them. As a consequence, the main
aim of this research is ViSAR payload communication
through a data hiding-based aggregation. For integrating
a general bit-stream data and video frames, a recently
proposed watermarking scheme is selected as the main
reference method to embed bit stream into ViSAR
frames. Although the selected reference method is really
powerful for quasi-sparse image data like ViSAR frames,
however, we wish to improve its embedding capacity
while keeping the final imaging quality as much as pos-
sible. The reference method can be followed in [3] and
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is a method based on interpolation-based data hiding
(IBDH) towards watermarking using an interpolator and
error histogram computation [4, 5]. The core interpolator
in our research is similar to [3], but some other interpola-
tors can also be used, For example, in [6], the authors have
provided a novel efficient optimization algorithm for tree-
based classification that can be adopted as a fast
interpolator. This method is the first efficient algorithm
for optimizing classification trees which can help our
problem, see more about spatial interpolation of ViSAR
frames and its pre-processing in [7, 8]. In addition, many
similar works exist that are about interpolation-based data
embedding and histogram processing [9-17]; readers can
follow them. Also, more information about interpolators
can be found in [4, 18-20]. Our focus in this research is
on histogram transformation using a decomposition trans-
form; however, an additional histogram processing like [5]
is utilized. We combine the reference method with DCT
transform to change error histogram in order to find more
suitable places in the frames to add hidden bits. The pro-
posed technique can be used for lossless payload aggrega-
tion in an IoT-enabled ViSAR sensor networks (Fig. 1),
since radar networks have been nowadays a hot topic of
research [21-23]. In addition, our finding may be useful in
other visual data and sensory systems [24—26]. This paper
is organized as follows. Section 2 presents the proposed
approach, Section 3 contains all simulation results, and
Section 4 is the conclusions.

Fig. 1 A typical ViSAR sensor network with air-borne radar platforms towards Internet of ViSAR vehicles
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2 Proposed method

In order to extend the reference IBDH algorithm [3], we
use DCT as a decomposition transform to change the
error image histogram compared to the basic algorithm.
In fact, we want to create a quasi-sparse frame [27] with
less zero pixels (fully black pixels) and much more non-
zero pixels which their gray levels are very near to zero.
One of the most popular ways to modify interpolation-
based data hiding techniques is to use a better interpolator
or histogram modification through histogram shifting and
histogram adjustment. As IBDH method in [3] is a most
recent version of IBDH techniques that uses a novel
interpolator alongside a histogram modification process
[3], we wish to combine this method with another process
based on discrete cosine transform (DCT) to improve its
aggregation performance. In this regard, we use DCT with
different patch sizes to make a combinational approach
entitled interpolation-based data hiding using discrete co-
sine transform (IBDH-DCT). Our experiments show
medium-sized patches are more effective. If a transform is
able to create a quasi-sparse image with less zero pixels, it
is probably able to improve IBDH in ViSAR frames. As we
know, the mentioned transform can be invertible gener-
ally, but in the use of it to make transformed frames, we
have to scale and quantize the coefficients matrix, so after
re-scaling, a loss may be seen because of the quantization.
However, this loss does not affect the watermark/
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embedded data, but the final data hiding approach might
be non-reversible. In the next sub-sections, basic concepts
around DCT will be reviewed at first, and then, the pro-
posed method will be presented.

2.1 2D DCT for frame transformation

DCT is one of the most important decomposition
transforms for signal and image processing. For ex-
ample, JPEG compression works based on a core DCT.
This transform avails the cosine basis functions which
can be orthonormal. An important property of DCT is
its real coefficients compared to discrete Fourier trans-
form (DFT) or fast Fourier transform (FFT). Another
property of DCT is lower computational complexity
which makes it appropriate for real-time multimedia
coding. Furthermore, with respect to energy compres-
sion for high-performance image coding (i.e., max-
imum information at the lowest file size), DCT is a
powerful transform like Karhunen Loeve transform
(KLT), but with a lower complexity. Equation (1) shows
2D DCT for two-dimensional data like gray-scale
frames. Also, Eq. (2) denotes the inverse DCT (IDCT).
X(k, 1) as DCT coefficients are real and converted ver-
sion of an image/patch with size of N-by-N will be N-
by-N again (in below, x(m, n) shows the image pixels,
size of the source image is N x N, i.e, 0<m, n<N-
1). The basis functions are seen in Fig. 2 for N = 8.
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Fig. 2 Sixty-four virtually colored DCT basis functions for 8 x 8 patch si

-'-E;%"

R
— . = mm
[ Emme W :
Bl
mel | e ol wim
e W o
W
N . - -
B |
*.I:,ﬂ_

e

. __ﬁ
it

[.-._A-—-

EEEEE

-

0 1

i’

1

W
e
m p——

i

=)

.ﬁ!!l:

ze, where M =N =8




Khosravi and Samadi EURASIP Journal on Wireless Communications and Networking

N is the patch size in which for an N-by-N patch,
there are N” basis functions.

X(k,1) = a(k mzz;)nz::xmn cos <m+2> >cos<£<n+%>n>
where a(s) \/7 Jors =
7 Otherwise
(1)
sma-E Sz (3o (5 9
(2)

DCT is also computable in matrix form of which x
is the image matrix, C is the DCT matrix, and the
transformed image matrix is X from Eq. (3). The
functions of DCT are generally defined as Eq. 4.
Figure 3 shows virtually texturized results for differ-
ent patch sizes in a sample ViSAR frame. It is obvi-
ous that each patch is different in terms of ability of
creating a quasi-sparse illustration.
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X=CxC'
1
Wiy i=0

where C(i, j) \/ﬁ

2 cos L ‘+1 s i>0

N ar
and similarly =C'XC

(3)

F(k,{,m,n,M,N) = a(k)a(l) cos (15\[ (m +%>n> cos (AL/I (n +%)J‘[);

0<k,m<N-1
0<l,n<M-1

(4)

2.2 Quasi-sparse bit injection using IBDH and DCT

The reference method of IBDH has been discussed in
[3]. This method is applied to ordinary ViSAR frames,
and the only histogram processing is performed using
some modification or shifting techniques like [5] which
a little help IBDH find more suitable places for injecting
payload bits. Our experiments show that a transform
that can basically change histogram of the ViSAR frames

1-by-1 Patch

50
100
150
200

250 Ty
50 100 150 200 250

8-by-8 Patch

50 5 2
100 &
150 [
200 §
250 k

50
100
150
200
250 &

50 100 150 200 250
64-by-64 Patch

50
100 §
150 f
200 §

50 [
100 &
150 &
200
250 &

50 100 150 200 250

sample frame (256 x 256)

2-by-2 Patch

50 100 150 200 250
16-by-16 Patch

50 100 150 200 250
128-by-128 Patch

50 100 150 200 250
Fig. 3 DCT decomposed frames with different patch sizes. This figure shows virtually texturized results for 2-by-2 to 256-by-256 patch sizes in a

4-by-4 Patch

100
150 &
200
250

50 100 150 200 250
32-by-32 Patch

50}
100 §
150 (8
200 f
250 i

50 100 150 200 250
256-by-256 Patch

50
100
150
200
250 B

50 100 150 200 250




Khosravi and Samadi EURASIP Journal on Wireless Communications and Networking

towards a quasi-sparse condition is more effective in
comparison to usual histogram processing techniques
which do not work on the frames to be quasi-sparse.
However, we can use both histogram modification and
histogram transformation concurrently. To do so, we
use a basic theory like IBDH in [3], a histogram modifi-
cation technique as per [5], and a DCT-based decom-
position process towards histogram transformation. Our
proposed method is given in Algorithms 1 and 2 for
sender side and receiver side, respectively. All DCT
patches are assumed as a single image because size of
the original frame and its transformed version (towards
quasi-sparsity) should be the same. Therefore, a plotted
histogram corresponds to a transformed image, not a
specific patch.

Algorithm 1: The embedding process in IBDH-DCT at the sender side.

Input: An original host frame and hidden data.

Procedure

1) Compute DCT coefficients of the original host frame.

2) Scale the DCT coefficients matrix into an interval of [0,255].

3) Quantize scaled DCT coefficients matrix according to a digital
image and consider as a new host frame with quasi-sparse
spatial distribution.

4) Down-sample the quasi-sparse host frame (standard down-sampling
is used).

5) Calculate a reconstructed version (up-scaled interpolated frame)
of quasi-sparse host frame using interpolation technique.

6) Calculate an error image by subtraction of the original quasi-sparse
host frame and its interpolated version considering histogram
modification.

7) Calculate four key parameters of the reference IBDH technique based
on histogram of the error image.

8) Inject bits of hidden data into the quasi-sparse host frame according
to key parameters in the prior step and create a watermarked frame.

9) Transfer the watermarked frame to the receiver along with all key
parameters computed at sender side.

Output: The watermarked frame and key parameters related to the error

image.

Algorithm 2: The extraction process in IBDH-DCT at the receiver side.

Input: Receive watermarked frame, and the key parameters in Algorithm 1.

Procedure

1) Extract the hidden bits and the error image through an inverse
function in IBDH theory (see the main source for IBDH details).

2) Down-sample the watermarked frame (standard down-sampling is
used to have a down-sampled version which is exactly equal to the
down-sampled version of original frame in Algorithm 1).

3) Re-construct the down-sampled frame of the prior step by
interpolator to generate the interpolated frame.

4) Restore the quasi-sparse host frame by adding error image and the
interpolated frame.

5) Rescale the quasi-sparse host frame to generate approximate DCT
coefficients.

6) Compute an approximate version of the rescaled quasi-sparse host
frame through inverse DCT as the original host frame.

Output: The original host frame and injected bits.

Algorithm 1 includes all steps of data embedding
process at the sender, and Algorithm 2 contains steps
of the reverse process at the receiver side which is
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named extraction. The proposed method is not
although fully reversible in terms of the host image
reversibility because the frame transformation process
is lossy; however, this transformation process is near-
lossless with a loss that can be ignored. Since we use
a real decomposition transform, near-lossless happens
(for example in the case of FFT with complex basis, a
huge loss happens). Therefore, all the process can be
near-lossless. On the other hand, because there is a
full reversibility for the hidden data, we can compute
quality metrics in the transformed samples.

3 Results and discussion

As dataset, ViSAR frame with size of 256 x 256 is
selected; see a sample input frame in Fig. 6 (part:
main frame). For simulating the proposed algorithm,
we used Matlab R2013a through a device with 2.53
GHz CPU (Intel CFI i3 350M Core i5), and 4.00 GB
RAM. It is explicit that a DCT-decomposed version
of each image under 1-by-1 patch is equal to itself;
thus, this specific patch means “no decomposition
exists.” The ViSAR frames are very low energy with
a histogram density near to zero. Therefore, these
frames have a different behavior in comparison to
ordinary images. They may be according to Markov
random field (MRF) neighborhood system, and with
some textural features. We compare all the proposed
method with the reference method in [3], and all re-
sults are given in Table 1 and Fig. 4 for aggregation
and quality performance and also Table 2 and Fig. 5
for execution times (towards complexity). The qual-
ity assessment metrics are PSNR, SSIM, and EPI [2,
3, 6, 7] wherein the first two cases are for similarity
evaluation and the third one shows ability of each
method in using edges. Capacity is the main factor
which we aim to increase it. All running times are

Table 1 Quality and aggregation performance in the reference
method [3] and the proposed approaches entitled IBDH-DCT
(best results are shown in italicized form)

Methods Patch size  Metrics
Capacity (bit) PSNR (dB) SSIM EPI

IBDH method 1 x 1 15503 486835 099868 10845

in [3]

BDH-DCT ~ 2x2 2950 498114 099986 1013

(proposed) 11315 514128 099991 099835
8x8 24536 50995 099944 10313
1616 28909 506815  0.9977 10828
32x32  2959% 505888 099432 1.1114
64 x 64 29800 505508 099311 1.1281
128 x 128 28270 505422 099355 1.1262
256 X 256 28584 505660 099357 1.1328
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Fig. 4 An average of different measures for the reference method (IBDH) and proposed IBDH-DCT. Just best patches (32-by-32, 64-by-64, and
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presented in Table 2 to find out more things about
computational complexity of both methods. Equa-
tions (5), (6), and (7) describe our quality metrics,
and Eq. (8) gives average capacity index (API) which
is directly computed based on the aggregation per-
formance (embedding capacity). In these equations, x
and y are the host frame and watermarked frame.
ACI is a metric for video communications. A similar
metric in such a situation is bits per pixel (BPP)
which is usually computed for still images, not vid-
eos. BPP, of course, can be computed for a single
frame, but its result is not as reliable as ACI values
such that we have to introduce an average on BPPs
in terms of video sequences. ACI is explicitly com-
puted for video data as per Eq. (8). ACI is more reli-
able than BPP because it has an intrinsic scaling
factor in itself through two parameters (a and f) to
be set. In addition, relationship between BPP and

ACI is a little similar to the case of MSE versus
PSNR of which we know MSE cannot provide a
newer thing compared to PSNR (because they are in-
terpretation of each other). Currently, we have ad-

justed a = % and 8 = 1000.
255
PSNR =20 log
1 256 256 2
e T )
(5)
SSIM = 22”"”y2 22“x‘7y2 T2y (6)
up; +uy 0y +0, 00y

Table 2 Complexity analysis through execution times (best results are shown in italicized form)

Methods Patch size Execution times (s)
Time elapsed for image Time elapsed for bit Total
transformation embedding process time
IBDH method in [3] 1x1 0 748 7.48
IBDH-DCT (proposed) 2%x2 11.92 537 17.29
4x4 7.16 6.96 1412
8x8 5.95 1040 1635
16 X 16 498 641 11.39
32 %32 541 6.34 11.75
64 x 64 4.82 645 11.27
128 x 128 497 597 10.94
256 X 256 4.84 9.13 13.97
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Fig. 6 Main frame alongside two DCT-decomposed frames using small-sized patches




Khosravi and Samadi EURASIP Journal on Wireless Communications and Networking

Z Z ‘ Yi-1,j-17Vit1,j+1 |
J

12

Z | Xi-1,j-1—Xi+1,j+1 |
i

EPI =

E Capacity (bit)
All frames /
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(8)

The simulation results clearly show that DCT-
based approach can be effective for sample frames
compared to the reference method. It is noticeable
that all combinational forms based on DCT decom-
position are more complex than the reference
method because two image transformation steps (dir-
ect + inverse) should be performed in them, in
addition more time is needed to find suitable places
for injecting bits because their histograms are com-
plicated. However, this more execution time of the

Average Capacity Index (ACI) = a
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proposed method is a cost for having better aggrega-
tion performance. Another cost is a little loss for
just host frame in combinational approaches which
would be acceptable and optimized in most of real-
world applications.

Table 1 shows some smaller patches cannot outperform
the reference method; however, 32-by-32, 64-by-64, 128-
by-128, and 256-by-256 patches have recorded the best
performance in terms of similarity measures, edge hand-
ling indicator, and aggregation capacity (italicized values).

According to Table 2, among winner proposed
approaches, 32-by-32, 64-by-64, and 128-by-128 patches
have recorded minimum execution time. Figures 6, 7,
and 8 illustrate decomposed frames from a sample frame
and their corresponding histograms. Figure 6 includes
small-sized patches (2-by-2 and 4-by-4), Fig. 7 is for
medium-sized (8-by-8, 16-by-16 and 32-by-32), and
Fig. 8 is for large-sized patches (64-by-64, 128-by-128
and 256-by-256).

4 Conclusions
In this research, a new data aggregation method based on
discrete cosine transform and quasi-sparse bit injection
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Fig. 7 Three DCT-decomposed frames using medium-sized patches
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Fig. 8 Three DCT-decomposed frames using large-sized patches

for IoT-enabled ViSAR sensor networks was proposed to-
wards enhancing the embedding capacity (or aggregation
performance). This method could outperform a recent
data hiding approach which was used as a reference
method in our work. We used four various metrics to
evaluate efficiency of the proposed method in terms of
general frame quality (similarity and edge handling) and
aggregation performance, and finally, all of them approved
its suitability. One of the findings of our research is to
show the importance of checking different patch sizes. In
our experiments, average-sized patches and upper-average
cases were the best selections. Moreover, a study on com-
plexity using execution times was performed which can
help us find the best DCT patches. As a next idea of re-
search, we can work on more suitable decomposition
transforms to create a quasi-sparse space in order to im-
prove the aggregation performance once again in SAR/
ViSAR systems. In addition, finding a high-performance,
fully lossless decomposition transform can make the ag-
gregation mechanism reversible which may be important
in some specific applications.

There are many decomposition techniques like KLT
that can be used for this application, but the main focus

of our research was on how to combine a state-of-the-
art data hiding method with a powerful decomposition
technique towards quasi-sparse bit injection. Of course,
investigation on application of other transforms (instead
of DCT) can be done as a future work. Specifically, KLT
is not suitable for real-time processing because of an
inherent high computational complexity compared to
DCT. FFT is a complex transform and is not therefore
suitable for this frame transformation towards quasi-
sparsity. One of the good ideas can thus be wavelet. In
the current version, just the process of extracting
injected bits is fully reversible (lossless).
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