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Abstract

For wireless transmission, radio-frequency device anti-cloning has become a major security issue. Radio-frequency
distinct native attribute (RF-DNA) fingerprint is a developing technology to find the difference among RF devices and
identify them. Comparing with previous research, (1) this paper proposed that mean (μ) feature should be added into
RF-DNA fingerprint. Thus, totally four statistics (mean, standard deviation, skewness, and kurtosis) were calculated on
instantaneous amplitude, phase, and frequency generated by Hilbert transform. (2) We first proposed using the
logistic regression (LR) and support vector machine (SVM) to recognize such extracted fingerprint at different
signal-to-noise ratio (SNR) environment. We compared their performance with traditional multiple discriminant
analysis (MDA). (3) In addition, this paper also proposed to extract three sub-features (amplitude, phase, and
frequency) separately to recognize extracted fingerprint under MDA. In order to make our results more universal,
additive white Gaussian noise was adopted to simulate the real environment. The results show that (1) mean feature
conducts an improvement in the classification accuracy, especially in low SNR environment. (2) MDA and SVM could
successfully identify these RF devices, and the classification accuracy could reach 94%. Although the classification
accuracy of LR is 89.2%, it could get the probability of each class. After adding a different noise, the recognition
accuracy is more than 80% when SNR ≥ 5 dB using MDA or SVM. (3) Frequency feature has more discriminant
information. Phase and amplitude play an auxiliary but also pivotal role in classification recognition.

Keywords: RF-DNA, Fingerprint recognition, Logistic regression, Support vector machine, Signal-to-noise ratio,
Radio-frequency authentication, Anti-cloning

1 Introduction
In recent years, with the development of mobile com-
munication system equipment and Internet of Things,
wireless transmission technology has played more and
more important roles in our daily life [1]. Compared with
wired network, wireless network is more convenient and
concise. Furthermore, in terms of cost, the wireless net-
work greatly eliminates the wiring and decoration costs.
However, intrusive attack on electronic devices is grow-
ing rapidly. Wireless signals have been often used as a
cornerstone ofmassivelymalicious attacks, and the broad-
cast characteristic of the wireless transmission makes the
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problem worse. It is essential to guarantee the safety of
information transmission, urging us to paymore andmore
attention to security problem and new countermeasures.
Physical layer security is the most basic part of wireless
transmission security. Many attackers invade security sys-
tem by copying the device and mocking the signal. For
example, the thief gets into the car by imitating the sig-
nals like car keys; the intruder enters confidential system
by mocking license signal emitted from cloning devices.
Countering RF device cloning is an issue that we urgently
need to solve. Fortunately, due to slight differences in
production, even the “same” devices will have some dis-
crepancy, which is hard for us to observe it directly. But
that still gives us opportunity to identify different RF
devices and find cloned equipment for malicious attacks.
At present, RF-DNA fingerprint technology is a rising
technology which is adopted to counter related risk such
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as device cloning. Traditional DNA refers to the biological
internal attributes and different individuals have differ-
ent DNA. Similarly, we think each RF device has its own
intrinsic physical attributes called RF-DNA fingerprint. In
this paper, by calculating the statistics features of many
signals emitted from one device, we could get “RF-DNA”
of each device. In other words, RF-DNA fingerprint is dis-
criminating features extracted from different RF devices
[2], and any two RF devices must have differences. The
differences are due to equipment noise and hardware
production error [3], reflected in their output signals.
The main mission of RF-DNA fingerprint technology

is to distinguish the signal and counter cloning, which
could be summarized as identification and authentication.
There are some RF devices and an unknown signal. We
need to identify which device that the unknown signal
came from and this is called identification. As for authen-
tication, an unknown signal claims that it came from one
RF device, and we need to find out how credible it is. It is
used to prevent the two different devices from using the
same RF-DNA.
Similar to biology DNA recognition, RF-DNA finger-

print technology could identify machines, which will have
great application in lots of field such as information
safety, criminal investigation, and evenmilitary command.
Once this technology become mature, malicious cloning
devices, in all likelihood, will be caught, and our wireless
information transmission will becomemore secure. So far,
some related research and progress have been done in this
field.
Over past two decades, there are many development

opportunities [4] and physical layer challenges [5] in RF-
DNA fingerprint issues. At present, it is a mainstream
method to classify the amplitude, frequency, and phase
features using MDA method [2, 6–9]. Firstly, research
[2, 6] enabled both identification and verification device
issues and extended the process from the three-class to
general N-class problems. By setting a priori distribution
of multivariate Gaussian distribution, posteriori probabil-
ity could be calculated [2, 10] to achieve authentication
simulation. Previous studies showed the impact on the
number of dimensions [7, 11] and the number of sub-
region [8] on classification accuracy. The more feature
dimensions will get better classification results. Addi-
tional, a signal could be divided into midamble region
and near-transient region. Choosing near-transient region
or inter-manufacturer of mobile communication system
could lead to higher classification accuracy [1, 9]. Besides
MDA, decision tree algorithm [12] or other classifiers are
also good methods to distinguish the signal. Classifier
selection is a crucial part of RF-DNA technology [13, 14].
SVM classifier [15] was applied on kernel-independent
component nonlinear feature extraction. Research [16, 17]
proposed to use probabilistic neural network based on

Bayesian classification as classifier. Generalized relevance
learning vector quantization-improved [12, 18, 19] is a
supervised machine learning algorithm based on MDA,
which shows better performance. As for the different
feature extraction methods, fast Fourier transform [20,
21], the short-time Fourier transform [22], and discrete
Gabor transform [10] could also be used to extract fea-
tures. Previous research had compared their performance,
including on time domain, wavelet domain [23], and spec-
tral domain [24] features. Some novel approaches such
as least square estimation [25] and the phase character-
istics [26] were proposed to extract transient fingerprint.
Also, research [20] separated the features apart and finds
more important features. Furthermore, some physiolog-
ical electrocardiogram signals [15, 17] were classified by
emerging artificial neural network [20, 27] directly, espe-
cially by recurrent neural network [28] which is worth
drawing lessons from.

2 Experimental process
In general, RF-DNA fingerprint technology is divided into
the following four steps:
a) Signal collection. Command the RF devices send out

a series of unintentional signals and the receivers could
collect them. Repeat the above process many times to col-
lect lots of signals. These signals should be considered
as security signals and will be used as training set in our
classifiers.
b) Feature extraction. Each signal has some own statisti-

cal features including on time domain, frequency domain,
and some other features. On the one hand, the purpose of
extracting features is to reduce dimension. On the other
hand, the features might have a more accurate description
of this signal. This step is the core step of RF-DNA fin-
gerprint technology. A good feature selection often means
good classification accuracy.
c) Set up database. After feature extraction, the feature

sequence of each signal is put into the database and should
be labeled where it comes from. These features are called
RF-DNA fingerprint.
d) Classification. The main mission is to distinguish

the label of an unknown signal sample. We could judge
by comparing the features of unknown signals with the
known samples features in the database.

2.1 Signal collection
There are four RF devices embedded with NRF24LE1
chip shown as Fig. 1 (Fig. 1 contains Fig. 1a and Fig. 1b.
Fig. 1b is an enlarged view of Fig. 1a). The only differ-
ence among these RF devices is the date of manufac-
ture which are 11th week of 2011, 31st week of 2011,
24th week of 2014, and 48th week of 2015, respectively.
The research signals in this paper were collected in May
2018.
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Fig. 1 Four RF device chips and one enlarged view. a Our four
sampling equipments and their base. We used them to collect
original signals. b An enlarged view of one RF device produced in
24th week of 2014

The experimental signal acquisition process was shown
as Fig. 2. Our personal computer (PC) controlled the
RF device to emit unintentional signals, and the detec-
tor received the signals displayed in the oscilloscope. The
detector recorded the original amplitude signal from these
four RF devices once the waveform is stable. Then, the
signals were pre-treated by Microsoft Decoder Sample.

All signals were obtained under 2.4G bandwidth, and the
sampling frequency is fs = 25.6MHz. For each RF device,
the valid signal lasts about 9 s and has about 230,000,000
sampling points in total.

2.2 Additive white Gaussian noise (AWGN)
The signals were collected in the closed basement, which
could be considered as a relatively low noise environ-
ment. The distance between RF device and detector is
only 5 m. Besides, the outside noise influences were lim-
ited as much as possible. However, such experimental
scene selection may not have versatility and might not
be suitable for practice use. Due to the limited experi-
mental conditions, our experimental scene is unique. The
laboratory environment data could not give a convincing
result of the performance. Therefore, AWGNwas taken in
order to evaluate performance under some less ideal con-
ditions andmake our results more universal. The SNRwas
calculated as formula (1).

SNR = 10 × log10

(
Signal power
Noise power

)
(1)

The noise power could be controlled by AWGN while
the signal power could be calculated from original ampli-
tude signal. Through analysis and calculation, the SNR of
original sampling signal is 30 dB. That means the signal
power is 103 times than noise power, which could be con-
sidered that there is hardly noise in sampling. And after
different AWGN, we could get the SNR={0, 1, 3, 5, 7, 10,
15, 20, 25, 30} dB environment, respectively.

2.3 Sample generation
Too short sample leads too poor classification accuracy
and too long sample is lack of persuasion, thus, taking
L = 218 = 262, 144 sampling plots as one sample is a plau-
sible choice. Considering that the sampling frequency is
fs = 25.6 MHz, each sample lasts about 0.01 s, which is in
a relatively high precision level.

Fig. 2 Experimental signal acquisition process. The PC controlled the RF device to emit unintentional signals and the detector received the signals
shown in oscilloscope, and the distance between RF device and detector is 5 meters
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For each RF device, we divided the original signal into
N = 2000 samples. According to the order of the pro-
duction data, the label catalogs of four RF devices are M1,
M2, M3, and M4, respectively. Signal samples from the
same device will be marked the same label. In order to
ensure the adequacy of training, we randomly take T =
1600 samples as training samples from each RF device.
The rest 400 samples are set as testing samples to assess
performance.
During the operation of signal collection, there are too

much bias that we could not fully observed. The system
should work directly on the original data with minimal
pre-processing. In practice, in order to reduce potential
signal collection bias and eliminate the dimension of the
data, the original signal sampling sequence x(n) should
be normalized. We take linearly normalization method
to handle every single original sample before the feature
extraction as formula (2).

a(n) =[ x(n) − min(x(n))] /[max(x(n))−min(x(n))]
(2)

where x(n) is original amplitude sampling signal and a(n)

is the normalized signal.
Then, the amplitude of each sample is normalized to the

range of [0, 1] as Fig. 3. These four diagrams show the 500
signal points of four machines, respectively. The unstable
signal in front was then abandoned. With the naked eye,
the signals from the four RF devices are very similar. It is
almost impossible to see from the figure that amplitude
profiles are visually distinctive. Therefore, we need extract
RF-DNA features to identify the differences.

3 Statistic fingerprint generation
3.1 Divide sample into sub-regions
Figure 4 elaborates the whole fingerprint generation
process. The first two boxes have been introduced in
Section 2. That is , there were k = 4 RF devices, and we
collected N = 2000 signal samples for each RF device.
However, a relatively ideal condition to extract features
is on a steady signal. Hence, we decided to divide one
signal sample into NR equal length sub-regions and thus
each region could be considered more stable in compari-
son. Additionally, the benefit of doing this is that you can
increase the dimension of fingerprint features. Bihl et al.
[7] showed that the increase of feature dimension may
increase the accuracy of classification. Figure 5 demon-
strates the sub-region allocation process. Then, we got
NR sub-regions and one complete sample region, totally
(NR + 1) regions. We extracted the features separately in
these (NR + 1) regions. Cobb et al. [8] analyzed the per-
formance of parameters NR value, and we take NR = 16
which is a reasonable trade-off.

3.2 Feature extraction using Hilbert transform
The most straightforward method to extract features is
using the original amplitude signal as our features. How-
ever, our results show that such classification accuracy
is less than 40% using only amplitude feature directly
without any transforms. Hence, we need to find more
feature dimension information. Using Hilbert transform,
instantaneous amplitude (IA) noted by a(n), instanta-
neous phase (IP) noted by ϕ(n), and instantaneous fre-
quency (IF) noted by f (n), totallyNF = 3 features could be
extracted from the given real-valued time domain signal.
Firstly, the IA signal was converted into I-Q sample

SC(n) = H(a(n)) = sI(n) + sQ(n). Next, the IP ϕ(n) and
the IF f (n) were calculated as formula (3).

ϕ(n) = tan−1
[
sQ(n)

sI(n)

]
, f (n) = 1

2π

[
dφ(n)

dt

]
(3)

3.3 Calculate statistical fingerprint
Compared with the previous method, we propose mean
(μ) feature could be added to our statistical RF-DNA fin-
gerprint. Taking IA feature a(n) as an example, mean,
standard deviation (σ ), skewness(γ ), and kurtosis(κ) were
calculated as formula (4)–(7). That is, NS=4 statistical fin-
gerprint were calculated in each (NR+1) regions and each
NF feature sequence. The hot picture of normalized sta-
tistical fingerprint was shown as Fig. 6, which calculated
average from 2000 signals for each RF device. It can be
intuitively seen from the diagram that M4 has more dif-
ference from other three RF devices. That will cause M4
to be more easily identified which is consistent with to our
results.

Mean : μ = 1
L

L∑
n=1

a(n) (4)

Variance : σ 2 = 1
L

L∑
n=1

(a(n) − μ)2 (5)

Skewness : γ = 1
Lσ 3

L∑
n=1

(a(n) − μ)3 (6)

Kurtosis : κ = 1
Lσ 4

L∑
n=1

(a(n) − μ)4 (7)

where a(n) denotes the normalized sample signal
sequence and L denotes the number of sampling points
and standard deviation σ is

√
σ 2.

Overall, for one sample i (i = 1, 2, . . . ,N ;N = 2000),
the way we generate fingerprint can be summarized as the
following three steps. (a) Divide the original signal sample
into NR=16 equal length sub-region and one total region.
Then, we got the vector as formula (8). (b) CalculateNF =
3 features signal within (NR + 1) = 17 regions as formula
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Fig. 3 Five hundred normalized signal points of four RF devices. We show 500 original samples of four RF devices. Those signals were normalized to
the range [0, 1]. The unstable signal in front was then abandoned. It is almost impossible to see from the figure that amplitude profiles are visually
distinctive. Therefore, we need extract RF-DNA features to identify the differences
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Fig. 4 The whole process of fingerprint generation. The whole RF-DNA fingerprint generation process including five steps: (1) four RF devices, (2)
collect N = 2000 samples, (3) divide one sample into NR=16 equal length sub-region, (4) calculate NF = 3 features, and (5) extract NS = 4 statistics
features

(9). (c) Extract NS = 4 statistics and generate 1 × 204
dimension single sample fingerprint as formula (10).

FRi =
[
FRi1

...FRi2
...FRi3

......
...FRi

(NR+1)

]
1×(NR+1)

(8)

Fx
i =

[
(FRi)a

...(FRi)ϕ
...(FRi)f

]
1×(NR+1)·NF

(9)

Fi =
[
μ(Fx

i )
...σ(Fx

i )
...γ (Fx

i )
...κ(Fx

i )

]
1×(NR+1)·NF ·NS=1×204

(10)

Finally, for each RF device, the training matrix composed
of T = 1600 separately training fingerprint sets is

Tr = [F1, F2, ..., FT ,]′T×204 (11)

4 Classificationmethods
Previous research [1, 2, 6–9] mostly used MDA as clas-
sifier for fingerprint recognition. MDA is an extension to
Fisher’s linear discriminant in multivariate statistical anal-
ysis when there aremore than two RF devices needed to be
classified. It effectively reduces the input data dimension-
ality by projecting it into a lower-dimensional space. We

Fig. 5 One sample signal was divided into NR equal length sub-regions. A schematic that we divided the signal equally. We divided one signal
sample into NR equal length sub-regions and thus each region could be considered more stable in comparison. Additional, the benefit of doing this
is that you can increase the dimension of fingerprint features
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Fig. 6 Average 2000 fingerprint for four RF devices at SNR = 30 dB. The heat map of normalized statistical fingerprint for four RF devices at SNR = 30
dB. That is our RF-DNA fingerprint

need to find projection vector b = (b1, b2, ..., b204)′. After
projecting, the aim is to maximize λ which is the ratio of
between-group to within-group sum of squares defined as
formula (12).

λ= b′Sbb
b′Swb

(12)

where Sb is the between-group scatter matrix and Sw is the
within-group scatter matrix. We could calculate that the
projection vector b is eigenvector of S−1

w Sb, and λ is the
associated eigenvalue reflecting group separation.
Based on the extracted 204-dimension fingerprint, we

apply two statistic methods which are SVM and LR as
classifiers to deal with Hilbert transform features for the
first time. The limitation of previous research is that the
classifiers can only identify the unknown sample belongs
to which device. LR can give the probability of belong-
ing to each class, which could be used to achieve RF
authentication mission.

4.1 Support vector machine
Traditional SVM can only solve the two classifications
problem. The training fingerprint samples have been
extracted as formula (11). The training samples and
their labels set is S= {

(F1, y1), (F2, y2), ..., (FT , yT )
}
, Fi ∈

R204, yi ∈ {+1,−1}, where T = 1600 is the training

samples size for each RF device and yi is class cate-
gory. Through maximizing the interval or the equivalent
method as formula (13), we can find separating hyper-
plane ω′F + b = 0.

min
w,b,ξ

1
2
(ω)′(ω) + C

T∑
i=1

ξi

s.t. yi(ω′ · Fi + b) ≥ 1 − ξi

ξi ≥ 0 i = 1, 2, . . . ,T

(13)

where C is penalty coefficient, and we set C = 100
using tenfold cross-validation. ω and b are parameters of
separating hyperplane. ξ is the distance between finger-
print sample Fi and the separating hyperplane. Finally, we
would take the unknown sample fingerprint into this sep-
arating hyperplane. Through positive or negative of the
obtained value, we could classify this unknown sample.
However, SVM is designed to deal with binary clas-

sification problems. In this experiment, we used one-
against-one method which could extend SVM to k classes.
Design sub-classifiers between any two classes, and thus,
we could get k(k − 1)/2 = 6 sub-classifiers (k = 4).
For example, the SVM sub-classifier of class cα and class
cβ is established. If the unknown sample is classified into
class cα , then class cα scores one point; otherwise, class
cβ scores one point. After six times classification, the
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unknown signal sample finally belongs to the class which
gets the highest score.

4.2 Logistic regression
The traditional logistic regression is also used to solve
the problem of two classifications. Similarly, we extend
logistic regression to k classes. Since there are four RF
devices, we assume that P(y = cα|F) (α = 0, 1, 2, 3)
represent the probability of belonging to class cα . We
set y = 0 as the reference group and covariant variable
is F =[ F(1), F(2), . . . , F(204)]. Set up disordered logistic
regression models.

gα(F) = ln
[
P(y = cα|F)

P(y = c0|F)

]
= wα,0 + wα,1F(1) + . . . + wα,204F(204)

(14)

where α = 0, 1, 2, 3 and obviously g0(F) = 0. Equally, the
conditional probability of label y is:

P(y = cα|F) = egα(F)

1 + ∑3
j=1 egj(F)

(15)

In identification mission, we could infer that the
unknown fingerprint sample belongs to the largest proba-
bility class cα , that is

P(y = cα|F) > P(y = cβ |F) ∀β �= α; α,β = 0, 1, 2, 3
(16)

In authentication mission, a signal will claim that it is
emitted from a security RF device. We could authenticate
this signal by setting probability verification threshold P0.

P(y = cα|F) ≥ P0 α = 0, 1, 2, 3 (17)

where cα is the RF device class which the unknown sam-
ple claims to belong. The decision for this authentication
mission is a binary result. If the probability P(y = cα|F)

meets the threshold P0 as formula (17), we will accept this
fingerprint and deem it as security signal. Otherwise, we
will refuse and take it as a security signal and deem it as an
imposter. For example, if the probability of an unknown
sample belonging to a security device is the largest, but the
probability is less than the threshold, then we still do not
regard it as a security signal.
There are two values to measure the selection of the

threshold which are true positive (TP) and true negative
(TN). TP denotes the probability that a security signal
comes and you accept it. TN denotes the probability that
an imposter signal comes and you refuse it. The larger the
two values, the better the authentication effect.

5 Results and discussion
Table 1 shows classification confusion matrix in three dif-
ferent classifiers. At SNR=30 dB environment, the test
accuracy of MDA and SVM algorithm is beyond 94% on

Table 1 Classification accuracy in different classifiers at
SNR = 30, 0 dB

Actual class M1 (%) M2 (%) M3 (%) M4 (%) Accuracy %)

Confusion matrix (SNR=30)

Classifer: MDA

M1 90.75 0.00 9.25 0.00

M2 0.00 99.50 0.50 0.00 94.50

M3 12.25 0.00 87.75 0.00

M4 0.00 0.00 0.00 100.00

Classifer: SVM

M1 89.50 0.00 10.50 0.00

M2 0.00 99.50 0.50 0.00 94.44

M3 10.75 0.25 89.00 0.00

M4 0.25 0.00 0.00 99.75

Classifer: LR

M1 82.25 0.00 17.00 0.75

M2 0.00 99.25 0.75 0.00 89.19

M3 23.50 0.75 75.75 0.00

M4 0.50 0.00 0.00 99.50

Confusion matrix (SNR=0)

Classifer: MDA

M1 42.00 11.75 31.50 14.75

M2 11.00 70.75 16.50 1.75 54.63

M3 31.25 20.5 37.50 10.75

M4 18.50 0.75 12.50 68.25

Classifer: SVM

M1 33.25 12.00 35.00 19.75

M2 10.25 67.25 19.00 3.50 48.75

M3 26.75 19.75 37.75 15.75

M4 20.00 2.75 20.50 56.75

Classifer: LR

M1 19.00 19.25 23.50 38.25

M2 11.75 60.00 17.25 11.00 40.25

M3 20.50 25.50 24.00 30.00

M4 12.00 11.75 18.25 58.00

average. Therefore, we could believe that the method of
feature extraction in the time domain is effective. When
SNR=0 dB, the noise power is equal to the signal power,
which could be considered in a very high noise environ-
ment. In such simulated environment, the classification
accuracy will be significantly reduced and any two of the
four RF devices may be confused. The environment noise
does have a great influence on discrimination.
Figure 7 created by Matlab R2016a shows the tend of

classification accuracy at different SNR. Obviously, as the
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Fig. 7 Classification accuracy under different classifiers. With the change of SNR, the tend of classification accuracy under MDA, SVM, and LR

SNR increases, the classification accuracy is increasing.
When SNR is below 5 dB, the classification accuracy is
less than 80% and begins to decline significantly. Both
MDA and SVM show a better classification performance
than LR.
Then, we listed the classification accuracy of four RF

devices separately under MDA classifier shown as Fig. 8.
We can find that M2 and M4 maintain a relatively high
accuracy. That is because the differences between RF
devices are uncertain and we cannot observe it directly.
We could only observe the difference indirectly that M2
and M4 have a more significant fingerprint features;
hence, they could be easier classified. Similarly, the dif-
ference between M1 and M3 are small; thus, they could
be easier confused and have relatively lower classification
accuracy.

Due to the characteristics of LR, we achieve authentica-
tion simulation shown as Table 2. In our experiment, three
RF devices were designed as cloning devices to send mali-
cious attack signal, and there is one security RF device.
We set different threshold P0 from 0.2 to 0.8. Then, TP
and TN were calculated in different SNR environment.
Take 13.0 and 99.9 in the upper left corner as an example.
When we set P0 = 0.8 and SNR=30 dB, due to the higher
threshold, only 13.0% security signal could be accepted,
but 99.9% imposter signal will be refused. As the decrease
of threshold, more security signals are accepted and less
impostor signals are refused. Besides, as the increase of
SNR, both TP and TN are increasing. The external noise
showed a great effect on RF authentication. For the three
possible cloning RF devices and one security RF device in
our experiment, the best probability threshold could be

Fig. 8 Classification accuracy of each RF device individually under MDA. We observe the classification accuracy of each machine and find out the
similarity between four RF devices
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Table 2 Authentication mission threshold decision at different SNR

P0 0.8 0.7 0.6 0.5 0.4 0.3 0.2

SNR TP TN TP TN TP TN TP TN TP TN TP TN TP TN

30 13.0 99.9 34.8 99.9 61.5 98.9 78.5 96.1 92.5 88.8 96.8 80.6 99.3 72.7

20 1.75 99.8 14.8 99.4 32.3 98.8 55.5 95.8 77.8 87.8 91.3 79.5 97.8 72.1

15 0.3 99.8 4.5 99.2 14.5 98.8 34.5 95.4 61.8 87.2 84.8 78.8 96.5 70.2

10 0.0 99.7 2.5 98.9 10.0 98.7 29.5 94.2 47.3 87.0 72.3 77.3 92.0 68.3

5 0.0 99.5 1.8 98.9 7.0 97.9 15.5 93.3 36.3 86.9 56.0 76.8 79.3 60.5

0 0.0 99.5 0.0 98.8 0.0 97.9 1.0 93.0 10.3 86.0 25.3 69.2 62.8 45.6

set from 0.4 to 0.5, where the sum of TP and TN is relative
high.
In addition, we extra extracted mean features as RF-

DNA fingerprint. The performance was shown as Fig. 9
that +Mean refers to the fingerprint with mean feature
and −Mean refers to the fingerprint without mean fea-
ture. In the high SNR environment, due to the precision
of the classification is already high, mean feature can only
play a small role. But in the low SNR environment, mean
feature conducts a significant improvement in the classi-
fication accuracy. Therefore, it is meaningful for RF-DNA
to extract the mean feature.
Furthermore, previous studies only focused on the

integrity of features including frequency, phase, and
amplitude. They did not study which features had more
discriminant information. We propose to only extract
the frequency or phase or amplitude sub-feature alone.
The number of feature dimension changed from 204 to
204/3=68. Figure 10 shows the classification accuracy to
single features under MDA classifier. The red line “All”
means that all three features are adopted which are 204
dimensions.

We found that the frequency sub-feature has the high-
est classification accuracy. In other words, the frequency
feature information has the largest effect on classifica-
tion recognition in our experiment. Amplitude and phase
feature information play an auxiliary role. However, the
classification accuracy between red line “All” and blue line
“Frequency” is still very different. When SNR≤ 5 dB, fre-
quency feature also loses its identification ability. That is,
amplitude and phase features information indeed have a
great contribution on classification. They are crucial to
enhance classification accuracy. In summary, the success
classification of RF-DNA fingerprint was due to the joint
action of all three features.

6 Conclusions
Recently, using cloning equipment to obtain illegal access
authentication seriously affects the security of informa-
tion transmission. RF-DNA fingerprint is a rising concept
to mark every RF device, thus could be used to iden-
tify malicious attack cloning RF devices. In our experi-
ment, 2.4G bandwidth signal from four RF devices were
collected. Results show that the optimal classification
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Fig. 10 Classification accuracy for single sub-features under MDA. We propose to only extract the frequency or phase or amplitude sub-feature
alone to find which one has the highest classification accuracy. The red line “All” means that all three features are adopted which are 204 dimensions

accuracy could reach 94%. The reason why we achieved
satisfactory results is RF-DNA fingerprint of each RF
device is unique, just like DNA in living beings, and the
difference among similar RF devices could be discovered.
This paper demonstrates that using our extracted finger-
print to distinguish RF devices is successful. Meanwhile,
we analyzed the performance under some unsatisfactory
conditions. With the decrease of SNR, the classification
accuracy is also decreasing. That makes our experimental
results more universal and persuasive in real application.
Although the accuracy of LR is not as good as SVM or
MDA, it could achieve authentication mission and find
reasonable threshold setting. Besides, adding mean and
separating the sub-features are also innovations of this
paper, which will be some special applications in practice.
In this paper, we used NRF24LE1 chip as RF devices

in closed basement scenario. Other scenarios could
be implemented through different simulators. And our
experimental results can be extended to many scenarios,
such mobile phone signal [9], remote sensing signal, and
military radar signal. Even some human signals such as
electrocardiogram, electroencephalogram, or electromyo-
gram could use RF-DNA fingerprint technology to iden-
tify human health.
The limitation of this paper is that the extracted fea-

tures are relatively less, only 204 dimensions. Increasing
feature extraction may improve identification accuracy
significantly. Additionally, only four RF devices are clas-
sified in our experiment. We should find some advanced
methods if we need to deal with a large number of cloning
RF devices. And the future work could also focus on
the method of extracting fingerprint and the classifier
chosen. For example, recent researches took short-time
Fourier transforms [22] and discrete Gabor transform [10]
to generate RF-DNA fingerprint. Besides, some neural

network model [17, 20] could also be used as classi-
fiers. Combining appropriate statistical algorithms, find-
ing meaningful RF-DNA fingerprint features can improve
the recognition accuracy prominently. Furthermore, our
research extract only one kind of fingerprint, and the com-
bination of multiple fingerprint could be a rising area of
future research.
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