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Abstract

Trust management is considered as an effective complementary mechanism to ensure the security of sensor networks.
Based on historical behavior, the trust value can be evaluated and applied to estimate the reliability of the node. For the
analysis of the possible attack behavior of malicious nodes, we proposed a trust evaluation model with entropy-based
weight assignment for malicious node’s detection in wireless sensor networks. To mitigate the malicious attacks such as
packet dropping or packet modifications, multidimensional trust indicators are derived from communication between
adjacent sensor nodes, and direct and indirect trust values will be estimated based on the corresponding behaviors of
those sensor nodes. In order to improve the validity of trust quantification and ensure the objectivity of evaluation, the
entropy weight method is applied to determine the proper value of the weight. Finally, the indirect trust value and direct
trust value are synthesized to obtain the overall trust. Experimental results show that the proposed scheme performs well
in terms of the identification of malicious node.
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1 Introduction
Nowadays, wireless sensor networks (WSNs) have become
one of the most useful technologies and attracted more
and more attention from researchers [1]. Owing to the
capabilities of data acquisition, processing, and transmis-
sion, the sensor nodes can be deployed in many application
scenarios, such as environmental monitoring, battlefield
detection, industrial safety monitoring and health care, etc.
However, due to the unmanned environment and the char-
acteristics of energy-constrained, the sensors are vulnerable
to various attacks. By capturing some normal nodes, the at-
tackers can change their behavior and then insert false data
or decisions to mislead the decision-making of the whole
network. In addition, the sensor nodes may be problem-
prone to non-malicious errors, such as inadequate residual
energy and faults of wireless transceiver or components,
and then, result in unreliable data generation [2]. Espe-
cially, to improve the energy efficiency, data aggregation in

sensor networks is needed. Once a node is captured, the
errors or forged data sent by the fault node will impact the
entire fusion result. Therefore, network security of WSNs
is a crucial problem to be solved [3].
In the field of network security, asymmetric cryptog-

raphy is widely used to deal with external attacks in the
Internet, peer-to-peer, and ad hoc networks. However,
due to the complexity and demand of huge computa-
tional memory, the encryption algorithm is not suitable
for WSNs due to limited processing power and resource
constraints [4]. In addition, the security mechanism
based on encryption can only solve external security
problems and cannot effectively deal with internal at-
tacks. In WSNs, the particularity of nodes, different from
other networks, can refuse to cooperate with service
requesters to save energy, and those nodes are being
called selfish nodes. Although they do not actively attack
the network, a large number of selfish nodes may cause
serious consequences. Obviously, the existing encryption
mechanism is incapable to identify the risks caused by
authenticated selfish nodes. Therefore, it is necessary to
establish an effective security mechanism to solve those
problems [5]. In recent years, trust management has

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made.

* Correspondence: yinxueqiang@mail.nwpu.edu.cn
1School of Computer Science, Northwestern Polytechnical University, Xi’an
710029, People’s Republic of China
2The 15th Research Institute of China Electronic Technology Group
Corporation, Beijing 100083, People’s Republic of China

Yin and Li EURASIP Journal on Wireless Communications and Networking
       (2019) 2019:198 
https://doi.org/10.1186/s13638-019-1524-z

http://crossmark.crossref.org/dialog/?doi=10.1186/s13638-019-1524-z&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:yinxueqiang@mail.nwpu.edu.cn


been regarded as an effective complementary mechan-
ism to ensure the security of sensor networks. Based on
historical behavior, the trust value of a node can be eval-
uated to estimate the reliability based on the perform-
ance of specific tasks. At present, many typical trust
models have been proposed for WSNs, which derives
from game theory [6], Bayesian estimation [7], D-S evi-
dence [8], fuzzy logic [9], etc. The above models all iden-
tify malicious nodes through trust evaluation to a certain
extent and provide a theoretical basis for further re-
search. Under the open network environment, the trust
between sensor nodes will vary dynamically with time
and behavior The trust value obtained by the trust
model should also change with the communication be-
havior between nodes, thus effectively restrain the ab-
normal increase or decrease of trust value and resist the
influence of flattery or slander between nodes. How to
define the trust relationship in the model as well as im-
prove the efficiency of the model implementation be-
comes an important issue.
The rest of this paper is organized as follows: after the

related works are summarized in Section 2, the trust
evaluation model is presented in detail in Section 3. In
Section 4, we present the steps of secure communication
under the proposed model. We evaluate the perform-
ance of our trust evaluation model in Section 5. And
finally, we conclude this paper in Section 6.

2 Related work
For internal malicious node attacks, most of the effective
defense measures are often built on trust model manage-
ment. Trust evaluation can be abstractly referred to as
the estimation of the relevant evidence affecting the
trust of the subject. Generally, trust can be measured in
a way similar to information or knowledge and formu-
lated as degree of trust. The trust value can be defined
as the combination of direct trust and indirect trust,
which can be given a certain weight according to the
specific application requirements [10]. Behavior-based
trust evaluation models can be divided into centralized
and distributed trust evaluation model. Different work-
ing modes directly affect the data exchange mode be-
tween participants in trust assessment, as well as the
data processing, trust calculation during the phase of
trust assessment.
In the centralized trust evaluation model, the center

obtains global information such as exchange records be-
tween sensor nodes or user’s feedback and calculates
trust according to a certain rule. Ganeriwal et al. [11]
proposed a reputation-based framework for high integ-
rity sensor networks, and they introduced beta function
to calculate reputation and trust value. In [12], Probst et
al. introduced a statistical method into a trust manage-
ment model. Trust value can be estimated based on the

direct and indirect experience of nodes and confidence
interval is applied to identify malicious behavior. Cheng
et al. [13] presented a trust model based on D-S evi-
dence theory, in which the comprehensive trust value
can be obtained by D-S combination rules. According to
historical behavior, trust fluctuation, and recommenda-
tion inconsistency in a certain period of time, Anita et
al. [14] proposed a routing trust prediction model based
on fuzzy theory. The model can predict the subsequent
behavior of neighbor nodes, but it may lead to the loss
of information. Aivaloglou et al. [15] proposed a hybrid
trust and reputation management model based on the
certificate-based method and behavior-based mechan-
ism. The model utilizes the knowledge of network top-
ology and data flow to support the highly diversified
needs of node’s roles. Combining fuzzy and gray theory,
Wu et al. [16] proposed a trust model with incentive
mechanism to evaluate the reliability of nodes. However,
because of the complexity of model calculation, it is not
suitable for sensor networks with limited processing
capacity of nodes. Generally, the centralized trust evalu-
ation model has the characteristics of a relatively simple
structure and less difficulty to implement. However, due
to overwhelmingly dependent on central nodes, load bal-
ancing and robustness become the bottleneck of further
exploitation.
In contrast, in the distributed trust evaluation model,

the trust degree does not depend on the support of the
central entity. Through the direct interaction with the
evaluated entity, the recommendation of the direct inter-
action from all entities can be synthesized to estimate
the trust degree. In [17], Jiang et al. proposed an efficient
distributed trust model according to the exchange mes-
sages from all sensor nodes, and the trust metrics include
communication overhead, energy consumption, and data
validity. In [18], Bao et al. proposed a hierarchical dynamic
trust management protocol for clustered wireless sensor
networks and develop a probability model using stochastic
Petri net techniques to analyze the performance. Zhang et
al. [19] proposed a multi-level trust management frame-
work. In this framework, three levels of trust, namely
subjective trust, objective reputation, and recommenda-
tion trust, are used to establish trust relationships among
nodes. The shortcomings lie in the lack of trust sharing
and update mechanism. To ensure the security of data
forwarding and improve energy efficiency, Tang et al. [20]
proposed a trust-based secure routing scheme using the
trace back approach, in which the data and notification
employ a dynamic probability of marking and logging dur-
ing routing selection. Based on the hierarchical network
structure, Liao et al. [21] proposed a weighted trust evalu-
ation strategy, which updates the weighted trust value
continuously by comparing the data collected by sensor
nodes and the final data fusion results. The anomaly
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nodes detection and trusted data filtering mechanism can
obtain good performance and scalability. To achieve the
tradeoff between energy conservation and network secur-
ity, Liao et al. [21] presented a mixed and continuous
monitor-forward model based on game theory to mitigate
the selective-forwarding attack, in which the monitoring
node conducts a strategy continuously to determine the
duration of behavior surveillance. However, the selfishness
and rationality of sensor nodes are not thoroughly
considered.
Taking into account of energy consumption and secure

routing, many studies combine the construction of trust
model with the clustering management mechanism of
nodes. Shaikh et al. [22] proposed a group-based trust
management mechanism and applied it to cluster-
structured wireless sensor networks. The calculation of
trust value is achieved by monitoring the communica-
tion behavior between neighbor nodes, including mem-
ber node’s trust, cluster head’s trust, cluster trust, and
base station trust. The trust model can effectively resist
malicious node attacks and protect malicious nodes
from defamation and defamation attacks as well as keep
energy-efficiency. Zhou et al. [23] proposed a trust
evaluation model based on the autonomous behavior of
sensor nodes. Sensor nodes acquire direct or indirect
trust values by monitoring the behavior of neighbor
nodes. Cluster heads calculate comprehensive trust
values according to D-S evidence theory. By trust evalu-
ation, malicious nodes can be effectively identified and
malicious nodes can be restricted to become cluster
heads. Crosby et al. [24] designed a distributed trust-
based cluster head election mechanism. The trust table
was constructed by monitoring the transmission process
of neighbor nodes, and the trust degree was calculated.
Then, the reliable cluster head was elected according to
the trust degree, which ensured the reliability of data fu-
sion and network security. For secured data fusion, Fu et
al. [25] introduced a cluster-based trust model with
double cluster heads structure, in which the dissimilarity
coefficient is defined to evaluate the data fusion results.
If the fusion results exceed the threshold value, it dem-
onstrates that the cluster head is possible to be compro-
mised nodes and then to be added to the blacklist.

3 Trust model
3.1 Trust indicators
The purpose of trust evaluation is to provide support for
trust decision-making to establish a reliable relationship
between the entities. Combining with the implementation
of security strategy, it can form a general trust manage-
ment system. In WSNs, the sensor’s authentication
depends not only on the historical data of the node itself,
but also on the adjacent nodes with spatio-temporal cor-
relation. The characteristics of node behavior often vary

with time, and the regularity has some statistical charac-
teristics. Therefore, the behavior of nodes can be analyzed,
and a quantitative evaluation model can be established
through the history of interaction between nodes. Specific-
ally, the sensor nodes in adjacent areas monitor each other
and calculate their trust, which can effectively identify
malicious nodes to resist network attacks.
The selection of trust factors is the premise and founda-

tion of calculating node’s direct trust, and the trust ele-
ments should conform to the characteristics of WSNS.
Malicious attacks launched by nodes mainly include steal-
ing, tampering with perceptual information, injecting a lot
of error information, etc. Therefore, we can analyze the
data repetition rate, the number of data packets, data cor-
relation, and the volatility of data latency.
Definition 1: Data repetition rate. The data repetition

rate of samples can reflect the node’s abnormal behavior
owing to repeat sending packets continuously.

DRRi; j u; v; tð Þ ¼ Su;v tð Þ−SPu;v tð Þ
Su;v tð Þ ð1Þ

where Su, v(t) is the number of sent samples at time t,
and SPu, v(t) is the number of the repeated samples.
Definition 2: Packet size abnormality. If the number

of samples during the monitoring cycle is too large, it
may be a denial of service attack. On the other hand, if
the number is too small, the possibility of selfish behav-
ior is high.

PSA u; v; tð Þ ¼ j Su;v tð Þ−ΔS tð Þ j
Su;v tð Þ ð2Þ

where ΔS(t) denotes the expected value for the number
of samples.
Definition 3: Data correlation. The data collected by

neighbor nodes have certain correlation, and the differ-
ence between normal nodes should be within a certain
range.

DC u; v; tð Þ ¼ αe−r Du tð Þ−Dv tð Þ½ �2 ð3Þ

where α is the attractiveness parameter, and r represents
the distance between node su and sv. Du(t) and Dv(t) rep-
resent the measured value of node su and sv, respectively.
Definition 4: Volatility of transmission delay. Due to

signal interference and other factors in wireless communi-
cation, data transmission delay will occur in nodes. The
neighboring nodes have temporal and spatial correlation.
The transmission delay of networks should fluctuate
within a certain range.
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VTD u; v; tð Þ ¼

Xh
k¼1

RT u; kð Þ−ST u; kð Þ

Xh
k¼1

RT v; kð Þ−ST v; kð Þ
ð4Þ

where h denotes the average number of hops between
node s

u
and s

v
, and RT(i, k), and ST(i, k) represents the

time of receipt and delivery of samples, respectively.

3.2 Clustering objective function
Quantification of trust relationship needs to meet the
dynamic requirements of the environment, and it should
also show the exact emphasis according to the impact of
measurement indicators [26, 27]. Generally, under the
condition of multiple monitoring indicators, the weight
value has certain experience and subjectivity, which is
not conducive to the validity of trust quantification and
evaluation [28, 29].
In this paper, the trust evaluation model divides the

nodes into categories of normal nodes, relay nodes, and
base station in the perception layer. In the process of
evaluating node behavior trust, only relay nodes generate
recommended trust values among themselves, and it is
assumed that the base station is fully trusted. Let s1, s2,
⋯, sn denote n adjacent relay nodes of the evaluated tar-
get. According to the index mentioned above, the obser-
vation vector (ri1 ri2 ⋯ rim) is obtained at the ith relay
node. The evaluation matrix Rn ×m can be constructed,
in which rij represents the evaluation result of jth indica-
tor from ith relay node, 1 ≤ i ≤ n, 1 ≤ j ≤m.
Generally, under the condition of multiple monitor-

ing indicators, the establishment of weights has cer-
tain experience and subjectivity, which is
disadvantageous to the validity of trust quantification
and evaluation [30, 31]. In this paper, the weight of
monitoring index will be solved based on the method
of entropy weight.
First, the membership matrix Um × n is defined, and the

matrix element uij represents the degree of membership
of rij with constraint of

Xm
j¼1

uij ¼ 1; 0≤uij≤1: ð5Þ

Next, to indicate the difference between the recommen-
dation entity and the expectation caused by the objective
deviation, we define the recommended deviation Δ as:

Δ j ¼ 1
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn
i¼1

uij
Xm
j¼1

rij−r j
� �2

vuut ð6Þ

where r j represents the average value of jth indicator,
and r j ¼ 1

m

Pm
i¼1 rij

The objective of clustering is to find the optimal clus-
tering vector so as to minimize the overall recom-
mended deviation, and the objective function can be
expressed as:

min Δ2
� � ¼ minf

Xm
j¼1

Xn
i¼1

uij
Xm
i¼1

1
n

rij−r j
� �� �2

g ð7Þ

According to the definition of membership matrix
Um × n, uij can be regarded as the probability that the ith
entity belongs to the jth monitoring index. Therefore,
the information entropy of jth monitoring index for the
relay node si can be calculated as:

H ¼ −uijln uij
� � ð8Þ

Accordingly, the total information entropy of the
matrix Um × n can be expressed as:

H� ¼ −
Xm
j¼1

Xn
i¼1

uijln uij
� � ð9Þ

In order to minimize the clustering function and
optimize the overall information entropy, the
optimization process can be described as follows:

minf−
Xm
j¼1

Xn
i¼1

uijð
Xm
i¼1

1
n

rij−r j
� �� �2

Þ þ 1
ρ

Xm
j¼1

Xn
i¼1

uij ln uij
� �g

ð10Þ
where ρ is the equilibrium factor of the equation.
By using the Lagrange multiplier method [32, 33], the

constraint
Pm

j¼1 uij ¼ 1 can be introduced into the La-

grange multiplier λ, and the Eq. (9) can be transformed
to

L uij; λ; t j
� � ¼

Xm
j¼1

Xn
i¼1

uijð
Xm
i¼1

1
n

rij−r j
� �� �2

Þ

þ 1
ρ

Xm
j¼1

Xn
i¼1

uij ln uij
� �

þ λ
Xn
i¼1

uij−1

					

					 ð11Þ

Solving the objective function Lðuij; λ; r jÞ , uij can be
derived as

uij ¼
expð−ρ

Xn
i¼1

rij−r j
� �2

Xm
j¼1

expð−ρ
Xn
i¼1

rij−r j
� �2Þ

ð12Þ

According to the membership degree and recommen-
dation deviation degree, the weight values of monitoring
indicators with normalization can be obtained as
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CRj ¼ r j � 1−k j
� �

wi ¼ CRj

Xn
i¼1

CRj

8>>><
>>>:

ð13Þ

where CR
j

represents the comprehensive recommenda-
tion for jth indicator from entities.

Finally, based on recommendation trust and corre-
sponding weight value, the quantitative results of direct
trust evaluation between relay node k and monitored
node can be estimated as:

DTrustk ¼
Xm
j¼1

wjrkj ð14Þ

3.3 Indirect trust
The indirect trust can be regarded as the recommenda-
tion from the third party [34]. The indirect trust value of
node su to node sv is composed of the direct trust value
of all recommendation nodes to node sv, and the recom-
mended nodes are referred to as the common neighbor
nodes of node su and sv. However, not all recommenda-
tion nodes are trustworthy, and unreliable recommenda-
tion will provide false information to evaluate the
trustworthiness of the nodes, which will affect the trust
of the sensor nodes that create and manipulate the data.
In order to calculate the indirect trust value accurately

through recommendation nodes, it is necessary to select
trusted neighbors as recommendation nodes. First, we
define a specified trust threshold δ, and the nodes with
direct trust higher than δ will be selected as the recom-
mended neighbors set. As multiple nodes push trust
values to a single node at the same time, it may bring
opportunities to malicious nodes. Malicious nodes
intentionally elevate or degrade the trust of a node by
sending false or conflicting recommendation trust
values. Therefore, multiple recommendation trust prob-
lems must be solved through trust merge rules. Suppose
Ω denote represents the set of trusted neighbor nodes of
the evaluated node and relay node sk, and |Ω| represents
the number of nodes in set Ω. Firstly, the average value
of all evaluation result will be calculated as

rij ¼

X
i∈Ω

rij

Ωj j ð15Þ

Next, the weight ωi of the recommendation node can
be obtained as:

ωi ¼

Xm
j¼1

rij−rij
		 		

X
i∈Ω

Xm
j¼1

rij−rij
		 		

ð16Þ

Then, the indirect trust can be estimated as

ITrustk ¼

X
i∈Ω

ωiDTrusti

Ωj j ð17Þ

Definition 5: Total trust. By synthesizing indirect
trust with direct trust, the total trust can be obtained as
follows:

TTrust ¼ θDTrustþ 1−θð ÞITrust ð18Þ

where θ∈ [0,1] and indicate the trustworthiness degree
to the trust value.

4 Secure communication
Based on the proposed trust evaluation model, the se-
cure communication is introduced based on AODV
protocol. In the initial stage, the identity-based cryptog-
raphy mechanism is applied to verify the legitimacy of
nodes and establish a trusted network environment.
Then, the specific flow of its secure communication is as
follows:

Step 1: Initially, all nodes broadcast their own identity
information in the network. All neighbor nodes in the
communication range can calculate their shared keys
according to the private keys and identification, which
can be used to encrypt and decrypt exchange message
between them.
Step 2: If the source node sS prepares to communicate
with the destination node sD, it will query the local
routing table whether exists a route to the destination.
If not, the route to node sD should be established by
the following steps.
Step 3: sS broadcasts query message RREQ to its
neighbor sk, and sk will determine whether the same
query information has been processed. If so, the
current request message is discarded. Otherwise, the
number of hops in the query message will plus 1.
Step 4: Then, sS will retrieve the direct trust of
neighbor sk in its local storage module and broadcast a
trust query message to its neighbor nodes. All the
nodes receiving the source node trust query
information check whether they have the trust value of
the node sk. If so, the trust response message encrypted
with the shared secret key between itself and the
source node sS will be returned.

Yin and Li EURASIP Journal on Wireless Communications and Networking        (2019) 2019:198 Page 5 of 10



Step 5: Finally, sS can obtain the comprehensive trust
of the node sk. If trustworthy, it will be regarded as
the next hop node and continue to forward the
routing query message RREQ. Otherwise, return to
execute Step 2.
Step 6: Execute Step 3 repeatedly until a trusted route
from sS to destination sD can be resolved.

5 Experimental results
In order to verify the validity of the proposed trust
model for wireless sensor networks, simulation experi-
ments are conducted. The size of the network is
100m × 100m. One hundred sensor nodes are randomly
distributed in the region, and the base station is located
in the center of the monitoring area. The perception

a)

b)
Fig. 1 The trust value of normal node with time. a Malicious node’s proportion is 15%. b Malicious node’s proportion is 30%
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radius of nodes is 20 m and the communication range is
set to 40 m. In the simulation experiment, the propor-
tion of malicious nodes is arranged from 0 to 40%, and
they simulated by the several kinds of attacks, including
selective forwarding attack, data forgery attack, DoS at-
tack, and on/off attack. Each simulation time is 400 s,
and the time period of trust update is equal to 10 s. The

assignment of other parameters is as m = 4, θ = 0.5 and
δ = 0.7.
The performance of the proposed method is compared

with that of MD-WTE [34] and BTRES [35]. Figures 1
and 2 show the trust value of the normal node and mali-
cious node with time as malicious node proportion is
15% and 30%, respectively. The experimental results

a)

b)
Fig. 2 The trust value of malicious node with time. a Malicious node’s proportion is 15%. b Malicious node’s proportion is 30%
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show that in MD-WTE, the average trust value of nor-
mal nodes is similar, but the trust value of abnormal
nodes is obviously higher than that of other methods. As
a result, the malicious nodes cannot be distinguished
clearly. That is because only one trust value is applied in
MD-WTE, and the malicious sensor nodes can hide ma-
licious behavior of their sensing through trusted transfer
function. The nodes can still maintain high reliability by
masking malicious packet loss via trusted sensing behav-
ior. In our proposed model and BTRES, the direct trust

values are closer to the object trust values compared
with the integrated trust values since the integrated trust
values are more or less influenced by the malicious rec-
ommendations. However, they take communication be-
havior into account to calculate sensor nodes’ trust value
and improve the accuracy of recommendation trust
against the selective forwarding attack and the data for-
gery attack.
As can be seen from Fig. 2, when the proportion of

malicious nodes is about 30%, the trust value of normal

Fig. 3 The detection rate with time as malicious node’s proportion is 15%

Fig. 4 The detection rate with time as malicious node’s proportion is 30%
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nodes decreases obviously; meanwhile, the trust value of
malicious nodes increase. This trend also shows that
when malicious nodes reach a certain proportion, the
normal nodes in the network cannot effectively detect
the abnormal behavior of malicious nodes. Hence, the
average trust value of malicious nodes increases. Com-
pared with the other methods, our proposed model can
reduce the impact of malicious nodes more effectively. It
illustrates that the direct trust and recommendation
trust should be dynamically adjusted based on the pro-
portion of malicious nodes. Once the percent of mali-
cious nodes exceeds the extent, the normal behavior of
nodes may be mistaken as abnormal. That will not be

conducive to the delivery of data by normal nodes in the
network.
Furthermore, we evaluate the detection rate and false

error rate of malicious nodes. Due to open environment
and the performance of nodes being uncertain, not all
nodes can be judged as trusted or untrustworthy state.
Figures 3 and 4 show the differences in detection rate
when malicious nodes are 15% and 30%, respectively. As
can be seen from the results, our proposed model and
BTRES have risen rapidly from the beginning of different
scenarios and have maintained a high detection rate in
the process of operation. The reason is that both of the
methods can reduce the dependence on prior experience
and the assumption of prior distribution, which im-
proves the speed and accuracy of identifying the mali-
cious nodes. Comparatively, after accumulating a certain
amount of records, the detection rate in MD-WTE in-
creases gradually. In our proposed model, entropy-based
weight assignment improves the objectivity of trust
evaluation and obtains fast convergence rate.
Next, we analyze and compare the detection rate and

false alarm rate under different percentage of malicious
nodes. As can be seen from Figs. 5 and 6, our proposed
model and BTRES have higher detection rate and lower
false alarm rate when the proportion of malicious nodes
is small. As the proportion of malicious nodes increases,
the detection rate of MD-WTE decreases rapidly, and
the false alarm rate also increases sharply. The detection
rate of our proposed model decreases slowly and grad-
ually stabilizes, and the promotion of false alarm rate is
relatively small. The reason is that the fuzziness and
conflict of evidence increase as the proportion of

Fig. 5 The detection rate with different percentage of
malicious nodes

Fig. 6 The false alarm rate with different percentage of malicious nodes
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malicious nodes increases. By means of selecting the
proper value of the weight of direct trust and indirect
trust, our proposed model improves the accuracy of the
malicious node’s detection and robustness of trust evalu-
ation model.

6 Conclusions
In this paper, we proposed a trust evaluation model with
entropy-based weight assignment for malicious node’s
detection in wireless sensor networks. Multidimensional
trust indicators are derived from communication be-
tween adjacent sensor nodes, and direct and indirect
trust values will be estimated based on the correspond-
ing behaviors of those sensor nodes. To improve the val-
idity of trust quantification and ensure the objectivity of
evaluation, the entropy weight method is applied to de-
termine the proper value of the weight. In our future
work, we will devote to evaluate the trust level of sensor
nodes in clustered WSNs and combine the trust model
with secure data fusion. Besides, some professional tech-
niques, e.g., fuzzy logic or pattern recognition, will be
employed and discussed to reduce the fuzziness of be-
havior evidences.

Abbreviation
WSNs: Wireless sensor networks
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