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Abstract

A number of rate adaptation protocols have been proposed using instantaneous channel quality to select the
physical layer data rate. However, the indication of channel quality varies widely across platforms from simply a
received signal strength level to a measurement of signal-to-noise ratio (SNR) across sub-carriers, with each channel
quality indicator having differing levels of measurement error. Moreover, due to fast channel variations, even
aggressive channel probing fails to offer an up-to-date notion of channel quality. In this paper, we propose a
coherence-aware Channel Indication and Prediction algorithm for Rate Adaptation (CIPRA) and evaluate it analytically
and experimentally, considering both the effects of measurement errors and the staleness of channel quality
indicators. CIPRA uses the minimummean square error (MMSE) method and first-order prediction. Our evaluation
shows that CIPRA jointly considers the time interval over which the prediction will occur and the coherence time of
the channel to determine the optimal window size for previous channel quality indicator measurements. Also, we
demonstrate that CIPRA outperforms existing methods in terms of prediction fidelity and throughput via
experimental results. By combining a strong channel indicator with the coherence-aware MMSE first-order channel
prediction algorithm, CIPRA nearly doubles the throughput achieved in the field from the indication and prediction
method currently used by off-the-shelf WiFi interfaces.
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1 Introduction
Channel fluctuations often exist in wireless communi-
cation systems and present great challenges in selecting
the best data rate or modulation coding scheme (MCS)
for communication. When there is a change in direc-
tion of the transmitter/receiver, antenna elevation and
polarization, interference from nearby devices, or scat-
ter distributions, the channel quality can vary, resulting
in fluctuations in signal reception, even within the same
environment. Depending on the magnitude of the vari-
ation, the received signal strength (RSS) can drastically
change the link performance [1–4]. Rate adaptation pro-
tocols can be implemented to combat the fading chan-
nels and achieve high spectrum efficiency by dynamically
changing the data rate according to the channel quality.
Rate adaptation protocols that depend upon packet

success/failure information have been implemented in
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commercial equipment and widely discussed [5–10].
However, these loss-based protocols usually require tens
of data frames to develop a reasonable estimate of the
channel conditions. Other factors such as hidden ter-
minals and interference can lead to inappropriate con-
clusions about the causes for the losses [11]. Thus, for
fast-fading channels (e.g., in vehicular networks), these
protocols cannot accurately track the changing channels,
resulting in wrong selections of MCS. Moreover, packet-
level estimation is too coarse to achieve an accurate esti-
mation of the instantaneous channel conditions. With
interfering sources, the transmitter can not distinguish the
reason for packet loss and jitter (i.e., whether it is from
a poor channel or interference). These factors contribute
to frequent under-selection of the transmission rate by
loss-based protocols [11].
To enable fast-fading channel tracking, various channel-

indicator-based rate adaptation protocols have been pro-
posed [12–15]. It is well known that for a certain MCS,
there is a theoretical bit error rate (BER) versus signal-
to-noise ratio (SNR) relationship [16]. SNR values can be
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reported to the transmitter at the physical layer (PHY)-
frame level to enable selection of the optimal rate in fast-
fading channels. Some of the SNR-based rate adaptation
protocols leverage the received signal strength indica-
tor (RSSI) to calculate the SNR. However, for different
commercial wireless network devices, the RSSI varies sig-
nificantly for the same received signal strength. Moreover,
in the presence of interference and noise, the estimates
of the signal power reported from RSSI measurements
can be highly distorted [17]. In [13], the authors propose
a SoftRate metric to indicate channel quality and select
the optimal rate for transmission. However, this scheme
requires a soft-in, soft-out decoder to calculate the Sof-
tRate indicator, which is not available for most of the
existing network transceivers and may also be resource-
intensive for the design of future transceivers. AccuRate,
a constellation-quality based indicator is provided in [15].
Nevertheless, the hardware cost and complexity of Accu-
Rate is also high, often precluding the calculation of the
channel indicator in the implementation. The Effective
SNRmetric [14] leverages the channel response in the fre-
quency domain and the noise variance on each sub-carrier
to predict the best rate to transmit a packet. The infor-
mation required is already available in several wireless
network interfaces.
In our previous work [12], we consider RSSI as

the unique channel indicator under limited comparison
matrices, which has been shown to be inaccurate and
inconsistent across vendors [13]. In this work, in addi-
tion to the original channel indicator of RSSI, we study
and analyze two more advanced channel indicators: SNR
and Effective SNR. We implement channel prediction
and rate adaptation based on these two advanced met-
rics to evaluate their performance in combination with
traditional channel prediction methods and our proposed
channel prediction method, showing significant through-
put improvement. We additionally analyze the prediction
error performance for our proposed algorithm at vari-
ous time intervals, predicting the importance of our work
on next-generation protocol design with higher frequency
bands and tighter timing parameters. At last, we imple-
ment the Minstrel rate adaptation and compare our pro-
posed rate adaptation method with it, showing that our
proposed rate adaptation method outperforms Minstrel
significantly.
Typically, in SNR-based rate adaptation, the receiver

decides the rate of the next transmitted packet accord-
ing to the measured SNR of the current packet, whether
the measurement originates from the RTS/CTS or
DATA/ACK exchange [11]. Several potential problems
exist with this mechanism. First, if the channel changes
quickly or there is a large time interval between two adja-
cent packets, the SNR reported by the last transmission
may not accurately represent the instantaneous channel

quality. Second, the SNR reported during the last trans-
mission may not be accurate due to measurement errors.
Even for slowly varying channels, there might be rate
over-selection or under-selection due to channel quality
estimation errors.
The rate selection problems caused by channel qual-

ity estimation errors have been studied [16, 18]. In order
to increase the accuracy of rate selection, both works
as leverage-filtering techniques to reduce channel quality
estimation errors. However, the delay incurred in filter-
ing can make rate selection even more stale to track with
ongoing channel quality changes. To address the chan-
nel quality staleness problem, channel prediction has been
extensively studied [19–23]. However, most work assumes
perfectly accurate channel measurements to predict the
future channel state, which may not be possible in hard-
ware.Moreover, the estimation error canmake the predic-
tion highly erroneous if using the reported value from the
last transmission.
In this paper, we propose a coherence-aware MMSE

first-order prediction algorithm that takes into account
both the measurement inaccuracy and measurement stal-
eness. Prediction intervals and channel coherence time
are jointly considered to select the optimal size of pre-
diction window. We perform simulation studies as well as
in-field experimentation on emulated and in-field chan-
nels, respectively. For our analysis, we implement an IEEE
802.11 PHY system on WARP (Wireless Open-Access
Research Platform), an field programmable gate array
(FPGA)-based platform [11]. We also implement and
compare three different channel indicators, RSSI, SNR,
and Effective SNR, and combine each with the proposed
prediction algorithm to investigate the indicator’s impact
on the performance of channel prediction. To generate
repeatable channel effects, we test our design on a chan-
nel emulator and compare the three indicators in diverse
channel conditions. In addition to lab experiments, we
also conduct field tests to show the in situ throughput
improvements provided by our algorithm.
The main contributions of our work are as follows:
1 We propose a coherence-aware MMSE first-order

channel quality prediction algorithm, which takes
into account both the measurement errors and
staleness of the channel quality. This scheme adapts
the measurement processing parameters to the
Doppler shift to achieve good performance under
various mobility scenarios.

2 We implement and evaluate a family of the most
commonly used channel quality indicators for rate
adaptation, including RSSI, SNR, and Effective SNR.

3 We analyze different channel prediction approaches
and compare them in terms of prediction errors as
well as over-selection and under-selection
probabilities for rate adaptation.
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4 We present and implement a Doppler shift
estimation method based on LCR (level-crossing
rate) with a homogeneous window to remove the
effect of channel quality measurement errors,
achieving a good balance of complexity and accuracy.

5 We implement the existing channel prediction
algorithm and the proposed algorithm onWARP and
experimentally compare them in terms of system
throughput through both repeatable channel
emulator tests and in-field experiments. By
combining Effective SNR with the coherence-aware
MMSE first-order channel prediction algorithm,
channel indication and prediction for rate adaptation
(CIPRA) achieves up to a 98% throughput
improvement in the field over the indication and
prediction method currently used in off-the-shelf
cards.

The rest of this paper is organized as follows. Section 2
introduces the online Doppler shift estimation method
and discusses various channel quality indicators. Then, we
describe the framework of our proposed CIPRA algorithm
and compare its performance with conventional predic-
tion algorithms in Section 3. In Section 4, we introduce the
hardware setup for CIPRA evaluation and provide numer-
ical results in Section 5. Finally, we conclude our work in
Section 6.

2 Background and related work for channel
indication and prediction

In this section, we first introduce the channel fading
model used in this work. Then, we describe a Doppler
shift estimation method for our platform implementation.

Finally, in addition to the typical performance metrics
developed to indicate the channel quality, such as RSSI
and SNR, we study and analyze a more advanced channel
quality indicator: Effective SNR.

2.1 Channel characteristics
Wireless channel quality is often affected by changing
environments and interference. With the transmit sig-
nal power fixed, channel quality can be quantified by the
received signal quality. We use a Rayleigh fading chan-
nel model in the following analysis and simulation. The
normalized auto-correlation function, R(τ ), of a Rayleigh
fading channel with motion at a constant velocity is a
zeroth-order Bessel function of the first kind [24, 25]:

R(τ ) = J0(2π fdτ) (1)

Here, τ is the time delay, and fd is the maximum Doppler
shift. The auto-correlation functions of a Rayleigh fad-
ing channel with a maximum Doppler shift of 10 Hz and
20 Hz are shown in Fig. 1. This auto-correlation reflects
the statistical dependence between the channel gains at
different times, which is leveraged in the prediction.

2.2 Online doppler shift estimation
In this work, we introduce a Doppler shift estimation
method that we implement and evaluate on our hard-
ware platform. This method can be applied to our channel
prediction algorithm discussed in Section 3. In general,
Doppler shift estimation can leverage channel estimates,
LCR, a maximum likelihood function, or correlation func-
tion [26]. LCR-based Doppler shift estimation achieves

Fig. 1 Auto-correlation function of a Rayleigh fading channel with a maximum Doppler shift of 10 Hz
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a good balance between complexity and accuracy. For
Rayleigh fading channels, LCR is expressed as [27]:

LCR = √
2π fdρe−ρ2

(2)

Here, ρ is the threshold normalized to the root mean
square (RMS) signal level [27]. For a fixed Doppler shift,
the LCR achieves its maximum value, LCRmax, when ρ =√
0.5, and is given by

LCRmax = √
πe−0.5fd (3)

In hardware, the received signal is also corrupted by
additive noise. The LCR resulting from the noise usu-
ally leads to over-estimation of the channel level-crossing
rate. In [28], an fast Fourier transform (FFT)-based
Doppler-adaptive noise suppression method is proposed
to remove the effect of additive noise on LCR-based
Doppler shift estimation. However, the FFT/IFFT pro-
cessing is computationally expensive, requiring approxi-
mately 34

9 N log2N real multiplications and additions for
an N-point FFT/IFFT [29]. In this paper, we create a
homogeneous-window method to avoid over-estimation
caused by the additive noise. The main steps to this
method are the following:

1 Pick a threshold value from a pre-defined threshold
set and compare the RSSI samples with this
threshold. If the RSSI value of sample i is greater
than the selected threshold for each indicator, ci = 1.

Otherwise, ci = 0, meaning that the RSSI is below
the selected threshold.

2 Apply a sliding time window τ to the results in step 1.
If ci == 1 for all the samples in window τ , we denote
the system state Si = 1. If ci == 0 for all the samples
in window τ , we denote the system state Si = −1.
Otherwise, Si = 0. For multiple adjacent system state
samples with the same value, only record one sample.

3 Calculate the derivative of the state vector recorded
in step 2 and count the number of transitions of the
derivative from negative to positive in one second,
denoted by n.

4 Repeat step 1 to step 3 for all the values in the
pre-defined threshold set, and finally, find the
maximum value of n.

To decide the time window τ , we jointly consider the
RSSI sample period and the Doppler shift range we want
to estimate. In the IEEE 802.11 standard, the RSSI is
reported every packet. For the maximum Doppler shift
range of 10 to 100 Hz, τ of 3 ms achieves a normalized
square error of 0.003 in our experiments using the chan-
nel emulator. Figure 2 shows the Doppler shift estimation
by using theWARP board and the channel emulator (both
are described in Section 5).

2.3 Channel quality indicators
2.3.1 RSSI: a poor channel indicator
Wireless channel quality is often affected by changing
environments and interference. With the transmit sig-
nal power fixed, channel quality can be evaluated by the

Fig. 2 Doppler shift estimation on WARP
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received signal quality. The most accessible channel qual-
ity indicator is RSSI [17]. RSSI is a relative value with
off-the-shelf devices in which vendors usually use arbi-
trary scales from 0 to maximum-RSSI, where maximum-
RSSI is vendor-specific. RSSI is often not associated with
any particular power scale and not required to be of any
particular accuracy or precision [30]. Hence, the received
signal strength numbers reported by a network inter-
face are inconsistent across vendors and should not be
assumed to be representative of a particular channel state.
We now carry out experiments to evaluate the reliabil-

ity of using RSSI as the channel indicator. We use one
WARP as the transmitter to send a signal with 10 MHz
bandwidth and - 62 dBm power and directly connect
it to another WARP receiver with a coaxial cable. The
reported RSSI values from our WARP receiver are shown
in Fig. 3. We can see that, even with the same transmit
power and channel state, the reported RSSI values can
vary as much as 14 dB. Even if we use a filter to reduce
the variance of the reported RSSI, other factors may also
greatly affect the RSSI-based channel quality prediction
accuracy. The general system architecture for the signal
path is shown in Fig. 4. Any error or interference gener-
ated by the components in group 1 may vastly affect the
received BER, but may not affect the RSSI value. Any error
or interference generated by the components in group 2
may affect the RSSI value, but may not significantly affect
the BER. Therefore, for different transmitter and receiver
pairs, system components internally have different perfor-
mances. The factors that might affect the channel quality
estimation accuracy using RSSI include the following:

1 Phase noise. With the same RSSI, there might be
different phase noises caused by the jitter of the
clocks on both the transmitter and the receiver,
leading to different values of BER. However, the phase
noise may not affect the received signal power level.

2 Amplifier non-linearity. For orthogonal
frequency-division (OFDM) systems, the
non-linearity of both the transmit amplifier and the
receive amplifier often cause inter-carrier
interference (ICI) [31]. ICI may not affect the RSSI,
but often affects the received BER performance.

3 RSSI signal noise. RSSI is measured in the transceiver
and output in the form of an analog signal, which
often suffers from noise and interference on the
board.

4 RSSI analog to digital converter (ADC) performance.
In a system, an ADC is typically used to convert the
RSSI signal from the analog to digital domain. The
noise on the board, the resolution of the ADC, and
the reference voltage stability of the ADC may all
affect the digitized RSSI value.

5 RSSI sample duration. In the IEEE 802.11 standard,
RSSI is calculated during the preamble of a PHY
frame. The limited duration of the preamble can not
guarantee an accurate RSSI estimate.

Considering all the effects listed above, with the same
received BER, the receivers often report different RSSI
values for different transmitter and receiver pairs. We
compare the RSSI values reported (shown in Fig. 5) from
two different receivers but with the same signal source

Fig. 3 Raw RSS values reported with the same transmit power and channel gain
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Fig. 4 Signal path from the transmitter to the receiver

and emulated channel. Even with the same received signal,
there is about 1.5-dB difference of reported RSSI between
receivers on average. As a result, the RSSI inconsistency
may severely handicap an optimal rate selection decision.

2.3.2 SNR: amore reliable channel indicator
Most of the soft decoders need the SNR or noise variance
to calculate the decision probabilities of the demodulated
signals. There are diverse SNR estimation methods for
OFDM systems. In [32], the author proposes iterative SNR
estimation based on pilot sub-carriers in an 802.11n sys-
tem. In [33], an algorithm based on finding the difference
between a noisy received sample in the frequency domain
and the best hypothesis of the noiseless sample is pro-
posed to estimate the SNR. In this work, we implement
an SNR estimation method based on the Schmidl-Cox

algorithm [34] because of its high accuracy and low com-
plexity. In addition, we use the IEEE 802.11 PHY frame
as the frame structure in this work, as shown in Fig. 6.
One frame is composed of a preamble, a header symbol,
and the number of OFDM symbols forming the data pay-
load. One preamble consists of one short preamble and
one long preamble [35]. In our design, we take advantage
of the known training symbols (two identical OFDM sym-
bols with a 1/2 symbol prefix) in the long preamble to
calculate the SNR of the received packet. A detailed calcu-
lation can be found in the Appendix 1. We show the SNR
distribution plotted in Fig. 7. The SNR has a mean value
of 16 dB, with a standard deviation of 0.91 dB. Compar-
ing the RSSI distribution which has a standard deviation
of 1.5 dB, we can show that SNR is more accurate than the
RSSI as the channel quality indicator.

Fig. 5 RSS values reported by different receivers (one shown above the other) with the same level of achieved BER
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Fig. 6 IEEE 802.11 PHY frame structure

2.3.3 Effective SNR: a robust channel indicator
Although the SNR estimation is more tightly bounded
and consistent with the channel state than the RSSI, a
frequency-selective fading channel may disturb the map-
ping from SNR to BER. However, in a multi-path chan-
nel, the frequency-selective characteristics may result in
a higher BER than a flat-fading channel with the same
SNR, which corresponds to a lower Effective SNR than
the actual SNR (demonstrated in Fig. 8). To solve this
problem, Halperin [14] proposed the Effective SNR met-
ric to improve the rate selection accuracy in multi-path
fading channels. Instead of averaging the SNR on all the
sub-carriers for SNR-based rate adaptation algorithms,
systems implementing the Effective SNR not only average
the BER on all the sub-carriers but also obtain an equiva-
lent SNRwith the same BER as narrow-band systems. This
process can be represented by [14, Eqs. (1) and (2)]:

BERe f f , k = 1
52

S∑

s=1
BERk(ρs) (4)

ρe f f , k = BER−1
k (BERe f f , k) (5)

Here, ρs is the SNR on sub-carrier s. Assuming the average
SNR is ρ and the channel gain on sub-carrier s is Hs, then

ρs can be calculated as ρs = ρ
|Hs|2¯|H|2 , where

¯|H|2 is the mean
square of the channel gain across all the sub-carriers.
In an additive white Gaussian noise (AWGN) channel,

the relationship between SNR and BER varies among dif-
ferent modulations [14, 36], as shown in Table 1. In the
following discussion and experimental evaluation, we see
that Effective SNR outperforms the other channel indica-
tors due to its ability to capture both time-selective and
frequency-selective fading effects.

3 Design of CIPRA
In this section, we analyze different channel prediction
algorithms and propose an advanced algorithm to keep
the transmitter in step with the fluctuating channel qual-
ity. In order to improve prediction accuracy, we take into
account both the measurement error of the channel indi-
cator and the staleness of the channel quality reported by
the receiver.

3.1 Existing prediction methods
The wireless channel usually changes continuously and
randomly with time, which makes the implementa-
tion of accurate closed-form characterization challenging.
Nevertheless, a Rayleigh fading channel model is a good

Fig. 7 Distribution of estimated SNR
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Fig. 8 Different frequency-selective patterns with the same SNR value

approximation and agrees well with empirical observa-
tions for mobile communications [25]. In order to select
the optimal rate, the transmitter constantly needs the
channel quality measurement from the receiver. Prior
SNR-based protocols have frequently used the channel
quality measured from the last packet transmission to
the pertinent receiver [18]. Whether the last packet is a
probe packet from the RTS/CTS exchange or simply the
last data packet, these channel indicator measurements
are stale in fast-fading channels. There are several mech-
anisms to make full use of the previous channel quality
measurements for rate adaptation.

3.1.1 Follower
For this mechanism, the transmitter simply copies the
channel measurements from the last packet transmission
as the predicted value of the ongoing channel quality
[18]. In particular, Follower can simply be denoted as
γ̂n,follower = γn−1, where γ̂n,follower is the estimate of the
ongoing channel quality and γn−1 is the channel quality
measurement reported during the last packet transmis-
sion. This estimate has minimal complexity but suffers

Table 1 BER function with different modulations

Modulation BERk(ρ)

BPSK Q
(√

2ρ
)

QPSK Q
(√

ρ
)

16-QAM 3
4Q

(√
ρ
5

)

64-QAM 7
12Q

(√
ρ
21

)

from both measurement errors and staleness of the past
channel indicator values.

3.1.2 Moving Average
There are three main kinds of moving average methods:
simple moving average, linear weighted moving aver-
age (LWMA), and exponential weighted moving average
(EWMA) [23]. Simple moving average is the unweighted
mean of the previous points in a window size of w. The
estimated channel quality γ̂n,MA, is denoted as

γ̂n,MA = γn−1 + γn−2 + · · · + γn−w
w

(6)

Simple moving average method reduces the effect of
the measurement errors, while making the staleness effect
more serious than the Follower method.
For LWMA, weight factors are assigned to the past mea-

surements in a linear progression with a window size of w.
The estimated value γ̂n,LWMA, can be expressed as

γ̂n,LWMA = wγn−1 + (w − 1)γn−2 + · · · + γn−w
(w + 1)w/2

(7)

LWMA puts greater weight on more recent measure-
ments, which results in a balance between the prediction
staleness and the measurement errors.
For EWMA, the weight of the measurements decreases

by a factor of δ.

γ̂n,EWMA = δγn−1 + (1 − δ)γ̂n−1 (8)

EWMA reduces the number of previous measurements
to one and has less computational complexity.
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Each of the moving average methods reduces the effect
of the measurement errors but introduces more severe
staleness effect than the Follower method.

3.1.3 Linear prediction
By assuming that the channel quality indicator has a
constant first-order derivative across three adjacent trans-
missions [23], we can predict the ongoing channel quality
from the last two channel measurements.

γ̂n,linear = γn−1+�γ (tn−tn−1), �γ = γn−1 − γn−2
tn−1 − tn−2

(9)

Here, γn−1 and γn−2 are the channel measurements at
time tn−1 and tn−2, respectively. This method is more
robust to the prediction staleness. However, the errors of
the past measurements maymake�γ twice as noisy, lead-
ing to a prediction with an intolerable noise level in some
cases.

3.2 Coherence-aware MMSE first-order prediction
Our previous discussion reveals that some of the meth-
ods are more robust to the measurement errors, while
others are more robust to the prediction staleness. For a
good prediction, both the measurement errors and stale-
ness should be considered. In this section, we propose a
coherence-aware MMSE first-order prediction.
In Section 2.1, we introduced the Rayleigh fading model

and its auto-correlation.When conducting the prediction,
we need the previous measurements within a time win-
dow T. From Fig. 1, we see differing dependence between
measurements with the samemaximumDoppler shift and
differing time delay, or with the same time delay and dif-
fering maximum Doppler shift. Thus, when selecting the
time window T, we should take the Doppler shift into
account. We can denote T as T = β

fd , where fd is the
Doppler shift that can be estimated by themethod we pro-
posed in Section 2. β is a constant factor. In our simulation
and experiments, we select β = 0.064, which empirically
achieves the highest prediction fidelity.
Assuming that within the time window T, there are

w channel measurements γn−1, γn−2, · · · , γn−w at time
tn−1, tn−2, · · · , tn−w, respectively. From all the measure-
ments within the window, we perform a linear regres-
sion first-order curve fit with the constraint of minimum
square errors. To do so, we first assume the objective first
order curve is f (t) = at+b, where a and b are parameters
to be calculated. Then, we have

γ ′n−i = f (tn−i) = atn−i + b i = 1, 2, · · · ,w (10)

The detailed process of computing a and b in (10) can be
found in the Appendix 2.
We know that the fading channel does not strictly main-

tain a constant first-order derivative, especially for long

intervals between packets. In a more extreme case, if the
interval between the last packet and the ongoing packet
exceeds a certain value, the prediction may be uncor-
related with the real channel quality. Considering this
interval, we use a weighting factor δ to weight the pre-
prediction and the channel quality with the maximum
probability. Consequently, the estimated channel quality
γ̂n is:

γ̂n = δ(tn − tn−1) · γ̂n′ + (1 − δ(tn − tn−1)) · γ̄ (11)

where

δ(t) =
{
1 − t · fd if t < 1

fd
0 otherwise

(12)

In (12), fd is the maximum Doppler shift, and γ̄ is the
channel quality that has the greatest statistical proba-
bility of occurrence. For computational simplicity, we
approximate γ̄ as the mean value of the channel quality
measurements during the last 10 s.
Note that within the time window T, there is the prob-

ability of w ≤ 2. When w = 2, our algorithm turns out to
be the Linear prediction. Similarly, ifw = 1, our algorithm
matches the Follower mechanism. For the case of w = 0,
we choose the maximum probability channel quality γ̄ as
our prediction.
In Fig. 9, we show the result of the MMSE first-order

channel quality prediction. There is a -15 dBmeasurement
error compared to the channel quality. The reconstructed
channel response approaches the theoretical curve well.
The square errors of the prediction is about -38 dB com-
pared to the theoretical one, which means a -23 dB
accuracy gain.
In order to evaluate the prediction performance of our

proposed algorithm under various time intervals between
packets, we control the delay between the data packets
decoded for channel estimation and the channel feedback
packets received by the transmitter. We use a Rayleigh
fading channel model to compare our proposed algo-
rithm with three other mechanisms (Follower, EWMA,
and Linear prediction), as shown in Fig. 10. We set a
Doppler shift of 10 Hz and set the channel measurement
error to -20 dB compared to the average channel qual-
ity. We can see that the prediction performances based
on the time interval seem to follow the same pattern for
all prediction algorithms: the prediction error increases
as the time interval increases, as shown in Fig. 10a. Our
evaluation shows that CIPRA presents the least predic-
tion error of all prediction algorithms. Although similar
patterns can be found at both over-selection probability,
under-selection probability, and wrong selection proba-
bility, as shown in Fig. 10b, c, and d, it is interesting to
note that the performance of CIPRA becomes identical to
that of Linear prediction at a time interval above 3.6 ms.
Considering that the MAC layer design in current and
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Fig. 9 Channel quality reconstruction using MMSE first-order prediction

Fig. 10 a–d Channel quality prediction performances comparison
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Fig. 11 Channel emulator based evaluation system

future IEEE 802.11 standards requires only smaller time
interval between packets, we predict that the impact of
CIPRA will only increase with the development of higher
frequency band protocols such as those with millimeter
wavelengths and smaller timing parameters. For exam-
ple, a minimum interval between transmission packets,
called Short Inter Frame Space (SIFS), has shortened from
28 μs in IEEE 802.11-1997 to 16 μs in IEEE 802.11n to
3 μs in WiGig/IEEE 802.11ad. Moreover, many timing
parameters of the backoff process for the carrier sense and
channel access are also reduced.

Table 2 Throughput with different combinations of channel
indicator and prediction methods

Doppler Channel Throughput (Mbps)

shift indicator Follower EWMA Linear CIPRA

1 Hz RSSI 12.59 13.41 10.88 13.88

SNR 13.34 13.91 11.83 14.41

Eff. SNR 14.19 14.55 14.05 15.06

2 Hz RSSI 11.87 12.53 10.84 13.65

SNR 12.98 13.28 11.89 14.26

Eff. SNR 14.16 14.41 14.18 14.95

5 Hz RSSI 11.05 11.47 10.62 13.12

SNR 11.91 12.55 11.85 13.80

Eff. SNR 13.76 13.85 13.68 14.52

10 Hz RSSI 10.83 11.19 10.10 12.75

SNR 11.87 12.46 11.20 13.31

Eff. SNR 13.56 13.66 13.75 14.39

The computational complexity of the proposed algo-
rithm is higher than the other algorithms discussed above.
However, it takes less than 1 μs on the PowerPC embed-
ded onWARP (we use an 80-MHz clock frequency for the
PowerPC), which is much less than the DIFS/SIFS time of
the transmission. As a result, it does not affect the system
throughput.

4 Hardware setup
In this section, we describe the implementation of
our CIPRA algorithm on the WARP board, a fully-
customized, cross-layer software-defined radio (SDR)
platform. Moreover, we use the Azimuth ACE-MX chan-
nel emulator to generate controllable channel effects,
which allows repeatability of wireless channels over which
to test diverse protocols.

4.1 WARP
The experiments are carried out using the WARP board,
a useful wireless communication system supporting a
fully-customized, cross-layer design [11]. We conduct our
experimental evaluation based on a full OFDM physical
layer design per the IEEE 802.11 PHY frame structure.
The design operates in real-time, transmitting and receiv-
ing wide-band signals. We implement complete real-time
signal processing, synchronization, and control systems in
the fabric of the FPGA onWARP.1

1While existing OFDM-based models have existed on the WARP repository
(http://warp.rice.edu), they use System Generator to create the design,
whereas our design is completely based upon Verilog HDL for system control
and efficiency of compilation and real-time operation.

http://warp.rice.edu
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Fig. 12 The eighth floor layout of SMU Expressway Tower

4.2 Channel emulator
In addition to the practical in-field wireless channels, we
use the Azimuth ACE-MX channel emulator to generate
repeatable and controllable channel effects, which iso-
lates the impact of interference and approximates well
complex over-the-air channels. Figure 11 illustrates our
experimental setup. We use one WARP as the transmitter
and another WARP as the receiver. We connect the trans-
mitter and the receiver with RF cabling to the channel
emulator. The transmitter sends data packets periodically
to the receiver. The receiver measures the channel and
feeds the channel indicator back to the transmitter with
ACK packets following controllable time interval.
In our evaluation with the channel emulator, we set the

packet size to 1536 bytes. We use a two-tap Rayleigh fad-
ing channel with an average SNR of 15 dB. Both taps have
a 0-dB relative attenuation, and the time delay between
the taps is 0.5 μs. The resulting throughput is shown in
Table 2 and indicates that Effective SNR performs best

among all three channel indicators. The EWMA method
performs better with less of a Doppler shift because there
is less staleness when the Doppler shift is low. With
an increasing Doppler shift, the linear method becomes
comparatively better because of the increasing staleness of
Follower and EWMA. SNR-based rate adaptation mech-
anisms on off-the-shelf devices use the RSSI metric and
Follower prediction. Thus, with a Doppler shift of 10 Hz,
CIPRA achieves a throughput improvement of 18% over
the off-the-shelf configuration. If further combined with
the advanced effective SNR, a total improvement of 33%
could be achieved over the off-the-shelf method. Later, we
show that in-field experimental results exceed these gains
as the channels become more complex.

5 Experimental evaluation and discussion
In this section, we implement the existing channel pre-
diction algorithm and the proposed algorithm on WARP
and experimentally compare them in terms of system

Fig. 13 The indoor experiment result
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Fig. 14 The experimental environment outside of SMU Expressway Tower

throughput through both indoor pedestrian experiments
and outdoor vehicular experiments.

5.1 Indoor pedestrian test
We conduct our indoor experiment on the eighth floor of
the SMU Expressway Tower (floor plan shown in Fig. 12).
Before evaluating the performance of our proposed algo-
rithm with other mechanisms, we take actions to reduce
the ambient interference power in our selected measure-
ment locations by disabling or shielding interfering WiFi
access points. Yet, the interference cannot be fully elim-
inated due to the existence of institutional WiFi access
points that are beyond our control. We set up two
transmitter/receiver pairs, which are operating indepen-
dently, but simultaneously. Two transceivers use orthogo-
nal channels: 2484 MHz (Ch. 14) and 2462 MHz (Ch. 11),
respectively. For each experiment, we run CIPRA on a
tx/rx pair, and one of the other three methods on the
other tx/rx pair. We use RSSI with all four prediction
methods to measure the throughput. We also provide
additional experiments combining CIPRA and effective
SNR to obtain the throughput. We co-locate the transmit
antennas and co-locate the receive antennas to ensure the
two links have very similar channels. For each compari-
son, we flip the links back and forth for each experimental
trial to remove any unfair advantage between the two
channels. The transmitters are located on the table in the
lab, and we select four office rooms to put the mobile
receivers, as shown in Fig. 12. We randomly move the
receiver nodes in each office to create time-varying chan-
nels.We show the average throughput of the fourmethods
on the four different locations in Fig. 13. CIPRA greatly
outperforms other methods at all four locations with up

to a 66% throughput improvement, with an improved pre-
diction algorithm from the currently one used in practice.
When further combined with the advanced Effective SNR,
a maximum improvement of 98% could be achieved over
the off-the-shelf method, nearly doubling the achieved
throughput. In addition, compared with the experimental
results using channel emulator, our evaluation demon-
strates the performance improvement of CIPRA in real
environments even with the impact of interference.

5.2 Outdoor vehicular test
In addition to lab experiments, we also conduct in-field
experiments to show the throughput improvement pro-
vided by our algorithm for in situ highly mobile scenarios.
We perform outdoor experiments in the parking lot of the
SMU Expressway Tower (shown in Fig. 14). The transmit-
ter and receiver settings are the same as with the indoor
experiments. We place the transmitters in the entrance
of the tower and the receivers in a car with the anten-
nas mounted on the roof. We drive the car along the path
shown in Fig. 14, with an average speed of 32 km/h. We
also switch the channels of the two tx/rx pairs to remove
the unfairness of different channels for each comparison.
We show the average throughput of the four methods in
Table 3. Due to a higher Doppler shift in the vehicular
environment, the Linear method has improved perfor-
mance. CIPRA also outperforms the three other methods
with up to 50% of the throughput improvement. When

Table 3 Throughput result for outdoor experiment

Follower EWMA Linear CIPRA CIPRA & eSNR

3.07 Mbps 3.52 Mbps 3.95 Mbps 4.83 Mbps 5.12 Mbps
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Fig. 15 Throughput comparison between CIPRA and Minstrel

further combined with Effective SNR, a total improve-
ment of 67% could be achieved over the off-the-shelf
method.

5.3 Throughput comparison between CIPRA andMinstrel
Minstrel is reported to be one of the best rate adaptation
methods based on packet loss/success [37]. We imple-
mented Minstrel according to the specifications in [37]
and evaluated the throughput ofMinstrel and CIPRAwith
the same experimental settings as in Section 4.2. We use
SNR as the channel indicator for CIPRA and train the
CIPRA rate adaptation threshold with a Doppler shift
of 10 Hz, corresponding to a walking velocity for WiFi
2.4 GHz band. The Doppler shift can be approximately by

fd = vfc
c

(13)

Here, v is velocity and c is the light speed. Then, we apply
the same SNR threshold in all the different Doppler shift
cases for CIPRA. We show the throughput of CIPRA and
Minstrel in Fig. 15. We can see that, with a very low
Doppler shift, CIPRA and Minstrel have similar through-
put. However, as the Doppler shift increases, Minstrel
degrades faster than CIPRA. This is explained by the long
statistical time that composes rate decisions in Minstrel

that prevent it from adapting as quickly to fast-fading
channels.

6 Conclusion
In this paper, we proposed a coherence-aware MMSE
first-order prediction algorithm (CIPRA), which consid-
ered both the measurement inaccuracy and staleness.
Prediction intervals and channel coherence time were
jointly considered to select the optimal prediction win-
dow. We also implemented a Doppler shift estimation
method to assist our prediction algorithm. We compared
CIPRA to the traditional channel quality prediction for
rate adaptation protocols, performing experiments on an
FPGA-based platform over emulated and in-field wire-
less channels. We showed that our proposed algorithm
can provide better prediction fidelity and results in nearly
double the throughput versus the current configuration in
off-the-shelf devices in the field. Lastly, we estimated that
the benefits brought by CIPRA will only increase with the
development of next-generation protocols such as those
with higher frequencies and higher packet rate.

Appendix 1
This appendix presents the SNR computation for IEEE
802.11 OFDM systems. As shown in Fig. 6, the long
preamble is composed of two identical OFDM symbols
with a 1/2 symbol prefix. Denote the OFDM symbol in
the long preamble as X(k), k = 0, 1, ...,K − 1, where k
is the sample index in the time domain of one symbol.
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According to the frame structure specified in [35], the
long preamble S(n) can be expressed as

S(n) = X
((

n + K
2

)
mod(K)

)
, n = 0, 1, ...,

5
2
K −1

(14)

where n is the sample index in the long preamble.
We assume this signal passes through a multi-path

channel with a time spread of L, 0 ≤ L ≤ K
4 . Moreover, we

make the assumption that the channel remains constant
during one frame slot. Then, the received signal Y (n) with
additive white Gaussian noise is

Y (n) =
L−1∑

l=0
S(n − l)h(l) + Z(n)

=
L−1∑

l=0
X

((
n − l + K

2

)
mod(K)

)
h(l) + Z(n)

(15)

where n = 0, 1, ..., 52K+l−2. It is then straightforward that

Y (n + K) =
L−1∑

l=0
X

((
n − l + 3K

2

)
mod(K))h(l

)

+ Z(n + K)

=
L−1∑

l=0
X

((
n − l + K

2

)
mod(K)

)
h(l)

+ Z(n + K)

= Y (n) + Z(n + K) − Z(n) (16)

We then compute the cross-correlation between the last
symbol and the first symbol as

Ps = 1
K

3
2K−1∑

n= K
2

Y ∗(n)Y (n + K)

= 1
K

3
2K−1∑

n= K
2

(|Y (n)|2 + Y ∗(n)(Z(n + K) − Z(n))
)

(17)

Because Y (n) and Z(n) are uncorrelated, we have

E(Ps) = E

⎡

⎢⎢⎢⎢⎢⎢⎣

3
2K−1∑

n= K
2

(Y ∗(n)(Z(n + K) − Z(n))

K

+|Y (n)|2)
⎤

⎥⎦

= 1
K

3
2K−1∑

n= K
2

E
(|Y (n)|2)

(18)

We then compute the auto-correlation on the first
symbol as

Pt = 1
K

3
2K−1∑

n= K
2

Y ∗(n)Y (n)

= 1
K

3
2K−1∑

n= K
2

(|Y (n)|2 + 2Y ∗(n)Z(n) + |Z(n)|2) (19)

Since Y (n) and Z(n) are uncorrelated, we have

E(Pt) = E

⎡

⎢⎣
1
K

3
2K−1∑

n= K
2

(|Y (n)|2 + 2Y ∗(n)Z(n)

+ |Z(n)|2)
]

= 1
K

3
2K−1∑

n= K
2

E
(|Y (n)|2 + |Z(n)|2) (20)

Then, Ps is the estimated signal power, and Pt is the esti-
mated total power. The noise variance will be Pt−Ps. Also,
we can calculate the SNR as SNR= Ps

Pt−Ps .

Appendix 2
We provide the parameter computation for the first-order
SNR prediction. The sum of the square errors between the
samples on the curve γ ′n−i and the actual measurements
γn−i are

E =
w∑

i=1
(γ ′n−i − γn−i)

2 (21)
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Our objective is to find the value of a and b when E
achieves its minimum value. We can expand (21) as

E =
w∑

i=1

(
a2t2n−i + 2a(b − γn−i)tn−i + (b − γn−i)

2)

= a2
w∑

i=1
t2n−i + 2ab

w∑

i=1
tn−i − 2a

w∑

i=1
γn−itn−i

− 2b
w∑

i=1
γn−i +

w∑

i=1
γ 2
n−i +

w∑

i=1
b2

(22)

Let us use the following notation for ease of expres-
sion: α1 = ∑w

i=1 t2n−i,α2 = ∑w
i=1 tn−i,α3 =∑w

i=1 γn−itn−i,α4 = ∑w
i=1 γn−i,α5 = γ 2

n−i,α6 = w. Then,
we can simply express (22) as

E = α1a2 + 2α2ab − 2α3a − 2α4b + α5 + α6b2 (23)

To find the minimum value of E, we take its derivative
in terms of a and b, respectively. Then, we force both the
derivatives to 0 to obtain the following pair of equations:

{
α1a + α2b − α3 = 0
α2a + α6b − α4 = 0

(24)

From (22), we know that E ≥ 0 for all a and b, which
means that there exists a minimum value of E. From (22),
we can see that E is a convex function of a or b. As a
result, the solution of a and b in the above equation pairs
will enable E to achieve its minimum value. With a and b
obtained, we can obtain our pre-estimate of γ̂n′ as

γ̂n′ = f (tn) = atn + b (25)
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