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Abstract

Estimating direction of arrival (DOA) is important in a variety of practical applications. Conventional
cyclostationarity-based coherent DOA estimation algorithms are not robust to non-Gaussian α-stable impulsive
noise. Additionally, fractional lower-order statistics (FLOS)-based algorithms are tolerant to impulsive noise; however,
they experience performance degradation for coherent signals and interference. To overcome these drawbacks, two
types of fractional lower-order cyclostationarity-based subspace DOA estimation methods are proposed for
coherent signals in the presence of interference and α-stable impulsive noise. The new proposed algorithms exploit
the fractional lower-order cyclostationarity properties of the signals and are immune to the impulsive noise and
interference. Moreover, they can provide more accurate DOA estimates of coherent signals than conventional
cyclostationarity-based and FLOS-based methods. The simulation results illustrate the robustness and effectiveness
of the proposed methods for coherent signals based on a comparison with traditional methods. The new
algorithms can be used in the presence of a wide range of interference, Gaussian noise, and α-stable distribution
impulsive noise environments.

Keywords: Cyclostationarity, Direction of arrival (DOA), Coherent signals, Fractional lower-order statistics, α-Stable
process

1 Introduction
The direction of arrival (DOA) is the base problem in
array signal processing and is the core of many civilian
and military applications, such as communication regu-
lation enforcement, search-and-rescue operations, and
military reconnaissance [1–3]. In realistic radio environ-
ments, correlated signals are not negligible. Evans and
Shane et al. proposed derived spatial smoothing tech-
niques for the DOA estimation of coherent signals; in
the study, a uniform linear array was divided into several
subarrays, and the covariance matrices of the subarrays
were then calculated and averaged together [4]. Add-
itionally, subspace smoothing, modified smoothing, and
other smoothing methods have been proposed [5–8]. A
new formulation of the Khatri-Rao has been used to esti-
mate DOA which can cope with more coherent signals

than classical multiple signal classification (MUSIC) with
the spatial smoothing [9]. The unitary estimation of signal
parameters via rotational invariance techniques (U-ES-
PRIT) incorporates forward-backward averaging that can
lead to higher resolution than classical ESPRIT [10–12].
Since the performance of subspace-based algorithms is
limited by the number of snapshots, the sparse
reconstruction-based methods have been proposed to deal
with the DOA estimation of coherent signals [13–16].
Many artificial modulated communications signals and

nature signals have the cyclostationarity properties,
which can break through previous limitations and fur-
ther improve the DOA estimation performance of sub-
space algorithms. If received signals can be divided into
the signal of interest (SOI) and interference (including
noise) based on their cyclostationary characteristics, the
signals of interest can be selected and the noise and
interfering signals can be removed by utilizing cyclosta-
tionarity [17]. Therefore, there are many advantages of
DOA estimation using cyclostationary characteristics
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compared to conventional methods [18, 19]. These ad-
vantages include selective direction finding, interference
and noise suppression, and breakthrough-limited
multi-signal processing. Therefore, DOA estimation
based on cyclostationarity has been widely studied [20–
23].
Noise, interference, and coherent signals can affect the

performance of DOA estimation in wireless communica-
tion, radar, sonar, and other systems. The noise and
interference can affect the estimation accuracy, and the
coherent and correlated signals caused by multipath
propagation can, in turn, cause the correlation function
to produce several peaks and widen the main peak,
which may lead to erroneous estimations by the corre-
sponding algorithms [24]. However, most of the trad-
itional cyclostationarity-based DOA methods for
coherent signals assume that the additive noise obeys a
Gaussian distribution. Many theoretical studies and ex-
periments have shown that underwater acoustic noise,
atmospheric noise, artificial noise, and other noise types
contain numerous impulsive components. Previous stud-
ies [25–27] demonstrated that it is inappropriate to
model these noises as Gaussian. In fact, the phenomena
with impulsive components encountered in practice are
appropriate to be modeled as non-Gaussian processes.
Although cyclostationarity-based methods are tolerant
to coherent signals and Gaussian noise, a significant deg-
radation in their performance can occur when
non-Gaussian impulsive noise is present. To suppress
the impulsive components, robust fractional lower-order
statistics (FLOS)-based DOA estimation methods have
been developed [26–29]. The FLOS-based algorithms
can provide accurate DOA estimates for Gaussian and
non-Gaussian impulsive noises; however, they suffer
from poor performance when interfering signal is
present which occupies the same spectral band as the
source signal. Recent advances on communications,
array processing, and identification have indicated that
non-Gaussian impulsive noise can be modeled by
α-stable distributions [29, 30]. According to the General-
ized Central Limit Theorem, the Gaussian distribution is
the limiting case of the α-stable distribution (α = 2).
Therefore, the α-stable distribution is a more realistic
class of distribution than the Gaussian distribution in
communication, radar, sonar, and similar application. In
real applications, we are interested in developing DOA
algorithms that are robust to interference, Gaussian
noise, and non-Gaussian α-stable distribution noise and
that account for the coherent signals in real-world
environments.
In this paper, we address the issue of the DOA estima-

tion of cyclostationary coherent signals in impulsive
noise environments. Two novel types of robust fractional
lower-order cyclostationarity-based signal-selective

subspace DOA estimation algorithms for coherent sig-
nals are developed. Compared with conventional cyclic
subspace DOA estimation algorithms, the proposed
methods are not only immune to the interference and
Gaussian noise, but can account for impulsive noise and
coherent signals. Moreover, because the proposed
methods are applicable to coherent signals in the pres-
ence of impulsive noise and interference, they are super-
ior to the methods that are merely robust against
impulsive noise or suitable for coherent sources. The
proposed DOA estimation algorithms have three notable
advantages over traditional methods: (1) in the presence
of interfering signals, the proposed methods exhibit sig-
nal selectivity and performance improvements over the
FLOS-based MUSIC and ESPRIT algorithms; (2) in im-
pulsive environments, the proposed methods are more
robust to impulsive noise than the cyclic MUSIC and
cyclic ESPRIT algorithms; and (3) the proposed methods
are effective for cyclostationary coherent signals in im-
pulsive noise and interference environments, while con-
ventional coherent cyclic methods are limited to DOA
estimation from Gaussian noise, and FLOS-based coher-
ent methods exhibit degradation in the presence of
interference.

2 Methods
DOA estimation has been widely used in various import-
ant applications (e.g., radar, sonar, communications, and
wireless sensor networks) and has garnered considerable
attention in recent years. The conventional subspace
DOA estimation methods are not robust against
non-Gaussian α-stable impulsive noise. Although
FLOS-based algorithms are robust to the impulsive
noise, they do not achieve satisfactory performance in
the presence of coband interference. Conventional
cyclostationarity-based methods are highly immune to
interference; however, they are severely degraded in the
presence of α-stable impulsive noise and useless for co-
herent signals. Therefore, we address the problem of
DOA estimation for coherent signals in the presence of
impulsive noise and interference based on
cyclostationarity.
First, we briefly introduce the signal model, cyclic statis-

tics, and α-stable distribution. Based on these concepts,
we formulate a fractional lower-order cyclostationarity.
Since the conventional cyclostationary-based subspace
DOA estimation methods are not robust against impulsive
noise and coherent signals, we propose a type of spatial
smoothing fractional lower-order cyclic algorithm. The
proposed spatial smoothing fractional lower-order cyclic
algorithms use pth-order cyclic statistics to exploit cyclos-
tationarity in impulsive noise and employ spatial smooth-
ing technique to account for coherent signals. Thus, they
are applicable to coherent signals in impulsive noise. To
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further circumvent the coherent signals in impulsive
noise, we propose a type of modified fractional
lower-order cyclic DOA estimation method. Compared
with spatial smoothing fractional lower-order cyclic algo-
rithms, the modified fractional lower-order cyclic algo-
rithms combine the cyclic and conjugate-cyclic statistics
together to improve the performance for coherent signals
in impulsive noise. Finally, we perform experiments to
evaluate the performance of the new proposed algorithms.
The designed methods are implemented by using
MATLAB. The parameters in the experiments are intro-
duced in Section 5.

3 Preliminary
The DOA problem involves estimating the signal arrival
angle using the receive array, which is also called spatial
spectral estimation. In this paper, the system is based on
a uniform linear array. To simplify the problem, it is as-
sumed that the received signal can be treated as a paral-
lel plane wave and that the distance between any two
adjacent elements is not greater than half of the signal
wavelength. Assuming that the array spacing of the an-
tenna array is d, the number of elements is M, and the
wavelength of the signal is λ, the array output can be
expressed as

xm tð Þ ¼
XK
i¼1

am θið Þsi tð Þ þ nm tð Þ; m

¼ 1; 2;⋯;M ð1Þ

where si(t) is the ith signal received at the sensor, amðθiÞ
¼ e− j

2π
λ ðm−1Þd sinðθiÞ is the mth steering coefficient of the

sensor towards the angle θi, and nm(t) is the noise at the
mth sensor.
In general, the signal model for DOA estimation can

be rewritten in vector form as,

X tð Þ ¼ AS tð Þ þN tð Þ ð2Þ
where S(t) = [s1(t) s2(t) ⋯ sK(t)]

T is the signal vector, XðtÞ
¼ x1ðtÞ x2ðtÞ ⋯ xMðtÞ½ �T is the vector of signals re-
ceived by the array sensors, A ¼
a1ðθ1Þ a2ðθ2Þ ⋯ aMðθK Þ½ � is the matrix of array

steering vectors, and NðtÞ ¼ n1ðtÞ n2ðtÞ ⋯ nMðtÞ½ �T
is the noise vector.
In wireless communications, multipath signals are ubi-

quitous phenomena in radio propagation that can result
in signals reaching the antenna array via two or more
paths. For example, if a transmitted wave or echo propa-
gates along multiple paths, the received signals are co-
herent in wireless communications systems. At the same
time, the complexity of the propagation path can result
in multiple propagation paths between the base station
and users are reached, thereby creating a multipath

problem. Therefore, it is important to consider efficient
signal processing techniques to limit coherent signals.
For two stationary signals si(t) and sj(t), the correlation

coefficients can be written as follows,

ρij ¼
E si tð Þs�j tð Þ
h i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E si tð Þj j2� �

E s�j tð Þ
��� ���2� �s ð3Þ

The correlation of the signals is defined as follows:

ρij ¼ 0; uncorrelated

0 < ρij

��� ��� < 1; correlate

ρij

��� ��� ¼ 1; coherent

8>><
>>: ð4Þ

According to (3) and (4), coherent signals can be
expressed in the following form [4].

si tð Þ ¼ uis j tð Þ ð5Þ

where ui is a complex.
Many manmade signals encountered in communica-

tions, radar, and sonar systems are from a special class
of processes whose statistical functions are periodic
functions of time, such as signals with amplitude modu-
lation (AM), binary phase shift keying (BPSK), and qua-
ternary phase shift keying (QPSK). These signals are
referred to as cyclostationary signals, which exhibit in-
herent cyclostationarity properties. The cyclostationarity
can be used for effective signal processing and make the
signals immune to interference and noise, which have
different cyclostationarity as that of the signals of inter-
est or are not cyclostationary signals.
The cyclic autocorrelation of x(t) is defined by

Rε
x τð Þ ¼ x t þ τ=2ð Þx� t−τ=2ð Þe− j2πεt� 	 ð6Þ

where h�i ¼ lim
T→∞

ð1=TÞ
Z T=2

−T=2
ð�Þdt is the time-averaging

operation, ε represents all the harmonics of the funda-
mental cycle frequencies of x(t), and “∗” denotes the con-
jugate operation. The cyclic autocorrelation function is a
characteristic property of second-order cyclostationarity.
The signal x(t) is said to contain cyclostationarity if and
only if Rε

xðτÞ≠0 for some non-zero cycle frequencies ε.
The cyclic spectrum (also called the spectral correlation
function) is defined as the Fourier transform of the cycle
autocorrelation function:

Sεx fð Þ ¼
Z ∞

−∞
Rε
x τð Þe− j2πfτdτ ð7Þ

Furthermore, when ε = 0, the cyclic correlation be-
comes a conventional correlation function, and the cyc-
lic spectrum is the same as the power spectrum.

Liu et al. EURASIP Journal on Wireless Communications and Networking         (2019) 2019:81 Page 3 of 19

https://en.wikipedia.org/wiki/Radio
https://en.wikipedia.org/wiki/Radio_propagation
https://en.wikipedia.org/wiki/Signalling_(telecommunications)
https://en.wikipedia.org/wiki/Antenna_(electronics)


The analytic properties of the Gaussian distribution
have made it the most significant statistical distribution
for noise modeling. However, there are many noises in
communication, radar, and sonar systems that are de-
cidedly non-Gaussian and inherently impulsive in na-
ture. The α-stable distribution is appropriate for
describing these non-Gaussian noises and has been ef-
fectively used to characterize impulsive phenomena.
However, the α-stable distribution only has a closed
form probability density function in some special cases.
The characteristic function of the α-stable distribution is
given as follows:

φ tð Þ ¼ e jat−γ tj jα 1þjβ sgn tð Þω t;að Þ½ �f g ð8Þ
where

ω t; αð Þ ¼ tan πα=2ð Þ α≠1
2=πð Þ log tj j α ¼ 1



ð9Þ

and

sgn tð Þ ¼
1; t > 0
0; t ¼ 0
−1; t < 0

8<
: ð10Þ

We find that the stable distribution can be determined
by four parameters, the characteristic exponent α (0
< α ≤ 2), symmetric parameter β (−1 ≤ β ≤ 1), scale par-
ameter γ (γ > 0), and location parameter a (−∞ < α <
+∞). When β = 0, the stable distribution is called sym-
metric α-stable distribution (SαS). The smaller the char-
acteristic exponent α is, the heavier the tails of the SαS
distribution. The Gaussian distribution is a special case
of the SαS family (α = 2).
Compared with Gaussian noise which has an exponen-

tial tail, α-stable distributions have algebraic tails. This
property makes the second-order or higher order mo-
ments of stable distribution non-existence (α > 2). In
particular, even the first-order moment of it is
non-existent when α > 1. Thus, the α-stable impulsive
components of x(t) make the second-order autocorrel-
ation function Rx(t, τ) non-existent. As a result, the cyc-
lic autocorrelation function Rε

xðτÞ and spectral
correlation function Sεxð f Þ become useless. Therefore,
the conventional second-order statistics-based subspace
DOA algorithms and the cyclostationarity-based sub-
space DOA algorithms degrade in the presence of im-
pulsive noise.
The conventional MUSIC, ESPRIT, cyclic MUSIC, and

cyclic ESPRIT algorithms measured with interfering sig-
nal and noise are shown in Figs. 1 and 2. The number of
arrays is M = 8, the signal-to-noise ratio (SNR) is 0 dB,
the number of snapshots is N = 1024, and the sampling
frequency is fs = 109 Hz. The SOI is a BPSK signal. The
carrier frequency of the BPSK signal is f1 = 0.25fs, and

the symbol rate is ε1 = 0.025fs. The interfering signal is a
QPSK signal with a carrier frequency of f2 = 0.2fs and a
symbol rate of ε2 = 0.02fs. The angles of incidence of the
BPSK and QPSK signals are 20∘ and 50∘, respectively.
The cycle frequency exploited by the cyclic algorithms is
ε = 2f1, which is the cycle frequency of the BPSK signal.
The simulation results indicate that the traditional

MUSIC, ESPRIT, cyclic MUSIC, and cyclic ESPRIT algo-
rithms work normally in Gaussian noise. However, the
cyclic MUSIC and cyclic ESPRIT are signal selective and
can suppress the interfering QPSK signal for only one
peak corresponding to the measured DOA. In contrast,
MUSIC and ESPRIT cannot suppress the effects of inter-
ference. There are two peaks for MUSIC and ESPRIT,
one for the DOA of the SOI and one for the DOA of the
interference. Although all the algorithms are robust to
Gaussian noise, Figs. 1b and 2b show that all the algo-
rithms exhibit severe degradation when impulsive noise
is encountered. Moreover, they are not robust to α-stable
distributed impulsive noise.
Figure 3 shows the DOA estimation results of the cyc-

lic subspace methods for coherent BPSK signals. In this
simulation, the parameters of the array are the same as
those in Figs. 1 and 2. The carrier frequency and keying
rate of the coherent BPSK signals are the same as those
for the BPSK signal in Figs. 1 and 2. The interference
and noise are absent in this case. The DOAs of the two
coherent BPSK signals are 20∘ and 40∘, respectively. All
estimation results are obtained from 10 realizations. Fig-
ure 3 shows that cyclic MUSIC and cyclic ESPRIT are
not applicable for coherent signals, and they cannot pro-
vide accurate DOA estimates for coherent signals.
The simulation results (Figs. 1, 2, and 3) indicate that

the cyclic MUSIC and cyclic ESPRIT algorithms can
suppress Gaussian noise and interference signals, but
cannot be applied to coherent sources and impulsive
noise. To overcome the limitations of these cyclic sub-
space DOA estimation algorithms, it is necessary to ex-
ploit the additional signal properties and develop novel
signal processing techniques that enable the use of
cyclostationarity-based subspace algorithms and are tol-
erant to coherent signals and robust to impulsive noise.

4 Methods of cyclostationarity-based DOA
estimation for coherent signals
Because of the uselessness of the conventional cyclic
correlation function and the spectral correlation func-
tion, conventional cyclic DOA algorithms cannot be ef-
fectively applied to impulsive noise. Furthermore,
conventional cyclic DOA algorithms cannot account for
coherent signals. To circumvent these issues, we develop
new DOA estimation algorithms based on fractional
lower-order cyclostationarity. The new proposed algo-
rithms share the signal selectivity traits that make them
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immune to the interference, Gaussian noise, and impul-
sive noise and are applicable to coherent signals.

4.1 The proposed smoothing fractional lower-order cyclic
DOA methods
The performance of conventional cyclic DOA algorithms
degrades in impulsive noise and coherent signal scenes.
It is necessary to develop new cyclostationarity-based
DOA estimation algorithms that are tolerant to coherent

signals and interference and are robust to both Gaussian
noise and impulsive noise.
In realistic communication scenarios, the case of cor-

related or coherent signals is inevitable, and the meas-
urement vector at the receiver can be written as

X tð Þ¼A Cs tð Þð ÞþN tð Þ ¼ AS tð ÞþN tð Þ ð11Þ

where C is the K × 1 complex constant attenuation
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Fig. 1 MUSIC and cyclic MUSIC method results: a Gaussian noise and b impulsive noise (α = 1.6). — represents estimation results of cyclic MUSIC
method. -- represents estimation results of MUSIC method
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vector and S(t) =Cs(t). The K sources are coherent, and
thus, the signals can be described as

S tð Þ ¼
c1s tð Þ
c2s tð Þ
⋮

cK s tð Þ

2
664

3
775 ¼

1
c2
⋮
cK

2
664

3
775s tð Þ ð12Þ

where c1 = 1. The covariance matrix of X(t) can be ob-
tained as follows:

R ¼ E XXH
� � ¼ AE SSH

� �
AH þ σ2I ð13Þ

From (12), the covariance matrix of S(t) can be given
by,
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Fig. 2 ESPRIT and cyclic ESPRIT algorithms results: a Gaussian noise and b impulsive noise (α = 1.6). о represents estimation results of cyclic
ESPRIT method. + represents estimation results of ESPRIT method
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E SSH
� � ¼ s1 tð Þj j2

1
c2
⋮
cK

2
664

3
775 1 c2 ⋯ cK½ � ð14Þ

The coherent signals have a certain relationship, that
is, they change in a unified way with time, causing the
information to be hidden. Therefore, the signal and
noise subspaces cannot be constructed by eigenvalue de-
composition, and direction estimates based on the

conventional feature structure subspace are invalid for
coherent signals.
To address cyclostationary signal coherence phenom-

ena in the impulsive noise environment, we introduce
two spatial smoothing-based fractional lower-order cyc-
lic algorithms. The performance of the MUSIC and ES-
PRIT algorithms can be drastically improved compared
to that of the ordinary MUSIC and ESPRIT algorithms
by using the Hermitian sample covariance in DOA esti-
mation [7, 8]. The M (M > K) element uniform line array
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is divided into L uniformly overlapping subarrays of di-
mension Q (Q > K), in such a way that each sub-array
shares all but one of its sensors with an adjacent
sub-array [6]. The signal of the lth sub-array is

x f
l tð Þ ¼ xl tð Þ; xlþ1 tð Þ;⋯; xlþN−1 tð Þ½ �T

¼ AMD
l−1s tð Þ þ nl tð Þ; 1≤ l≤L ð15Þ

where AM is the direction matrix of Q × K dimension,
which is the Q dimensional steering vector aM(θi) (i = 1,
2, ⋯, K), and D ¼ diagðe j2πλ sinθ1 ; e j

2π
λ sinθ2 ;⋯; e j

2π
λ sinθK Þ.

Since the conventional cyclic statistics are useless for
exploiting cyclostationarity in impulsive noise, it is ne-
cessary to use other properties of signals to develop ro-
bust coherent DOA estimation algorithms. It has been
shown in [30] that FLOS-based cyclic statistics can be
applied to suppress the impulsive noise for cyclostation-
ary signals, and a new type of pth-order cyclostationarity
has been developed. Considering a cyclostationary signal
x(t), the pth-order correlation of x(t) is defined by

Rp
x t; τð Þ ¼ E x t þ τ=2ð Þ x� t−τ=2ð Þ½ � ph i

� �
; 1≤p

< α ð16Þ

where the pth-order phased fractional lower-order mo-
ment (PFLOM) is defined as z〈p〉 = |z|p − 1z. The PFLOM
can be re-expressed in a polar form (z = rejθ) as follows:

z ph i ¼ rpejθ ð17Þ
Note that the PFLOM acts only on the magnitude of

the operand and preserves the corresponding phase;
thus, z〈p〉 has the same period as z, and x(t) and (x(t))〈p〉

have the same period.
According to the PFLOM properties, the Fourier series

of Rp
xðt; τÞ can be represented as

Rp
x t; τð Þ ¼

X
ε

Rε;p
x τð Þe j2πεt ð18Þ

where ε represents all cycle frequencies of x(t). The Fou-
rier coefficient Rε;p

x ðτÞ is referred to as the pth-order cyc-
lic correlation function and given as follows:

Rε;p
x τð Þ ¼ x t þ τ=2ð Þ x� t−τ=2ð Þ½ � ph ie− j2πεt

D E
ð19Þ

According to the pth-order and stable process theory
[31], the covariation 〈x(t + τ/2)[x∗(t − τ/2)]〈p〉〉 is robust to
the impulsive noise when 1 ≤ p < α; thus, the pth-order
cyclic correlation function can refrain the effects of im-
pulsive noise. In fact, the cyclic correlation function can
be represented as the cross-correlation of
frequency-shifted versions of Rε

xðτÞ ¼ huðt þ τ=2Þv�ðt−τ
=2Þi where u(t) = x(t)e−jπεt and v(t) = x(t)ejπεt. By using
the properties of z〈k〉e±jπεt = (ze±jπεt)〈k〉 and (z∗)〈k〉 = (z〈k〉)∗,

the pth-order cyclic correlation function (19) can be re-
written as

Rε;p
x τð Þ ¼ u0 t þ τ=2ð Þ v0 t−τ=2ð Þ½ �h i ð20Þ

where

u
0
tð Þ ¼ x tð Þe−jπεt ð21aÞ

v
0
tð Þ ¼ x tð Þð Þ ph iejπεt ð21bÞ

Based on Eq. (17), the PFLOM acts only on the magni-
tude of v'(t), and v'(t) has the same period as that of v(t).
Therefore, the pth-order cyclic correlation function is an
alternative but equivalent characterization of the
second-order cyclic function. Furthermore, compared to
conventional second-order cyclic correlation function,
pth-order cyclic correlation function is robust to SαS
distributed (1 < α ≤ 2) impulsive noise. When p = 2, the
pth-order cyclic autocorrelation function Rε;p

x ðτÞ be-
comes the traditional cyclic autocorrelation function Rε

xð
τÞ . When the cycle frequency ε = 0, the pth-order cyclic
autocorrelation function Rε;p

x ðτÞ reduces to the pth-order
correlation function Rp

xðτÞ . The pth-order cyclic correl-
ation function plays an essential role in high-resolution
direction finding.
It is assumed that interference does not exhibit the

same cyclostationarity as the SOI and that noise is not a
cyclostationary process. Thus, the fractional lower-order
covariance matrix of the lth sub-array is obtained as

Rε;p
Xl

τð Þ ¼ AMDl−1Rε;p
S τð Þ AMDl−1
 �H ð22Þ

where ε is one cycle frequency of s(t). The spatial
smoothing fractional lower-order cyclic covariance
matrix is given by

Rε;p
X τð Þ ¼ 1

L

XL
l¼1

Rε;p
Xl

τð Þ ð23Þ

Furthermore, we can use singular value decomposition
(SVD) to decompose the covariance matrix Rε;p

X ðτÞ,

Rε;p
X τð Þ ¼ US UQ½ � ΣS 0

0 ΣQ

� �
VH

S
VH

Q

� �
ð24Þ

From (22), we can obtain US and UQ. The spectral es-
timation is achieved based on the orthogonality of A(θ)
and UQ,

P θð Þ ¼ 1

aH θð ÞUQUH
Qa θð Þ ð25Þ

Then, the DOA of the proposed smoothing fractional
lower-order cyclic MUSIC algorithm can be obtained
from a search for peaks in the spectrum of (25).
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Due to the computational complexity of the MUSIC
algorithm, we further propose an improved cyclic ES-
PRIT algorithm called the smoothing fractional
lower-order cyclic ESPRIT algorithm. As in the cyclosta-
tionary MUSIC algorithm, the received signal can be
expressed as in (12). According to Eq. (22) and the
spatial smoothing method, we get the following
equation:

Rε;p
Xl

τð Þ ¼ Xl t þ τ=2ð Þ½ � X ph i
l t−τ=2ð Þ

h iH
e− j2πεt

� �
¼ AlDl−1Rε;p

S τð Þ Dl−1
 �H
AH

l

ð26Þ

Then, using spatial smoothing and SVD, the covari-
ance matrix Rε;p

X ðτÞ can be rewritten as

Rε;p
X τð Þ ¼ 1

L

XL
l¼1

Rε;p
Xl

τð Þ ¼ US UN½ �

� ΣS 0
0 ΣN

� �
VH

S
VH

N

� �
ð27Þ

US and UN can be obtained from (25). To develop the
smoothing fractional lower-order cyclic ESPRIT algo-
rithm, US is divided into US1 and US2. Specifically, the
relation between US1 and US2 can be determined by

US2 ¼ US1T−1ΦT ¼ US1Ψ ð28Þ

where Ψ =T−1ΦT. Additionally,

Φ ¼ diag e jμ1 ; e jμ2 ;…; e jμk
� � ð29Þ

where μk = ω0Δ sin θk/c(k = 1, 2, … , K). Note that (28) in-
dicates that the characteristic value of Ψ is a diagonal
element of Φ. Therefore, after obtaining Ψ ¼ Uþ

S1US2 ,
the eigenvalues and diagonal elements of Φ can be ob-
tained. The DOA estimate can be obtained by,

θk
∧
¼ arcsin c � angle λkð Þ= ω0Δð Þf g ð30Þ

where λk is the eigenvalue of Ψ.

4.2 The proposed modified fractional lower-order cyclic
DOA methods
Both cyclic and conjugate-cyclic statistics can be com-
bined to improve the performance of the signal selective
DOA estimation method [23]. To circumvent the coher-
ent signals, we define a new matrix based on the
conjugate-cyclic statistics,

Y tð Þ¼JX� tð Þ ð31Þ

where X∗(t) is the complex conjugation of X(t), and

J ¼

0 0 ⋯ 0 1
0 0 ⋯ 1 0
⋮ ⋮ ⋯ ⋮ ⋮
0 1 ⋯ 0 0
1 0 ⋯ 0 0

2
66664

3
77775 ð32Þ

From (32), we find that J2 = I; therefore, the correlation
matrix of Y(t) = JX∗(t) is given by

E YYH

 � ¼ J RX τð Þ½ �� JH ð33Þ

Then, the fractional lower-order cyclic covariance
matrix of Y(t) is defined in the following form:

Rε;p
Y τð Þ ¼ JA Rε;p

S τð Þ� ��
AH JH ð34Þ

To develop new DOA estimation methods, we define
a modified fractional lower-order cyclic covariance
matrix,

Rε;p τð Þ ¼ Rε;p
X τð Þ þ Rε;p

Y τð Þ ð35Þ
Because Rε, p(τ) is not a Hermitian matrix, we can use

SVD to decompose the covariance matrix Rε, p(τ),

Rε;p τð Þ ¼ USVH ð36Þ
From (36), we can obtain the Ka non-zero singular

values of Rε, p(τ), and the other M − Ka singular values
equals to zero. For rank(Rε, p(τ)) = Ka, U and V can then
be divided,

Rε;p τð Þ ¼ US UN½ � ΣS 0
0 ΣN

� �
VH

S
VH

N

� �
ð37Þ

US and UN can be obtained from (35). The modified
fractional lower-order cyclic MUSIC method is obtained
using the orthogonality of A(θ) and UN,

P θð Þ ¼ 1

aH θð ÞUNUH
Na θð Þ ð38Þ

Thus, the DOA can be obtained from a search for the
peaks in the spectrum of (38).
We further propose an improved ESPRIT algorithm

called the modified fractional lower-order cyclic ESPRIT
algorithm. As in the cyclostationary MUSIC algorithm,
the fractional lower-order covariance matrix Rε;p

X ðτÞ is
obtained, and Y(t) is defined as the product of J and the
complex conjugate of X∗(t). Based on the SVD of Rε,

p(τ), the signal subspace US and noise subspace UN are
determined. Then, we can extract US1 and US2 from US.
According to the property of rotational invariance, we
obtain,

US2 ¼ US1T−1ΦT ¼ US1Ψ ð39Þ
where Ψ is the transformation matrix Ψ ¼ Uþ

S1US2.
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When Rε, p(τ) is nonsingular, the space of A and US is
the same, and the linear transformation matrix of A and
US is T. By establishing the relation between the rota-
tionally invariant factor Φ and the transformation matrix
Ψ, we obtain the following equation,

Φ ¼ TΨT−1 ð40Þ
Finally, we can determine the diagonal elements Φ by

finding the eigenvalue of ψ, that is the DOA estimates is
obtained as

θ
∧

k ¼ arcsin c � angle λkð Þ= ω0Δð Þf g ð41Þ

5 Simulation results and discussion
In this section, we present various simulation results that
are used to assess the performance of the proposed algo-
rithms. We verify the effectiveness and robustness of the
proposed smoothing fractional lower-order cyclic MUSIC
(SFCyclic-MUSIC), smoothing fractional lower-order cyclic
ESPRIT (SFCyclic-ESPRIT), modified fractional lower-order
cyclic MUSIC (MFCyclic-MUSIC), and modified fractional
lower-order cyclic ESPRIT (MFCyclic-ESPRIT) algorithms
and compare their performance to the performance of four
classes of existing FLOS-based, cyclostationarity-based,
sparse representation algorithms, namely, the fractional
lower-order moment-based MUSIC (FLOM-MUSIC) and
ESPRIT (FLOM-ESPRIT), the modified MUSIC
(M-MUSIC) and ESPRIT (M-ESPRIT), the cyclic MUSIC
(Cyclic-MUSIC) and ESPRIT (Cyclic-ESPRIT), the
Bayes-optimal algorithm [24], and conventional sparse
Bayesian learning (SBL) algorithms for those frequently en-
countered communication signals (e.g., BPSK and QPSK).
Because the α-stable distribution process has finite

variance only for α = 2, the traditional SNR is inappro-
priate for determining the power of SαS noise. Thus, we
use a generalized signal-to-noise ratio (GSNR) which is
defined as [27],

GSNR ¼ 10 log10
1

γ � N

XN
n¼1

s tð Þj j2
 !

ð42Þ

According to the GSNR metric, the SαS impulsive
noise samples are power scaled by the dispersion param-
eter γ. The performance of the algorithms is evaluated
by the root-mean-square error (RMSE) of the DOA esti-
mates and the probability of resolution. The RMSE is
defined by

RMSE θk½ � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
n¼1

θ̂n−θk
� �2vuut ð43Þ

The probability of resolution is also called the success
probability which is defined as the ratio of the number

of successful runs to the total number of Monte Carlo
runs. The number of arrays is M = 10, the number of the
snapshots is N = 1024, and the sampling frequency is fs
= 109 Hz.

5.1 DOA estimation of the proposed methods
In this case, the incident signals are s1(t), s2(t), s3(t), and
s4(t) with DOA(θ1, θ2, θ3, θ4) = (10∘, 15∘, 40∘, 50∘). The car-
rier frequency and symbol rate of the coherent BPSK
signals of s1(t) and s2(t) are f1 = 0.25fs and ε1 = 0.025fs, re-
spectively. s3(t) is a BPSK signal with a carrier frequency
of f2 = 0.25fs and keying rate of ε2 = 0.025fs. s4(t) is a
QPSK signal with a carrier frequency and symbol rate of
f3 = 0.1fs and ε3 = 0.05fs, respectively. s3(t) and s4(t) are
independent of s1(t) and s2(t). The cycle frequency used
by the cyclic algorithms is ε = 2f1, which is the cycle fre-
quency of s1(t), s2(t), and s3(t).
The performance of the proposed methods for coher-

ent signals in impulsive noise with α = 1.6 (GSNR =
10 dB) is shown in Figs. 4 and 5. The simulation results
indicate that all the proposed methods are robust to im-
pulsive noise. However, the MFCyclic-MUSIC and
MFCyclic-ESPRIT methods make better use of fractional
lower-order cyclostationarity and conjugate fractional
lower-order cyclic cyclostationarity and are superior to
the SFCyclic-MUSIC and SFCyclic-ESPRIT methods.
Figure 5 illustrates that the MFCyclic-MUSIC and
MFCyclic-ESPRIT methods can still suppress extremely
impulsive noise (α = 1.6) and provide accurate DOA esti-
mates for cyclostationary coherent sources in the pres-
ence of impulsive noise and interference signals.

5.2 Influence of impulsive noise
We consider a BPSK communication signal representing
the SOI. The carrier frequency of the BPSK signal is fc =
0.25fs, the keying rate is εk = 0.0625fs, and the DOA of
the signal is 10∘. The interference in this case is a BPSK
signal with a carrier frequency of f1 = 0.2fs, keying rate of
ε1 = 0.025fs, and a DOA of 20∘. The
signal-to-interference ratio (SIR) is 3 dB. We use a cycle
frequency of ε = εk = 0.0625/Ts and p = 1.2. The estima-
tion results are obtained from 1000 Monte Carlo
realizations.
A comparison of the proposed smoothing fractional

lower-order cyclic methods and modified fractional
lower-order cyclic methods for different values of the
characteristic exponent α is conducted. The simulation
scenario includes a GSNR= 10 dB and p = 1.1. As shown
in Fig. 6a and 6b, the impulsive characteristics of the
stable distribution are weakened as α increases, and the
performance of all the algorithms improved. Moreover,
the simulation results indicate that MFCyclic-MUSIC and
MFCyclic-ESPRIT slightly outperformed SFCyclic-MUSIC
and SFCyclic-ESPRIT when the impulsive characteristics
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are strong. When α ≥ 1.9, the two types of algorithms are
basically the same.
Simulations that compare the performance of the pro-

posed MFCyclic-MUSIC and MFCyclic-ESPRIT algo-
rithms with FLOM-MUSIC, FLOM-ESPRIT, cyclic
MUSIC, and cyclic ESPRIT in impulsive noise and inter-
ference are given in Fig. 7. The results in Fig. 7a and 7b
indicate that the second-order cyclic statistics-based
methods display the worst performance for the impul-
sive noise, because these second-order cyclic statistics

methods fail with impulsive noise, especially the GSNRs
is less than 13 dB. Although the impulsive noise is sup-
pressed by the FLOM-based methods, due to the inter-
fering signal, the performance of FLOM-MUSIC and
FLOM-ESPRIT remains essentially unchanged when the
GSNR is greater than approximately 10 dB. Compared to
the conventional FLOM-based and
cyclostationarity-based algorithms, the proposed algo-
rithms can simultaneously suppress the effects of impul-
sive noise and interfering signals; thus, the performance
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estimation results of SFCyclic-MUSIC. b represents estimation results of SFCyclic-ESPRIT
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of the proposed algorithms is better than that of the
other methods studied.
The performance of the proposed algorithms and

the exiting methods in Gaussian noise and interfer-
ence is shown in Fig. 8. Figure 8 shows that al-
though the FLOM-based methods can effectively
suppress Gaussian and non-Gaussian impulsive
noises, the performance does not improve as the
GSNR increases due to the interfering signal. There-
fore, the proposed fractional lower-order

cyclostationarity-based methods outperform the
FLOM-based methods in the presence of interfer-
ence. Compared Figs. 7 with 8, we can see that, al-
though the proposed algorithms are equivalent in
performance to the second-order cyclostationarity-based
methods in Gaussian noise and interference environment,
they perform much better performance in the presence of
impulsive noise. Therefore, the proposed methods display
good adaptability to Gaussian noise and non-Gaussian im-
pulsive noise.
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Fig. 5 DOA estimation of proposed algorithms for coherent sources in impulsive noise: a MFCyclic-MUSIC and b MFCyclic-ESPRIT. a — represents
estimation results of MFCyclic-MUSIC. b represents estimation results of MFCyclic-ESPRIT
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5.3 Influence of coherent signals
In this case, we consider two coherent QPSK communica-
tion signals. The carrier frequency of the QPSK signals is fc
= 0.2fs, and the keying rate is εk = 0.025fs. The DOA of the
signals are 10∘ and 15∘, and the angle to be estimated is 10∘.
The coband interference is an AM signal that has
the same carrier frequency and bandwidth as that of
the QPSK signals. The DOA of the AM signal is 20∘.
The cycle frequency exploited by the cyclic algo-
rithm is set to ε = εk and GSNR = 0 dB. The

estimation results are obtained from 1000 Monte
Carlo realizations.
A simulation is conducted to compare the RMSE versus

GSNR for the proposed algorithms, modified MUSIC, and
modified ESPRIT, considering both impulsive noise and
Gaussian noise for the coherent sources. The accuracy of
the algorithms in impulsive noise and Gaussian noise en-
vironments is shown in Fig. 9. Although the second-order
cyclic statistics-based M-MUSIC and M-ESPRIT are suit-
able for coherent signals, they cannot suppress
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impulsive noise. Thus, both the two methods de-
grade severely when impulsive noise is encountered.
The M-MUSIC and M-ESPRIT are effective for co-
herent signals in Gaussian noise; however, because of
the existence of AM interference, the performance of
traditional modified algorithms is not further

improved. These algorithms failed in the case in
which coband interference is present. In contrast,
the proposed algorithms are superior to the trad-
itional modified algorithms, and they effectively sup-
pressed impulsive noise. It can be seen from Fig. 9
that the proposed algorithms are immune to the

(a)

(b)

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

GSNR (dB)

)°(
E

S
M

R

MFCyclic-MUSIC

MFCyclic-ESPRIT

FLOM-MUSIC
FLOM-ESPRIT

Cyclic-MUSIC

Cyclic-ESPRIT

0 5 10 15 20 25 30
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

GSNR (dB)

ytilibabor
P

s sec cu
S MFCyclic-MUSIC

MFCyclic-ESPRIT

FLOM-MUSIC
FLOM-ESPRIT

Cyclic-MUSIC

Cyclic-ESPRIT

Fig. 7 DOA estimation accuracy versus GSNR in impulsive noise: a RMSE and b success probability. a □— represents DOA estimation accuracy of
MFCyclic-MUSIC.·-- represents DOA estimation accuracy of MFCyclic-ESPRIT. о— represents DOA estimation accuracy of FLOM-MUSIC. Δ--
represents DOA estimation accuracy of FLOM- ESPRIT. *— represents DOA estimation accuracy of cyclic MUSIC. ◇--represents DOA estimation
accuracy of cyclic ESPRIT. b □— represents DOA success probability of MFCyclic-MUSIC.·-- represents DOA success probability of MFCyclic-ESPRIT.
о— represents DOA success probability of FLOM-MUSIC. Δ-- represents DOA success probability of FLOM-ESPRIT. *— represents DOA success
probability of cyclic MUSIC. ◇--represents DOA success probability of cyclic ESPRIT

Liu et al. EURASIP Journal on Wireless Communications and Networking         (2019) 2019:81 Page 14 of 19



effects of the coband interfering signal and can pro-
vide accurate DOA estimates for coherent signals in
Gaussian noise and impulsive noise.
The sparse representation methods can estimate co-

herent sources in impulsive noise; we compare the per-
formance of the proposed MFCyclic-MUSIC algorithm
with Bayes-optimal algorithm, conventional SBL

algorithms, and FLOM-MUSIC method in the impulsive
noise (α = 1.5) and in the coband interfering environ-
ments, respectively. Because the FLOM-MUSIC cannot
estimate coherent signals, it can be seen from Fig. 10
that the FLOM-MUSIC achieves the worst performance.
Moreover, comparing Fig. 10a with b, we can see that
the Bayes-optimal algorithm achieves the best
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suppression performance for the impulsive noise and the
proposed method outperforms Bayes-optimal algorithm
against interference.
Cycle frequency is one of the most important represen-

tation of cyclostationarity. Typical cycle frequencies for
many communications signals include the double carrier
frequency, the keying rate and the corresponding har-
monics, as well as the sums and differences of these cycle
frequencies. For example, for a BPSK signal or a QPSK

signal, the cycle frequencies are ±2fc, εk, and εi = ± 2fc + iεk
(i = 0, ± 1, ± 2, …), where fc is the carrier frequency and εk
represents the keying rate. If we use the cycle frequency at
which the spectral correlation is stronger, the performance
of the proposed cyclic algorithms can be improved.
The estimation accuracy of the proposed algorithms at

different cycle frequencies is shown in Fig. 11. The impul-
sive noise with α = 1.8 is added only in the simulation. The
simulation results indicate that the proposed methods
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perform effectively at the two cycle frequencies. However, for
the QPSK signal, the cyclostationarity characteristic is stron-
ger at ε= 2fc than at ε= εk, so the performance of the two
proposed algorithms is slightly better at ε= 2fc than at ε= εk.

6 Conclusions
In this paper, new fractional lower-order
cyclostationarity-based DOA estimation algorithms for

coherent signals in the presence of α-stable impulsive
noise and interference are introduced. Traditional
second-order cyclostationarity-based and FLOS-based
DOA estimation methods severely degrade for coherent
signals, under α-stable distributed impulsive noise and
interfering signals. By exploiting the fractional
lower-order cyclostationarity properties of signals, new
smoothing fractional lower-order cyclic subspace
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algorithms and modified fractional lower-order cyclic
subspace algorithms are proposed. The new proposed al-
gorithms not only provide the signal selectivity in the
presence of impulsive noise, but also are highly tolerant
to coherent signals. Moreover, these algorithms yield
more reliable DOA estimates of cyclostationary coherent
signals than do cyclostationarity-based and FLOS-based
methods in the presence of interference and impulsive
noise. The effectiveness and robustness of the proposed
algorithms are evaluated via simulations, and the results
indicate that the new algorithms are applicable to a wide
range of interference, Gaussian noise, and non-Gaussian
impulsive noise environments for coherent signals.
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