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Abstract

Traditionally, the construction of polar codes requires intense computations to sort all bit channels. In previous
works, two types of partial orders (POs) of polar codes were proposed to decrease the computations in the
construction process. In this paper, a procedure is presented to employ POs with complexity O(N2), which is lower
than the existing procedures, where N = 2n is the code length (n ≥ 1). To further reduce the computation
complexity, in this paper, we propose a general partial order (GPO), which works at a lower dimension (nu < n) to sort
bit channels. The principle of the GPO is to divide the binary expansion of bit channels into two parts: the upper part
and the lower part. First, the relationships among bit channels formed from the upper part (with length nu) are
completely determined. Existing algorithms are called in this new level nu when needed. Second, we prove that the
ordering at this lower dimension nu can be combined with the PO ordering of bit channels formed from the lower
part. Therefore, more intrinsic relationships among bit channels are obtained. Working at the lower dimension nu < n,
the complexity of GPO is inherently smaller than the existing sorting algorithms. The studies show that for n = 10 and
the code rate R = 0.5 (the worst code rate from the empirical studies), the GPO can order 82% of bit channels, which
is 32% larger than that obtained from using only POs. The proposed GPO in this paper can significantly reduce
computations in the construction of polar codes.
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1 Introduction
Polar codes [1] have attracted researchers from around
the world since their introduction in [1]. As proven in
[1], polar codes can achieve the channel capacity at a
low encoding and decoding complexity of O(N logN)

for binary-input, memoryless, output-symmetric (BMS)
channels (here, N is the code length). A successive can-
celation (SC) decoder was proposed to decode N synthe-
sized bit channels W (i)

N , i = 1, 2, · · · ,N . The theoretical
analysis of the polarization rate of bit channels is reported
in [1–4]. The performance of polar codes with practical
code lengths is investigated in [5–8] and their references.
The construction problem of polar codes is as fol-

lows: for the given code rate R, how to select the
K = �NR� best bit channels from all bit channels{
W (i)

N

}N
i=1

to transmit information bits. The inputs of the
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remaining bit channels are frozen and are made known
to the transmitter and the receiver. The quality of a bit
channel W (i)

N can be measured, for example, by the error
probability Pe

(
W (i)

N

)
. However, determining the quality

of the bit channels is not an easy task with the excep-
tion of binary erasure channels (BECs). Note that the
channel input alphabet size is assumed to be two. Non-
binary input alphabets in [9–11] are not discussed in this
paper.
Let I denote the set containing K indices of the good

bit channels, and let F denote the set containing the
indices of the frozen bit channels. Let W : X → Y
be the underlying channel with a transition probabil-
ity W (y|x). Sorting the bit channels is difficult because
of the large number of output alphabets |Y|N . Evaluat-
ing this large number of transition probabilities for each
bit channel is beyond the reach of a practical system.
Monte-Carlo simulations are proposed in [1] to sort the
bit channels, with a high complexity of O(MN logN)
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(M denotes the iterations of the Monte-Carlo simula-
tions). Density evolution is used in [12] to construct polar
codes. The density evolution process involves function
convolutions whose numerical calculation precisions are
limited by the complexity. In [13], bit channel approx-
imations are proposed with a controlled complexity of
O

(
N · μ2 logμ

)
(μ represents a user-defined parameter

to limit the number of output alphabet at each approxima-
tion stage). Another family of polar code construction is to
use Gaussian approximation(GA)on additivewhiteGaussian
noise (AWGN) channels [14–16]. The GA method is
inherently limited by the approximation function [16] and
may not be applicable to all block lengths. Partial order
(PO) relations are reported in [12, 17, 18]. We borrow the
notations from [17] to denote the two types of POs: �1
and �2. The first type of PO, �1, is investigated in [17]
and [18]; it orders the bit channels with the same Ham-
ming weight (here, the Hamming weight is the Hamming
weight of the binary expansions of the bit channel indices).
The second type of PO, �2, is stated in [12], which orders
the channels with different Hamming weights. These
two POs are channel independent: the orders are uni-
versal for all types of underlying channels. In [17], the
authors show that the two POs can be used to simplify
the encoding construction. However, no algorithm is pre-
sented to employ these two POs; therefore, no detailed
results are provided there in [17] to quantify the exact
savings.
In this paper, an efficient procedure is proposed to

employ the two POs �1 and �2. Theoretical foundation
enabling this efficient procedure is provided in Proposi-
tion 1 and Lemma 1–Lemma 3. Compared with the work
in [19], the proposed procedure to find the relationships
determined by the two POs has a lower complexity: our
proposed algorithm has a complexity of O

(
N2) while the

complexity in employing the two POs is at least O
(
N5/2)

in [19]. Although both procedures can be performed off-
line, the proposed procedure in this paper is more efficient
in employing POs. Note that the proposed procedure in
the paper can be refined by exploring the nesting and
symmetric properties of POs in [20].
For a given channelW, to reduce the computation com-

plexity of the construction of polar codes, we introduce
a general partial order (GPO), which works by dividing
the binary expansion of bit channels into two parts: the
upper part with nu ≥ 1 bits and the lower part with
nl = n−nu bits (here, n = log2N). Considering the upper
part as a set of new bit channels with nu bits, the ordering
of these new bit channels at this smaller level Nu = 2nu
can either be derived from the two POs or from calling
any sorting algorithm [12, 13]. Since the channel indepen-
dent ordering of Nu bit channels is part of POs, we only
consider their new channel-dependent ordering obtained
from the existing sorting procedures such as [12, 13].

This paper proves that this channel-dependent ordering
of Nu bit channels can be combined with �1 and �2
to obtain the ordering for the given underlying channel
W and block length N. The POs and GPO aim to find
the intrinsic relationship between any two bit channels.
After applying POs andGPO, additional intrinsic relation-
ships can be identified when considering the transitivity
of bit channel degradation (or upgradation). These tran-
sitive relations are termed indirect relations. Algorithms
to explore PO �1, PO �2, GPO, and the transitivity of
bit channel degradation (or upgradation) are provided to
quantify the savings of each. The choice of the dimen-
sion nu is also discussed in the paper. A quasi-analytical
equation that can be used to estimate the optimal nu,
which produces the most efficient construction of polar
codes, is provided. The calculations in our study indicate
that for n = 10 and the code rate R = 0.5 (the worst
code rate), incorporating PO relations can determine 50%
of the bit channels, which produces only 50% of the sort-
ing calculations. With our proposed GPO, the determined
portion of the channels increases to 82%, which causes
a significant complexity reduction in the construction of
polar codes.
Note that portions of this work are presented in [21],

where three lemmas of the procedure to find relation-
ships determined by POs are not introduced. The theorem
of GPO is not proven and the indirect relationships
are not considered due to the limited space of [21].
The main contributions of this current paper are as fol-
lows: (1) The three lemmas related to POs are intro-
duced. These lemmas are the basis for the proposed
procedure in finding relationships determined by PO �1
and PO �2. The complexity of the proposed procedure
is lower than the existing procedure when employing
the two POs. (2) A complete proof of the proposition
related to GPO is given. The procedures of GPO are
channel-independent while the ordering obtained from
GPO is channel dependent. (3) A proposition to find all
indirect relationships is presented and proven. (4) The
GPO parameter is optimized. The simulated construc-
tion time follows the prediction of the construction time
and shows a construction time around 30% of the origi-
nal Tal-Vardy’s construction time for code lengths up to
N = 1024. (5) The algorithms for implementing POs and
GPO are refined with specific mathematical expressions
due to new introduced mathematical details compared
with [21].
The remainder of the paper is organized as follows.

Section 2 introduces the basics of polar codes and the
partial orders we employed in this paper. The GPO is pro-
posed in Section 3, with algorithms and proofs presented
in this section. The discussion of the selection of the low
dimension nu is also provided in Section 3. Section 4 pro-
vides the numerical results that quantify the savings of the
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proposed construction algorithms. Conclusion remarks
are presented at the end in Section 5.

2 Polar code and partial orders
The first part of this section includes the relevant basics
of polar codes from [1]. For other details of polar codes,
please refer to the materials in [1]. The second part
restates some results of partial orders from [12, 17].

2.1 Notation specification
The notations in this paper are as follows: The nota-
tion vN1 is used to represent a row vector with elements
(v1, v2, ..., vN ). The n-bit binary expansion of the integer i
is written as i = (in, in−1, ..., i1)b. Given the vector vN1 , the
vector vji is a subvector (vi, ..., vj) with 1 ≤ i, j ≤ N . For a
setA ∈ {1, 2, ...,N}, vA denotes a subvector with elements
in {vi, i ∈ A}.

2.2 Polar codes
LetW be any BMS channel with the transition probability
W (y|x). The input alphabet X takes values in {0, 1}, and
the output alphabet is Y . The generator matrix is G =
BF⊗n, where B is a bit-reversal permutation matrix and

F =
[
1 0
1 1

]
. The operation F⊗n is the nth Kronecker

power of F over the binary field F2. Polar codes synthesize
N = 2n(n ≥ 1) bit channels,

{
W (i)

N

}N
i=1

, out ofN indepen-
dent copies ofW. The transformation has a tree structure
in [1], which has a basic one-step channel transformation
defined as (W ,W ) 
→

(
W ′ ,W ′′), where

W
′
(y1, y2|u1) =

∑
u2

1
2
W (y1|u1 ⊕ u2)W (y2|u2)

(1)

W
′′
(y1, y2,u1|u2) = 1

2
W (y1|u1 ⊕ u2)W (y2|u2) (2)

A bit channel i with i − 1 = (in, in−1, ..., i1)b (1 ≤ i ≤ N ,
the left most bit is the MSB) is transformed in each tree
level according to the bit of i − 1 at that level: at tree level
1 ≤ k ≤ n, bit channel i takes W ′ if ik = 0. Otherwise,
W ′′ is taken at level k. The Bhattacharyya parameters of
W ′ andW ′′ satisfy the following conditions:

Z
(
W

′′) = Z(W )2 (3)

Z
(
W

′) ≤ 2Z(W ) − Z(W )2 (4)

Z
(
W

′) ≥ Z(W ) ≥ Z
(
W

′′)
(5)

Note that for binary erasure channels (BEC), the
Bhattacharyya parameter Z

(
W ′) has an exact expression

Z
(
W ′) = 2Z(W ) − Z(W )2, resulting in a recursive cal-

culation of the Bhattacharyya parameters of the final bit
channels. Finally, after the channel transformations, the
transition probability for bit channel i is defined as

W (i)
N

(
yN1 ,u

i−1
1 |ui

)
=

∑

uNi+1∈XN−i

1
2N−1W

N (
yN1 |uN1 G

)

(6)

where WN (·) is the underlying vector channel (N copies
of the channelW ).

2.3 Channel degradation
First, we restate the concept of stochastic channel degra-
dation as presented in [13]. For a channel Q : X → Z
and channel W : X → Y , Q is stochastically degraded
with respect to W if there exists an intermediate channel
P : Y → Z such that

Q(z|x) =
∑
y∈Y

W (y|x)P(z|y) (7)

for all x ∈ X and z ∈ Z . In this case, we write Q � W (or
W  Q) as in [13].
As proven in both ([22], p. 207) and [13], for BMS

channels, the probability of error and the Bhattacharyya
parameter preserves degradation. Let Pe(W ) denote the
error probability when transmitting a single bit over the
channel W. Let Q and W be two BMS channels and Q is
stochastically degraded with respect toW : Q � W . Then,
from ([22], p. 207) and [13], the following statements hold:

Pe(Q) ≥ Pe(W ) (8)
Z(Q) ≥ Z(W ) (9)

Note that in [1], Arıkan suggested choosing bit channels
with the smallest Bhattacharyya parameters as the good
channel indices, that is, if the set I contains the good bit
channels, then for any i ∈ I and any j /∈ I : Z

(
W (i)

N

)
≤

Z
(
W (j)

N

)
. In [13], the error probabilities of all approxi-

mated bit channels are calculated. The information set
I therein contains all the bit channels with the smallest
error probabilities. In summary, [1, 13] utilize (9) and (8),
respectively, as criterions to select the good bit channels.

2.4 Partial orders
Consider two bit channels i and j with binary expansions
i − 1 = (in, in−1, ..., 1)b and j − 1 = (jn, jn−1, ..., 1)b. In
[17], if the binary expansion of j − 1 can be obtained
from the binary expansion of i − 1 by switching some
higher position 1s with some lower position 0s, then
W (j)

N is stochastically degraded with respect to W (i)
N . This

order is written as �1, which is equivalent to �. The
PO �1 is transitive. Here, is an example of this PO �1.
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Let N = 24 = 16. Consider bit channels i = 13 and j = 11
with binary expansions i − 1 = 13 − 1 = (1100)b and
j − 1 = 11 − 1 = (1010)b. From the binary expansion of
i − 1, it can be seen that switching value 1 at position 3
with value 0 at position 2 results in the binary expansion
of j − 1. Therefore, bit channel j is degraded with respect
to bit channel i, irrespective of the underlying channels.
The second PO is from [12], which is denoted as �2.

For the two bit channels i and j, if every bit of the binary
expansion of i−1 is greater than or equal to every bit of the
binary expansion of j− 1, thenW (j)

N �2 W (i)
N . With a sym-

metric underlying channelW,W (j)
N �2 W (i)

N =⇒ W (j)
N �

W (i)
N is proven in [12]. Therefore, the second partial order

�2 can also be employed to order the bit channels. The PO
�2 is also transitive. An example of this PO�2 also adopts
N = 24 = 16. Consider bit channels k = 15 and i = 13,
with binary expansions of k − 1 = 15 − 1 = (1110)b and
i − 1 = 13 − 1 = (1100)b. It can be seen that for these
two bit channels, the two ones of the binary expansion of
i − 1 are the same as those of k − 1 at the same positions.
However, at position 2, the value of the binary expansion
of k − 1 (value 1) is greater than that of i − 1 (value 0).
This is exactly PO �2. Therefore, bit channel i is degraded
with respect to bit channel k. Combining the example in
PO �1, it can be concluded that W (11)

16 � W (13)
16 � W (15)

16 ,
irrespective of the underlying channels.
The constructions in [12–16] sort all N bit channels.

The inherent ordering of polar codes from �1 and �2 is
not utilized before sorting all bit channels. Therefore, the
amount that we can save in the construction by apply-
ing POs is not clear. In this paper, we apply �1 and �2
before sorting all N bit channels and to quantify the sav-
ings in this process. Three sets, which correspond to the
good bit channels (I), the frozen bit channels (F ), and the
undetermined bit channels (U ), are selected by applying
the two POs. If the number of bit channels in I is smaller
than K, then a sorting algorithm, for example, the approx-
imation in [13], can be applied to sort the bit channels in
U to select K − |I| best bit channels from U and place
those K − |I| best bit channels in I . (Note that by fix-
ing the number of information bits K in one code block,
it is always that |I| ≤ K since the bit channels are com-
pared among themselves, and at most the best K can be
selected.) The smaller is the size of U , the larger are the
savings. The POs are channel independent and universal
for all BMS channels. Therefore, the sets I , U , and F for
the given block length N and the code rate R need to be
calculated only once and can be calculated off-line. Note
that the final K best bit channels that are selected from
applying the two POs before calling any sorting algorithm
from [12–16] should be the same as calling the sorting
algorithm since the good bit channels selected from the
POs are channel independent.

3 Construction combining POs and GPO
In this section, the definition of the partial order indi-
cator (POI) and the implementation of the POs is first
introduced. The detailed theory and a proof of the general
partial order (GPO) are presented in Section 3.2. Then,
indirect relationships after applying POs and GPO are dis-
cussed in Section 3.3. The optimal choice of the parameter
nu < n, on which the GPO works, is discussed in 3.4. At
last, a top-level algorithm of the proposed general partial
order (GPO) is provided.
Given the three sets defined in Section 2.4, the follow-

ing proposition can be used to determine whether a bit
channel should be in I , F , or U .

Proposition 1 If a bit channel i is stochastically
upgraded with respect to at least N − K bit channels, then
i ∈ I . If a bit channel j is stochastically degraded with
respect to at least K bit channels, then j ∈ F . All other bit
channels are in the undetermined set U .

Because the proof of this proposition is straightforward,
it is omitted here.

3.1 Definition of POI matrix and implementation of POs
The matrix O is defined as an N × N matrix whose ele-
ment (i, j) is the partial order indicator (POI) between bit
channel i and bit channel j (i > j). The matrix O is a lower
triangular matrix (excluding the diagonal), and the POIs
of O can be written as:

Oij =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, if i > j and W (i)
N � W (j)

N
−1, if i > j and W (i)

N ≺ W (j)
N

0, if i > j but W (i)
N andW (j)

N
is unknown

0, if i ≤ j

(10)

In practical implementations, the unused part of O (the
upper triangular part) can be saved. Algorithm 1 finds the
POIs when applying PO �1 and PO �2.
To explain Algorithm 1, the following lemma is intro-

duced first.

Lemma 1 For a polar code with the code length N, con-
sider two bit channels 1 ≤ i, j ≤ N with j < i. Then, purely
from PO �1 and PO �2, it is impossible for bit channel j to
be stochastically upgraded with respect to bit channel i.

Proof The proof is straightforward. The binary expan-
sions of the two bit channels are i − 1 = (in, in−1, ..., i1)b
and j − 1 = (jn, jn−1, ..., j1)b. With i > j, there must
be a position k (1 ≤ k ≤ n) at which (1) ik = 1 but
jk = 0; (2) for positions larger than k, (in, in−1, ..., ik+1) =
(jn, jn−1, ..., jk+1). There is no requirement for positions
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smaller than k. These two conditions are the basic require-
ments for i > j. With these two conditions, PO �1 cannot
be applied to j − 1 = (jn, jn−1, ..., j1)b to reach any inter-
mediate channel v equal or upgraded with respect to bit
channel i: with (in, in−1, ..., ik+1) = (jn, jn−1, ..., jk+1), there
is not a larger position k′ > k so that ik′ = 1 and jk′ = 0 to
switch with position k in order tomake jk = 1.With ik = 1
and jk = 0 and PO �1 not applicable, PO �2 naturally is
not valid: jk < ik . Therefore, for j < i, with PO �1 and PO
�2, it is impossible for bit channel j to be stochastically
upgraded with respect to bit channel i.

Remark 1 Lemma 1 does not mean that bit channel j
cannot be stochastically upgraded with respect to bit chan-
nel i when j < i. Lemma 1 has a condition: from the
POs point of view, bit channel j cannot be stochastically
upgraded with respect to bit channel i, indicating that
Oi,j �= −1 according to the definition of (10). POs are
channel independent. When it comes to any specific chan-
nel, the relationship between bit channel j and bit channel
i with j < i can be evaluated using an existing sorting pro-
cedure. For example, with N = 16, consider the two bit
channels i − 1 = 10 − 1 = (1001)b and j − 1 = 8 − 1 =
(0111)b. From the two POs, bit channel i is not stochasti-
cally upgraded with respect to bit channel j and bit channel
j cannot be stochastically upgraded to bit channel i either
from Lemma 1. However, consider an AWGN channel with
a SNR of 1 dB, bit channel j is found to be stochastically
upgraded with respect to bit channel i.

For any two bit channels i − 1 = (in, in−1, ..., i1)b and
j − 1 = (jn, jn−1, ..., j1)b, denote the following two sets:

P = {1 ≤ k ≤ n | ik = 1 and jk = 0} (11)
M = {1 ≤ k ≤ n | ik = 0 and jk = 1} (12)

Let p = |P| and m = |M|. At all the other positions
except those specified byP andM, the binary expansions
of i − 1 and j − 1 share the same values zeros or ones.
Assume the sets P andM are in descending order.
The following two lemmas state the conditions when PO

�1 and PO �2 can (or cannot) be applied.

Lemma 2 For a polar code with the block length N =
2n, consider two bit channels i − 1 = (in, in−1, ..., i1)b and
j − 1 = (jn, jn−1, ..., j1)b with i > j. The sets P and M are
defined in (11) and (12), respectively. When m = |M| = 0,
then from PO �2, bit channel j is stochastically degraded
with respect to bit channel i.

Proof Whenm = |M| = 0, it means there is no position
k (1 ≤ k ≤ n) at which jk = 1 and ik = 0. In other words,
all values of the binary expansion of j−1 = (jn, jn−1, ..., j1)b
are equal or smaller than that of i − 1. With i > j, invok-

ing the definition of PO �2, it can be concluded that bit
channel j is stochastically degraded with respect to bit
channel i.

Before introducing the following lemma, let us define
that Pm

1 contains element one to element m of the set P .
Also, the expression Pm

1 > Mm
1 indicates the element-

wise comparison between Pm
1 andMm

1 .

Lemma 3 For a polar code with the block length N =
2n, consider two bit channels i − 1 = (in, in−1, ..., i1)b and
j − 1 = (jn, jn−1, ..., j1)b with i > j. The sets P and M are
defined in (11) and (12), respectively, and are in descending
order. If p = |P| ≥ m = |M| (m > 0) and Pm

1 > Mm
1 ,

then PO �1 can be applied to achieve that bit channel j is
stochastically degraded with respect to bit channel i.

Proof It can be first observed that when p < m, PO
�1 cannot be applied to i − 1 = (in, in−1, ..., i1)b to
obtain any intermediate channel equal or stochastically
upgraded with respect to j − 1 = (jn, jn−1, ..., j1)b: there
are not enough positions with values ones in i − 1 =
(in, in−1, ..., i1)b (denoted by the set P) to switch to posi-
tions in M because p < m. Therefore, to apply PO �1,
p ≥ m is necessary. Consider the definition of PO �1: for
a bit channel i, switching a higher position with value one
with a lower positionwith value zero resulting in a channel
which is degraded with respect to bit channel i. Therefore,
with the descending sets P andM, when Pm

1 > Mm
1 , PO�1 can be performed to i − 1 = (in, in−1, ..., i1)b: for each

element in M, there is a larger element in P to switch
with. Bit channel j is therefore stochastically degraded
with respect to bit channel i.

Remark 2 Lemma 3 is actually a combination of PO �1
and PO �2. There is an inherent PO �2 in Lemma 3 as
explained below. Let the intermediate channel after switch-
ing Pm

1 with Mm
1 of bit channel i as bit channel v. Then,

bit channel j is stochastically degraded with respect to bit
channel v. If p = m, then v = j, which is the case of PO 1.
If p > m, there are remaining elements in P after switch-
ing with elements in M. Comparing bit channel j and bit
channel v, the new set M = ∅ (m = 0). From Lemma 2,
bit channel v is stochastically upgraded with respect to
bit channel j by invoking PO �2. But for our purpose of
determining the relationship between bit channel i and bit
channel j, the proof of Lemma 3 is sufficient.

Algorithm 1 implements Lemmas 1 to 3. For any given
bit channel i, bit channel j < i is compared with it (line 6
in Algorithm 1). In Algorithm 1, −1s do not exist in O
seen from Lemma 1. After running Algorithm 1, bit chan-
nels can be assigned to sets I , F , and U according to
Proposition 1. As discussed in Section 2.4, the smaller



Wang et al. EURASIP Journal onWireless Communications and Networking         (2019) 2019:12 Page 6 of 12

is the size of U , the smaller the number of remaining
computations is.

Algorithm 1 Find all the POIs that POs can determine,
and store the results in the matrix O
Require:

n;
Ensure:

a matrix O;
1: N = 2n
2: O ← (0)N×N // establish an N × N matrix O and

initialize the value in matrix O as 0
3: for i ← 2 to N do
4: a = (in, in−1, ..., i1)b
5: // From Lemma 1, only bit channel j < i is com-

pared with i
6: for j ← 1 to i − 1 do
7: b = (jn, jn−1, ..., j1)b
8: x = a − b
9: positions of (x == 1) → P

10: positions of (x == −1) → M
11: m = |M| // the length ofM
12: ifm == 0 then
13: Oij = 1 // PO �2 from Lemma 2
14: else
15: // POs �1 and �2 from Lemma 3
16: if |P| ≥ m then
17: // element-wise comparison of descending

sets
18: if P(1 : m) > M(1 : m) then
19: Oij = 1
20: end if
21: end if
22: end if
23: end for
24: end for
25: return O;

3.2 General partial order (GPO)
The relationship between some bit channels cannot be
determined from POs�1,�2, or their combinations. Here
is an example: For N = 28, consider bit channel i − 1 =
(10011110)b and j − 1 = (01101011)b. Applying the two
POs and their combinations yields no decision regarding
whetherW (i)

N is stochastically upgraded or degraded with
respect to W (j)

N . For general BMS channels, the relation-
ship between bit channel i and bit channel j cannot be
determined: W (i)

N � W (j)
N holds for one given underly-

ing channel W ; however, this relationship may not hold
for another underlying channel W ′. For a specific chan-
nel BMS channel W, we can further reduce the size of U .

Let us consider the two bit channels in the previous exam-
ple. Let Zu denote the upper part of the descending set
Zn = {n, n − 1, . . . , 1} with nu = |Zu|. Then, Zu is Zu =
{n, n−1, . . . , n−nu+1}. Similarly,Zl represents the lower
parts of Zn with nl = |Zl|, and Zl = {nl, nl − 1, . . . , 1}.
The sizes satisfy 0 ≤ nu, nl ≤ n and nu + nl = n. Divide
the binary expansion of i − 1 into two consecutive parts:
i − 1 = (iZu , iZl )b. The upper part iZu defines a new bit
channel at the block length Nu = 2nu ≤ N = 2n: W (iu)

Nu
(here, iu − 1 = (iZu)b). For the lower part, there is simi-
larly a new bit channel. For this specific example, nu = 5
and nl = 3. One of the two new bit channels can be deter-
mined: W (jl)

Nl
�1 W (il)

Nl
. Only the relationship between the

two upper channels cannot be determined.
For a given BMS channel W, if the upper bit channels

are W (ju)
Nu

� W (iu)
Nu

by any sorting algorithm, then the fol-
lowing proposition of general partial order (GPO) can be
used to determine more intrinsic relationships among bit
channels.

Proposition 2 General partial order (GPO): For a given
underlying channel W, consider bit channels i and j (1 ≤
i, j ≤ N) with i − 1 = (in, in−1, ..., i1)b and j − 1 =
(jn, jn−1, ..., j1)b. Divide the binary expansions of i − 1 and
j−1 into two parts: i−1 = (iZu , iZl )b and j−1 = (jZu , jZl )b.
If the relationship between W (iu)

Nu
and W (ju)

Nu
is obtained

for the given underlying channel W and the relationship
between W (il)

Nl
and W (jl)

Nl
is channel independent, then

W (iu)
Nu

 W (ju)
Nu

and W (il)
Nl

 W (jl)
Nl

⇒ W (i)
N  W (j)

N (13)

Proof From [23] (Lemma 4.7), the following is proven:

W (i)
N  W ′(i)

N whenW  W ′ (14)

First, let us prove that when il = jl, the following state-
ment is true:

W (iu)
Nu

 W (ju)
Nu

⇒ W (i)
N  W (j)

N (15)

For notational convenience, denote Q = W (iu)
Nu

and Z =
W (ju)

Nu
. Then, the left-hand side of (15) means that chan-

nel Z is stochastically degraded with respect to channelQ.
From the channel polarization process in [1], it is known
that each bit channel goes through n levels of one-step
transformation defined in (1) and (2). The two channelsQ
and Z are the output channel of the first nu levels of bit
channel i and bit channel j, respectively. These two chan-
nels are the input to the remaining levels denoted by il and
jl. Then,W (i)

N = Q(il)
Nl

andW (j)
N = Z(jl)

Nl
. Since Z is stochas-

tically degraded with respect to channel Q, then invoking
(14), channel Z(jl)

Nl
is stochastically degraded with respect

to channel Q(il)
Nl

. This proves (15).
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Now, we prove that when iu = ju, the following state-
ment holds:

W (il)
Nl

 W (jl)
Nl

⇒ W (i)
N  W (j)

N (16)

In this case, Q = W (iu)
Nu

= W (ju)
Nu

. The final bit chan-
nels i and j are obtained as W (i)

N = Q(il)
Nl

and W (j)
N = Q(jl)

Nl
.

BecauseW (il)
Nl

 W (jl)
Nl

and the relationship betweenW (il)
Nl

and W (jl)
Nl

is channel independent (the condition of this
proposition), we can conclude that no matter what the
condition of Q is,W (i)

N  W (j)
N holds.

Finally, we prove that
W (iu)

Nu
 W (ju)

Nu
andW (il)

Nl
 W (jl)

Nl
⇒ W (i)

N  W (j)
N

To prove this statement, let us define an intermediate
channel k: k − 1 = (kZu , kZl )b = (iZu , jZl )b. From (16), we
haveW (i)

N  W (k)
N . From (15), we haveW (k)

N  W (j)
N . From

the transitivity of the degradation relationship [13], it can
be concluded thatW (i)

N  W (j)
N .

The procedure to implement GPO is provided in
Algorithm 2. From the definition of the matrix O in (10),

Algorithm 2 Apply the GPO to determine more intrinsic
relationships among bit channels.
Require:

O;
Ensure:

O;
1: // We divide a channel into two parts, eg:
2: // xx · · · x︸ ︷︷ ︸

nu

yy · · · y︸ ︷︷ ︸
nl

3: // nu + nl ← n
4: Nl ← 2nl , Nu ← 2nu
5: iu, ju ∈[ 1,Nu] // two channels from the upper part
6: il, jl ∈[ 1,Nl] // two channels from the lower part
7: i ← (iu − 1) × Nl + il
8: j ← (ju − 1) × Nl + jl
9: // the relationship between bit channels iu and ju

can be obtained from POs or from calling any sort-
ing algorithm; the relationship between bit channels il
and jl is obtained from POs

10: if
(
W (iu)

Nu
� W (ju)

Nu

)
and

(
W (il)

Nl
 W (jl)

Nl

)
then

11: if i > j then
12: Oij ← 1
13: else
14: // bit channel j is degraded with respect to bit

channel i
15: Oji ← −1
16: end if
17: end if
18: return O;

POIs are stored in the lower triangular part (excluding
the diagonal). Therefore, in line 12 of Algorithm 2, POI
Oij = 1 if condition (13) holds and if i > j. When con-
dition (13) holds and i < j, Oij cannot set to be one as
line 12 does, because only the lower triangular part ofO is
defined. Instead, we put Oji = −1 in line 15 to express the
same thing: bit channel j is stochastically degraded with
respect to bit channel i.

Remark 3 The GPO obtained from Proposition 2 works
for a given underlying channel W and can be used to order
the bit channels constructed from W. Any existing con-
struction procedure (Tal-Vardy’s [13], GA [14–16], or den-
sity evolution [12]) can be called to order the bit channels
at level nu ≤ n. For example, if the underlying chan-
nel W is a binary symmetric channel (BSC), GPO works
by first obtaining the relationships determined from POs
(Algorithm 1). Then, n is divided as n = nu+nl. Any sorting
algorithm can be applied at level nu to sort the bit chan-
nels in the range of [ 1, Nu = 2nu ]. In this case, Tal-Vardy’s
merging procedure can be applied. The channel-dependent
sorting at the level nu is combined with the PO ordering
at level nl to produce more relationships among bit chan-
nels at level n. In this case, GA does not work since the
underlying channel is not an AWGN channel.

Remark 4 The procedures of the GPO are not channel
dependent: they are universal for all supported channel
types. But the ordering obtained from the GPO is depen-
dent on W; therefore, the resulted ordering obtained from
the GPO is not universal, such as that of the POs. For any
given channel W, GPO can be used to reduce the construc-
tion complexity of polar codes because of the operation at
a smaller level nu instead of level n. It can be easily shown
that the relationship obtained from Proposition 2 is also
transitive. The final K best bit channels that are selected
when applying GPO are the same as calling any sorting
algorithm [12–16]: In a GPO, the upper bit channels are
determined from the given sorting algorithm, and the lower
part is channel independent.

3.3 Indirect relationships
For the given underlying channelW, the direct use of GPO
and POs sometimes cannot determine the relationship
between two bit channels. Instead, some relationships can
be obtained from several intermediate channels. Here,
is an example. For N = 29, consider the bit channels
i − 1 = (100110000)b and j − 1 = (000111001)b. Apply-
ing the two POs and GPO yields no decision regarding
whetherW (i)

N is stochastically upgraded or degraded with
respect to W (j)

N . Let us take a look at a bit channel k −
1 = (011000001)b. We can determine that bit channel
i is stochastically upgraded with respect to bit channel
k for an AWGN channel with SNR = 1 dB because bit



Wang et al. EURASIP Journal onWireless Communications and Networking         (2019) 2019:12 Page 8 of 12

channel “1001” is stochastically upgraded with respect to
bit channel “0110” from the Tal-Vardy algorithm and bit
channel “10000” is statistically upgraded with respect to
bit channel “00001” from the POs. We can determine that
bit channel k is stochastically upgraded with respect to
bit channel j because bit channel “011000” is stochasti-
cally upgraded with respect to bit channel “000111” from
the Tal-Vardy algorithm for the same AWGN channel and
bit channel “001” is the same as bit channel “001.” There-
fore, we have W (i)

N  W (k)
N and W (k)

N  W (j)
N , resulting in

W (i)
N  W (j)

N .
If the relationship between bit channel i and bit channel

j can be obtained from one intermediate bit channel, we
must be able to obtain the relationship between bit chan-
nel i and bit channel j. There can be several intermediate
bit channels between bit channel i and j before we can
obtain the relationship between bit channel i and bit chan-
nel j. Let us refer to these POIs as indirect relationships.
Proposition 3 can identify all indirect relationships in the
matrix O after applying the POs and GPO.

Proposition 3 For a bit channel k (1 ≤ k ≤ N), if
there are bit channels i and j (whose relationship is unde-
termined from POs and GPO) such that W (i)

N  W (k)
N and

W (k)
N  W (j)

N , then W (i)
N  W (j)

N is newly identified. When
k is searched from 1 to N and i and j is also looped from
1 to N under the loop of k, then ALL indirect relationships
between ALL bit channels can be identified.

Proof The first half of this proposition is the direct use
of the transitive property of the POs and GPO. According
to the second half of the proposition, when the interme-
diate channel k goes from 1 to N and the bit channels i
and j are also looped from 1 toN (within the loop of k), all
indirect relationships among all bit channels can be iden-
tified. In the following, the second part of this proposition
is proven.
For the existing POIs determined from the POs and

GPO (stored in O), pick any two bit channels i and j
(1 ≤ i, j ≤ N) whose relationship is undetermined:Oij = 0
and Oji = 0. However, from the relationship matrix O, the
following relationships can be determined:

W (i)
N  W (k1)

N  W (k2)
N  · · ·  W (km)

N  W (j)
N (17)

where 1 ≤ k1, k2, ..., km ≤ N . Let K = {k1, k2, ..., km}.
Define kl = min(K). When k goes from 1 to N, the
first transitive relationship W (kl−1)

N  W (kl)
N  W (kl+1)

N
is encountered. Then, the POI between bit channel kl−1
and kl+1 can be updated in the matrix O. The remaining
set of K becomes K = {1, 2, ..., kl−1, kl+1, ..., km} with the
corresponding relationship

W (i)
N  · · ·  W (kl−1)

N  W (kl+1)
N  · · ·  W (j)

N (18)

Compared with the relationship in (17), the relationship
in (18) has one less bit channel W (kl)

N . The transitive rela-
tionship W (kl−1)

N  W (kl)
N  W (kl+1)

N is replaced by the
direct relationship W (kl−1)

N  W (kl+1)
N . This process con-

tinues with one new direct POI updated in each step until
the last step, where W (i)

N  W (j)
N is reached. As the inter-

mediate channel k goes from 1 to N and i and j also goes
from 1 to N within the loop of k, any indirect relationship
between bit channel i and j (1 ≤ i, j ≤ N) can be identified
during the three loops.

3.4 GPO parameter optimization
For the GPO, a parameter to be determined is the upper
level nu. In this paper, the sorting algorithm in [13] is
employed. The parameter nu is estimated based on this
sorting algorithm. In the lth (1 ≤ l ≤ n) approximation
stage, different calculations are called according to “0” or
“1” of the lth bit of the binary expansion of a bit channel.
Denote t0 and t1 as the calculation time that corresponds
to 0 and 1. Then, the calculating time for any channel is
x× t0 + y× t1 (x, y is the number of 0s and 1s of the binary
expansion of this channel). Assume that the average Ham-
ming weight of the channels in U iswu. From the two POs,
we can easily show that the three bit channels with the
smallest indices are the worst, and the three bit channels
with the largest indices are the best. Therefore, the order-
ing of these six bit channels can be saved for all sorting
algorithms. The approximate calculation time to sort the
bit channels at level nu and to sort the bit channels at U is:

Tnu = (Nu − 6)nu
2

(t0 + t1) + Ku(n − wu)t0 + Kuwut1
(19)

where Ku = |U | is cardinality of the set U .
From (19), the calculation time of GPO is dependent on

the size of the set U , Ku, and the average Hamming weight
of the binary expansion of the elements in U . There-
fore, a theoretical estimation of the optimal selection of
nu is unavailable. However, any selection of 3 ≤ nu ≤
N − 1 can achieve an advantage in terms of the construc-
tion time given the nature of the GPO. In Section 4, a
quasi-analytical estimation of nu for n up to 10, which pro-
duces the most efficient construction of polar codes, is
performed. Estimation of nu with larger block lengths is
readily achievable.

3.5 Outline of the overall GPO algorithm
Algorithm 3 is a top-level algorithm that implements PO
�1, PO �2, GPO, and the indirect relationships presented
in Proposition 3.
The original POI matrix O is obtained from Algo-

rithm 1 (PO �1, PO �2). Then, the POI matrix O is
updated by Algorithm 2 (GPO). As stated in Proposition 3,
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some intrinsic relationships exist between bit channels
that cannot be obtained from POs and GPO, but can be
obtained from several intermediate channels. This type
of intrinsic relationship is obtained from Proposition 3,
whose algorithm is clear; therefore, it is omitted here.
Once the POI matrixO is updated by Proposition 3 (line

7 of Algorithm 3), we can obtain the two vectors vN1 and
wN
1 : the entry vi of vN1 corresponds to the number of bit

channels that are stochastically degraded with respect to
bit channel i, and the entry wj of wN

1 corresponds to the
number of bit channels that are stochastically upgraded
with respect to bit channel j (line 11 of Algorithm 3). Then,
Proposition 1 can be applied to assign elements to the sets
I , F , and U (line 12-13 of Algorithm 3).

4 Numerical results
In this section, the efficiency of applying POs and GPO
is quantified. The underlying channel is the AWGN with
a SNR of 1 dB. When applying the GPO, the algo-
rithm called to sort the lower dimension channels is
from [13]. We use PO to refer to the results obtained
after applying the two POs. The legend PO+GPO indi-
cates that POs (Algorithm 1) and GPO (Algorithm 2) are
all employed. If indirect relationships (IR) from Propo-
sition 3 is also applied after PO and GPO, the legend
is PO+GPO+IR. All construction results in this section

Algorithm 3 Determine elements of I , F , U .
Require:

n, R, snr;
Ensure:

I , F , U ;
1: N ← 2n, K ← �N × R�, Nf ← N − K
2: nu ← n − 3, Nu ← 2nu
3: // Implementation of the two POs: PO �1, PO �2
4: Call Algorithm 1, return the matrix O on the basis of

n.
5: // Implementation of GPO
6: Call Algorithm 2, return the matrix O.
7: Process O according to Proposition 3 to obtain addi-

tional POIs.
8: vector sN1 : si the number of bit channels degraded with

respect to bit channel i
9: vector f N1 : fi the number of bit channels upgradedwith

respect to bit channel i
10: // this function counts the number of channels

degraded with respect to each bit channel and
upgraded with respect to each bit channel

11:
(
sN1 , f

N
1

) ← counting channels from O
12: I ← find

(
sN1 ≥ Nf

)
13: F ← find

(
f N1 ≥ K

)
14: Put elements not in I and F to U

match the constructions in [13]. Therefore, in the follow-
ing, we show only the efficiency results.
To obtain the first impression of how well PO �1, PO

�2, GPO, and indirect relationships work, the elements
of the matrix O are plotted in Fig. 1, where a black or
a red dot at Oij denotes that the relationship between
bit channel i and bit channel j is determined, and the
white space indicates that the corresponding relations are
not determined. In Fig. 1, the polar code has the block
length N = 29, and the underlying channel is AWGN
with a SNR of 1 dB. In Fig. 1a, the black dots indi-
cate that the relationship is determined from the two
POs, and the red dots in Fig. 1b indicate the additional
intrinsic relationships obtained from the GPO and the
indirect relationships. The application of GPO and indi-
rect relationships fills some portion of the white space
in Fig. 1a, which indicates that additional relations are
identified.
Before quantifying the savings of GPO and IR (here, we

use IR to refer to the results obtained from Proposition 3),
the parameter nu of the GPO needs to be quantified. Let
us consider n = 9, N = 2n = 512, R = 0.5, and SNR
= 1 dB as an example to show the optimal selection of
the dimension nu. Among all code rates, R = 0.5 is the
worst case, which produces the largest size of U . When
R = 0.5, we assume that the set U has the same prop-
erty of the entire set {1, 2, ..,N}: the average weight of the
binary expansion of the bit channels in U is wu ≈ n

2 . From
(19), we have Tnu =

(
(Nu−6)nu

2 + Kun
2

)
(t0 + t1). If the

upper dimension is nu = 6, Ku = 104 elements exist in
the undetermined set U (obtained from the algorithm of
POs). Note that the quality of 58 bit channels needs to be
calculated on the smaller dimension nu = 6 (removing
the largest six bit channels and the smallest six bit chan-
nels). In this example,T6 =

(
(64−6)×6

2 + 104×9
2

)
(t0+t1) =

642(t0 + t1) must be satisfied to select the best K bit chan-
nels. As a comparison, the original complete sorting based
on n = 9 requires T9 = 29 × 9

2 (t0 + t1) = 2304(t0 + t1) to
select the K best bit channels. Table 1 lists the theoretical
calculation times based on different dimensions nu. The
expression nu = 6 produces the most efficient construc-
tion of polar codes. Table II lists the comparison of the
theoretical calculation time and the real implementation
time relative to the complete construction of polar codes.
In Table 2, the ratio is Tnu/Tn. As shown in Table 2, the
approximation of the calculation time in (19) is similar for
R = 0.5.
Note that the running time of POs in Algorithm 1 can

be negligible compared with the running time of the con-
struction of [13] because Algorithm 1 involves only simple
operations (no real multiplications). With the relationship
matrix O obtained from Algorithm 1, the set U can be
determined. Then, a theoretical estimation of an optimal
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(a)  Determined from only the two POs (b)  Determined from the two POs,
            the GPO and Proposition 3

Fig. 1 The relationship of all bit channels with N = 29. a Black dots indicate that the relationship is determined from the two POs whereas white
dots indicate that the relationship cannot be determined from the two POs. b The underlying channel is AWGN with a SNR of 1 dB. On top of the
black dots, the red dots indicate the additional intrinsic relationships obtained from the GPO

nu can be obtained based on Tnu in (19). In this section, all
examples consider nu = n−3, which works for n up to 10.
The size Ku = |U | determines the remaining

calculations of the sorting algorithms. For example, Ku
determines the number of callings of the Tal-Vardy
algorithm [13]. In Fig. 2, the ratio γ = Ku/N is plotted
for N = 29 as a function of the code rate R (the solid cir-
cled line), which shows that the combinations of the two
POs can determine 91% of the bit channels with γ = 9%
for R = 0.1. For R = 0.5, which is the worst case, the two
POs determine 50% of the bit channels, which is still a sig-
nificant saving, considering the complexity of the sorting
algorithms [12, 13]. A small γ is desired since it indicates
a low sorting effort. The dash-dotted line in Fig. 2 is γ

when applying POs and GPO (without running the search
for the indirect relationships). The legend for this line is
“PO+GPO.” The dotted line in Fig. 2 is γ after applying
POs, GPO, and Proposition 3 (searching for indirect rela-
tionships). The gap between PO+GPO and PO+GPO+IR
shows that after running PO+GPO, there are indirect rela-
tionships imbedded in the POI matrix O. As shown in
Fig. 2, the value of γ decreases with R when R > 0.5 and
increases with R when R < 0.5. At the code rate R = 0.5,
all three lines (PO, PO+GPO, and PO+GPO+IR) have the
largest value of γ . However, the savings of applying GPO
and Proposition 3 is the largest at R = 0.5. For the small

Table 1 The theoretical time of the n = 9 for different nu

nu 4 5 6 7 9

Ku 212 150 104 68 0

Tnu/(t0 + t1) 974 740 642 733 2304

code rate R ≤ 0.1, less than 10% of the remaining channels
are in the undetermined set U .
Figure 3 shows the relationship between γ and the block

length for two fixed code rates R = 0.5 and R = 0.1.
The three circled lines represent R = 0.5: the solid line
denotes POs, the dashed-dotted line denotes PO+GPO,
and the dotted line is PO+GPO+IR. Similarly, the three
lines with stars are values of γ for R = 0.1. As shown
in Fig. 3, the number of undetermined channels slowly
increases with the block length when applying POs. For
PO+GPO and PO+GPO+IR, the trend is the opposite:
the portion of undetermined bit channels decreases with
the block length. This is caused by the following facts:
with the increase of the block length N = 2n, there are
more positions for bits 0 and 1 to choose from, producing
more combinations of bit channels whose binary expan-
sions cannot be characterized by the two POs. This in
turn causes the increase of the size of the undetermined
set U , leading to a slow increase of γ when applying POs
only, as seen in Fig. 2. By applying GPO, these undeter-
mined relationships are revealed from calling any existing
sorting procedure (Tal-Vardy’s algorithm in our work).

Table 2 The ratio of Tnu/Tn to select the K best bit channels for
n = 8, n = 9 and n = 10

n Simulated ratio Theoretical ratio

8 0.307 0.306

9 0.286 0.279

10 0.270 0.262

For all values of n, nu is set to be nu = n − 3 and R = 0.5. The theoretical ratio is
based on the approximation in (19)
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Fig. 2 Value of γ as a function of the code rate R with POs and GPO+PO. The underlying channel is AWGN with a SNR of 1 dB. The block length is
N = 29

Therefore, the portion of relationships being newly dis-
covered increases with n, resulting in a decreasing γ with
n. From Fig. 3, it can be seen that GPO+PO+IR can
produce approximately 82% of the savings in terms of the
computation time for polar code construction with a code
rate R = 0.5 and N = 1024.

5 Conclusion
In this paper, partial orders of polar codes for reduc-
ing the construction complexity are investigated. Detailed

quantification of the existing partial orders, which dis-
plays a clear potential of combining partial orders in the
construction of polar codes, is provided. To further reduce
the computation complexity, a general partial order, which
works at a lower block length than the given block length,
is proposed. In addition to the relationships obtained from
the existing partial orders and the proposed general par-
tial order, indirect relationships are also discussed in the
paper. Detailed algorithms for implementing all the par-
tial orders and finding indirect relations are provided to

7 7.5 8 8.5 9 9.5 10 10.5 11
0

0.1

0.2

0.3
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n

γ

PO, R=0.5
PO+GPO, R=0.5
PO+GPO+IR, R=0.5
PO, R=0.1
PO+GPO, R=0.1
PO+GPO+IR, R=0.1

Fig. 3 Value of γ with two different code rates: R = 0.1 and R = 0.5. The underlying channel is AWGN with a SNR of 1 dB
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quantify their savings. Substantial savings are observed
when combining all the partial orders in the paper for
polar code construction.
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