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Abstract

This paper analyzes the effective capacity of delay-constrained machine-type communication (MTC) networks
operating in the finite blocklength regime. First, we derive a closed-form mathematical approximation for the
effective capacity in quasi-static Rayleigh fading channels. We characterize the optimum error probability to maximize
the concave effective capacity function with reliability constraint and study the effect of signal-to-interference-plus-noise
ratio (SINR) variations for different delay constraints. The trade-off between reliability and effective capacity
maximization reveals that we can achieve higher reliability with limited sacrifice in effective capacity specially when
the number of machines is small. Our analysis reveals that SINR variations have less impact on effective capacity for
strict delay-constrained networks. We present an exemplary scenario for massive MTC access to analyze the
interference effect proposing three methods to restore the effective capacity for a certain node which are power
control, graceful degradation of delay constraint, and joint compensation. Joint compensation combines both power
control and graceful degradation of delay constraint, where we perform the maximization of an objective function
whose parameters are determined according to the delay and SINR priorities. Our results show that networks with
stringent delay constraints favor power controlled compensation, and compensation is generally performed at higher
costs for shorter packets.

Keywords: Effective capacity, Machine-type communication, Finite blocklength, Ultra-reliable communication

1 Introduction
Modern communication systems are becoming an indis-
pensable part of our lives. Driven by the demands of users
for extra services, the fifth generation (5G) of mobile com-
munication is expected to introduce new features such as
ultra-reliable low-latency communications (URLLC) and
massive machine-type communication (m-MTC) [1–6].
These features may serve many yet unforeseen applica-
tions to enable the Internet of Things (IoT). IoT aims at
bringing connectivity to anything that can benefit from
internet connection [7]. URLLC has emerged to provide
solutions for reliable and low-latency transmissions in
wireless systems. The design of URLLC systems imposes
strict quality of service (QoS) constraints to fulfill very low
latency in the order of milliseconds with expected reliabil-
ity of higher than 99.9% [1, 4]. In [8], Schulz et al. discussed
the reliability requirements for different IoT applications.
According to their study, latency bounds range from 1 ms
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in factory automation to 100 ms in road safety. In addi-
tion, the packet loss rate constraints range from 10−9

in printing machines to 10−3 for traffic efficiency. Such
requirements are far more stringent than the ones in the
current Long-Term Evolution (LTE) standards [9].
The m-MTC refers to networks that can support a vari-

ety of connected smart devices at the same time with
the same base station (BS). It obligates a certain level of
connectivity to a machine via ultra-reliable communica-
tion (URC) over relatively long term (> 10 ms) [1]. The
number of connected devices is expected to cross the 28
billion border by 2021, where a singlemacro-cell may need
to uphold 10,000 or more devices in the future [10, 11].
Moreover, the traffic behavior of MTC is quite different
from the HTC (human-type communication), where [12]:

• MTC is coordinated (i.e, there are simultaneous
access attempts from many machine reacting to the
same events), while HTC is uncoordinated.

• MTC uses short as well as small number of packets.
• MTC traffic is real as well as non-real-time, periodic,

and event-driven.
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• MTC QoS requirement is different from HTC (i.e.,
different reliability and latency requirements).

In this context, MTC has gained an increasing inter-
est in recent years via employing new multiple radio
access technologies and efficient utilization of spectrum
resources to improve reliability and robustness [13–15].
Another research topic that has gathered much attention
is the cooperative transmission inMTC, where in [11], the
authors proposed a location-based cooperative strategy to
reduce the error outage probability, but without study of
the latency aspects.
Traditional communication systems are based on Shan-

non theoretic models and utilize metrics such as channel
capacity or ergodic capacity [16]. Unlike classical sys-
tems, URLLC networks are designed to communicate on
short packets in order to satisfy extremely low latency in
real-time applications and emerging technologies such as
e-health, industrial automation, and smart grids whenever
data sizes are reasonably small such as sensor readings
or alarm notifications. In the finite blocklength regime,
the length of metadata is of comparable size with the
length of data. Such demands stimulated a revolution-
ary trend in information theory studying communica-
tion at finite blocklength (FB) [17–19]. In this context,
conventional metrics (e.g., channel capacity or ergodic
capacity) become highly suboptimal [17]. For this rea-
son, the maximum achievable rate for quasi-static fad-
ing channels was characterized in [19] as a function of
blocklength and error probability ε. In [9], the authors
analyzed the effect of using smaller resource blocks on
error probability bounds in OFDM. The effect of relaying
of blocklength-limited packets was studied and compared
to direct transmission in [20, 21] where the authors con-
cluded that relaying is more efficient than direct transmis-
sion in the FB regime specially with an average channel
state information (CSI). Furthermore, the authors of [3]
introduced a per-node throughput model for additive
white Gaussian noise (AWGN) and quasi-static collision
channels. Therein, average delay is considered, and inter-
ference is treated as AWGN.
To model the delay requirements in URLLC and MTC

networks, we resort to the effective capacity (EC) metric
which was introduced in [22]. It indicates the maximum
possible arrival rate that can be supported by a network
with a target delay constraint. In [18], the authors consid-
ered quasi-static Rayleigh fading channels and introduced
a statistical model for a single node effective rate in bits
per channel use (bpcu) for a certain error probability and
delay exponent which reflects the latency requirement.
However, throughout the paper, a closed-form expres-
sion for the EC was not provided. Exploiting the EC
theory, the authors of [23] characterized the latency-
throughput trade-off for cellular networks. In [24],

Musavian and Le-Ngoc analyzed the EC maximization of
secondary node with some interference power constraints
for primary node in a cognitive radio environment with
interference constraints. Three types of constraints were
imposed, namely average interference power, peak inter-
ference power, and interference power outage. The fun-
damental trade-off between EC and consumed power was
studied in [25] where the authors suggested an algorithm
to maximize the EC subject to power constraint for a sin-
gle node scenario. In [26], we studied the per-node EC in
MTC networks operating in quasi-static Rayleigh fading
proposing three methods to alleviate interference, namely
power control, graceful degradation of delay constraint,
and the joint method. To the best of our knowledge, EC for
FB packet transmission in multi-node MTC scenario has
not been investigated until part of the work in this jour-
nal was presented in [26], which will be depicted here with
extra details.
Based on its intuition, the EC theory provides a mathe-

matical framework to study the interplay among transmit
power, interference, delay, and the achievable rate for dif-
ferent wireless channels. In this paper, we derive a math-
ematical expression for EC in quasi-static Rayleigh fading
for delay-constrained networks. Our results depict that a
system can achieve higher reliability with a negligible sac-
rifice in its EC. We consider dense MTC networks and
characterize the effect of interference on their EC. We
propose three methods to allow a certain node maintain
its EC which are (i) power control, (ii) graceful degra-
dation of delay constraint, and (iii) joint model. Power
control depends on increasing the power of a certain node
to recover its EC which in turn degrades the SINR of other
nodes. Our analysis proves that SINR variations have lim-
ited effect on EC in networks with stringent delay limits.
Hence, the side effect of power control is worse for less
stringent delay constraints and vice versa. We illustrate
the trade-off between power control and graceful degra-
dation of delay constraint. Furthermore, we introduce a
joint model which combines both of them. The opera-
tional point to determine the amount of compensation
performed by each of the two methods in the joint model
is determined by maximization of an objective function
leveraging the network performance.
The motivation beyond this paper is to provide a solid

understanding of the trade-off between power, delay, and
reliability in MTC networks in the finite blocklength
regime. Our objective is to pave the road for utilizing short
packets in 5G and machine-type networks. Extra plots
that were not present in [26] are illustrated to provide
the reader with full understanding of the objective func-
tion in joint compensation and the compensation process
itself. Moreover, we extend the analysis in [26] by solving
the optimization problem to obtain the optimum error
probability which maximizes the EC in the ultra-reliable
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region. We also characterize the trade-off between relia-
bility and EC which shows that we can obtain a huge gain
in reliability in return for a slight reduction in EC.
The rest of the paper is organized as follows: in

Section 2, we introduce the systemmodel and define some
concepts such as communication at finite blocklength and
EC. A closed form for the EC in quasi-static Rayleigh fad-
ing is derived in Section 3, where we also show the effect
of interference on the per-node EC in multi-node MTC
networks. Next, Section 4 depicts the optimization prob-
lem to maximize the EC in the ultra-reliable (UR) region.
We present the interference alleviation methods and the
trade-off between them in Section 5, while the results
are depicted in Section 6. Finally, Section 7 concludes the
paper. Table 1 includes the important abbreviations and
symbols that will appear throughout the paper.

2 Preliminaries
2.1 Network model
We consider a transmission scenario in which N nodes
transmit packets with equal power to a common con-
troller through a quasi-static Rayleigh fading collision
channel with blocklength Tf as shown in Fig. 1. For conve-
nience in this paper, we refer to one machine terminal as
node. Given that all nodes transmit at the same time slot,
the controller attempts to decode the transmitted symbols
arriving from all nodes. When the controller decodes one
node’s data, the other streams appear as interference to it.
For this model, imagine that a node needs to rise its rate
temporarily for a critical reason. Later on, we study the
interference alleviation scenarios for one node at a cer-
tain time slot while all nodes also keep transmitting at the
same time.
Based on our network model, the received vector yn ∈

C
n of node n is given by:

yn = hnxn +
∑

s �=n
hsxs + w, (1)

where xn ∈ C
n is the transmitted packet of node n, and hn

is the fading coefficient for node n which is assumed to be
quasi-static with Rayleigh distribution. This implies that
the fading coefficient hn remains constant for each block
of Tf channel uses which span the whole packet duration
and changes independently from one block to another.
The index s includes allN−1 interfering nodes which col-
lide with node n, and w is the additive complex Gaussian
noise vector whose entries are defined to be circularly
symmetric with unit variance. Given the signal-to-noise
ratio ρ of a single node, the signal-to-interference-plus-
noise ratio of any node n is

ρi = ρ

1 + ρ
∑

s |hs|2
. (2)

Table 1 List of abbreviations and symbols

bpcu Bits per channel use

EC Effective capacity

Max Maximize

PDF Probability density function

QoS Quality of service

SINR Signal-to-interference-plus-noise ratio

s.t Subject to

URC Ultra-reliable communication

C
(
ρ|h|2) Shannon capacity

Dmax Maximum delay

E[ ] Expectation of

EC Effective capacity

ECmax Maximum effective capacity

L (ε , λ) Lagrangian function

N Number of nodes

Pr() Probability of

Pout_delay Delay outage probability

Q(x) Gaussian Q-function

Q−1(x) Inverse Gaussian Q-function

Tf Blocklength

V(ρ|h|2) Channel dispersion

e Exponential Euler’s number

|h|2 Fading coefficient

ln Natural logarithm to the base e

log2 Logarithm to the base 2

r Normalized achievable rate

w Additive while Gaussian noise vector

xn Transmitted signal vector of node n

yn Received signal vector of node n

z Fading random variable

α Collision loss factor

αc Compensation loss factor

αco Operational point of compensation loss factor

αt Total loss

γc Compensation gain

θ Delay exponent

ε Error probability

εt Target error probability

ε∗ Optimum error probability

ηα Compensation loss priority factor

ηθ Delay priority factor

ρ Signal-to-noise ratio

ρc Compensation SNR

ρco Operational point of compensation SNR

ρi Signal-to-interference-plus-noise ratio

ρs SINR of other non-compensating nodes
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Fig. 1 Network layout. Nmachines communicating short packets to a common controller

To simplify the analysis, we assume that (i) each node
always has a packet to transmit (buffer is always non-
empty), (ii) all nodes are equidistant from the common
controller (i.e., same path loss), and (iii) the fading coeffi-
cients hs are independent and identically distributed and
perfectly known to the receiver. Thus, as the number of
nodes increases, the sum of Rayleigh-distributed fading
envelopes of N − 1 interfering nodes becomes

∑
s |hs|2 ≈

N − 1 [27], and the interference resulting from nodes in
set s can be modeled as in [3] where (2) reduces to:

ρi = ρ

1 + ρ (N − 1)
. (3)

Note that CSI acquisition in this setup is not trivial, and
its cost is negligible whenever the channel remains con-
stant over multiple symbols. Additionally, as in [3], we aim
to provide a performance benchmark for such networks
without interference coordination.

2.2 Communication at finite blocklength
In this section, we present the notion of FB transmission,
in which short packets are conveyed at rate that depends
not only on the SNR, but also on the blocklength and
the probability of error ε [17]. In this case, ε has a small
value but not vanishing. For error probability ε ∈ [0, 1],
the normalized achievable rate in bits per channel use is
given by:

r ≈ C
(
ρi|h|2

) −
√

V(ρi|h|2)
Tf

Q−1(ε), (4)

where

C(t) = log2(1 + t) (5)

is Shannon’s channel capacity for sufficiently long packets,
while

V (t) = (
1 − (1 + t)−2) (

log2 e
)2 (6)

denotes the channel dispersion which appears for rela-
tively short packets (Tf < 2000 channel uses) [18],Q(t) =
∫ ∞
t

1√
2π e

−s2
2 ds is the Gaussian Q-function, and Q−1(t)

represents its inverse, ρi is the SINR, and |h|2 is the fading
envelope.
The channel is assumed to be Rayleigh quasi-static

fading where the fading coefficients remain constant
over Tf symbols which spans the whole packet dura-
tion. For Rayleigh channels [28], the fading coefficients
Z = |h|2 have the following probability density function
distribution:

fZ(z) = e−z. (7)

2.3 Effective capacity
The concept of EC indicates the capability of communi-
cation nodes to exchange data with maximum rate and
certain latency constraint and thus guarantees QoS by
capturing the physical and link layer aspects. A statistical
delay violation model implies that an outage occurs when
a packet delay exceeds a maximum delay boundDmax, and
its probability is defined as [22]:

Pout_delay = Pr(delay �Dmax) ≈ e−θ ·EC·Dmax , (8)

where Pr(·) denotes the probability of a certain event.
Conventionally, a network’s tolerance to long delay is mea-
sured by the delay exponent θ . The network has more
tolerance to large delays for small values of θ (i.e., θ → 0),
while for large values of θ , it becomes more delay strict.
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For the infinite blocklength model, the EC capacity is
defined as:

EC(ρi, θ) = −
lnEZ

(
e−θTf C(ρi|h|2)

)

Tf θ
, (9)

In quasi-static fading, the channel remains constant
within each transmission period Tf [21], and the EC is
subject to the finite blocklength error bounds and thus
according to [18] can be written as:

EC(ρi, θ , ε) = − lnψ(ρi, θ , ε)
Tf θ

, (10)

where

ψ(ρi, θ , ε) = EZ
[
ε + (1 − ε)e−Tf θr

]
. (11)

In [18, 29], the effective capacity is statistically studied
for single node scenario in block fading but never to a
closed form expression. It has been proven that the EC
is concave in ε and, hence, has a unique maximizer. In
what follows, we shall represent the EC expression for
quasi-static Rayleigh fading.

3 Effective capacity analysis under finite
blocklength

Lemma 1 The effective capacity of a certain node com-
municating in a quasi-static Rayleigh fading channel is
approximated by:

EC(ρi, θ , ε) ≈ − 1
Tf θ

ln [ε + (1 − ε) J ] , (12)

with

J = e
1
ρ ρd

[(
c2

2
+ c + 1

)
�

(
d + 1,

1
ρ

)
− c

2
(c + 1) ρ−2�

(
d − 1,

1
ρ

)]
,

(13)

where d = −θTf
ln(2) . Also, let c = θ

√
Tf Q−1(ε) log2 e and x =√

1 − 1
(1+ρiz)2

, and �(·, ·) is the upper incomplete gamma
function ( [30], § 8.350-2).

Proof Please refer to Appendix 1.

Lemma 2 There is a unique local and global maximizer
in ε for the per-node EC in quasi-static Rayleigh fading
channels which is given by:

ε∗(ρi, c, d) = arg min
0�ε�1

ψ(ρi, c, d) ≈ ε + (1 − ε) J

(14)

Proof The expectation in (10) is shown to be convex in ε

in [18] independent of the distribution of channel coeffi-
cients z = |h|2. Thus, it has a unique minimizer ε∗ which
is consequently the EC maximizer given by (14).

Note that c = θ
√
Tf Q−1(ε) log2 e is not a function of

z, so it can be taken out of the integration which simpli-
fies the optimization problem. To obtain the maximum
per-node effective capacity ECmax, we simply insert ε∗
into (12).
Having obtained the closed-form solution for EC, we

proceed with studying the effect of multi-node interfer-
ence on the per-node EC. We elaborate the effect of
interference in quasi-static Rayleigh fading by plotting the
per-node EC obtained from Lemma 1 and (3) for 1, 5, and
10 machines in Fig. 2. The network parameters are set
as Tf = 1000, ρ = 2, and θ = 0.01. It is obvious that
the per-node EC decreases when increasing the number
of machine N as more interference is added. Notice that
the EC curves are concave in ε as envisaged by [18] and
hence have a unique maximizer which is obtained from
Lemma 2 and depicted in the figure. Another observa-
tion worth mentioning is that the optimum probability of
error ε∗ which maximizes the EC becomes higher when
increasing the number ofmachines. Notice that Fig. 2 con-
firms that Lemma 2 renders an accurate approximation
to (10).

4 Maximization of effective capacity in the
ultra-reliable region

Taking a closer look at Fig. 2, we observe the trade-off
between the per-node EC and error probability ε. It is
apparent that we can earn a lower error probability ε by
sacrificing only a small amount of EC. For example, we
observe that for the five-node network operating in quasi-
static Rayleigh fading channel, if we tolerate a decrease
in the EC from 0.11 to 0.1 bpcu, the error probability ε

improves to 10−3 instead of 2.5 × 10−2. Thus, sacrific-
ing only 9% of the EC maximum value boosts the error
probability by nearly 1250% and hence leads to a dramatic
enhancement of reliability. This observation is an open
topic for analysis of the EC-ε trade-off with a target of
maximizing the EC with some error constraint reflecting
the reliability guarantees.
In this section, we discuss the ECmaximization in ultra-

reliable (UR) region (i.e., when the probability of error is
extremely low).Wemaximize the EC so that the error out-
age probability stays below a very small target value εt . We
define the optimization problem as:

max EC(ρi, θ , ε)
s.t ε � εt ,

(15)

which according to (40) in Appendix 1 can be interpreted to

min ψ(ε) ≈ ε + (1 − ε)

2∑

n=0

∫ ∞

0
(1 + ρiz)d

(cx)n

n!
e−zdz,

(16)
s.t ε � εt .
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Fig. 2 Interference effect. Per-node effective capacity in bpcu as a function of error outage probability ε for different number of nodes, with
Tf = 1000, ρ = 2, and θ = 0.01

The solution of (16) renders the operational EC which
guarantees ultra-reliability according to the error con-
straint. Operational EC in this case is smaller than or
equal to the maximum effective capacity ECmax obtained
from Lemma 2. Due to the convexity of ψ(ε) [18], the
first derivative of ψ(ε) is positive if ε is greater than the
global maximum and vice versa. Thus, we can check if
the optimum solution is given by εt or not through the
first derivative of ψ(ε). To elucidate, we write down the
Lagrangian of (16) as:

L(ε, λ) = ψ(ε) + λ(ε − εt), (17)

where λ is the Lagrangian multiplier. This leads to the
following Karush-Kuhn-Tucker (KKT) conditions [31]

∂L

∂ε
= ∂ψ(ε)

∂ε
+ λ = 0 (18a)

λ(ε − εt) = 0. (18b)

From the second condition, if λ is greater than zero, this
means that the constraint is active, where ε∗ = εt and
∂ψ(ε)

∂ε
|ε=εt is indeed negative. Reversing this conclusion,

we can infer whether the constraint is active or not from
the sign of ∂ψ(ε)

∂ε
|ε=εt so that

ε∗ =
{

εt
∂ψ(ε)

∂ε
|ε=εt < 0

argminε�0 ψ(ε), ∂ψ(ε)
∂ε

|ε=εt > 0
. (19)

The first derivative of ψ(ε) with respect to ε is derived as
follows. From (40), we have:

J =
2∑

n=0

∫ ∞

0
(1 + ρiz)d

(cx)n

n!
e−zdz (20)

= J1 + cJ2 + c2

2
J3,

where

J1 = e
1
ρ ρd�

(
d + 1,

1
ρ

)

J2 = e
1
ρ ρd�

(
d + 1,

1
ρ

)
− 1

2
e
1
ρ ρd−2�

(
d − 2,

1
ρ

)
,

(21)

J3 = e
1
ρ ρd�

(
d + 1,

1
ρ

)
− e

1
ρ ρd−2�

(
d − 2,

1
ρ

)
,

Let δ = θ
√
Tf log2 e, then

∂ψ(ε)

∂ε
= 1 + (1 − ε)

∂J
∂ε

− J (22)

= 1 + (1 − ε)
(
δq(ε)J2 + δ2Q−1(ε)q(ε)J3

) − J ,

and q(ε) = ∂Q−1(ε)
∂ε

= −√
2πe

Q−1(ε)
2 is the first derivative

of Q−1(ε) w.r.t ε. Substituting, we get

∂ψ(ε)

∂ε
= 1 − (1 − ε)δ

√
2πe

(Q−1(ε))
2

2 (J2 + δJ3) − J .
(23)
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5 Methods
Given that all nodes transmit at the same time slot, the
controller attempts decoding the transmitted symbols
arriving from all of them. When the controller decodes
one node’s data, the other streams appear as interference
to it [3]. For this model, imagine that a node needs to
raise its EC in order to meet its QoS constraint. At first
glance, applying successive interference cancelation at the
base station would seem to be an attractive solution. How-
ever, this will result in extra delay for lower priority nodes
where the decoder must wait for the higher priority pack-
ets to be decoded first to perform interference cancelation
which dictates parallel decoding [32]. We study the inter-
ference alleviation scenarios for one node at a certain time
slot, while other nodes’ packets also are transmitted and
decoded at the same time as a lower bound worse case.

5.1 Power control
The method of power control is based on increasing the
SNR of node n to allow it recover from the interference
effect. Let ρc be the new SNR of node n, while the other
nodes still transmit with SNR equal to ρ. Then, we equate
the SINR equation in (3) to the case where no collision
occurs (N = 1) to obtain:

ρc = ρ (1 + ρ(N − 1)). (24)

When a certain node transmits with SNR of ρc, its EC
is the same as in the case when transmitting with SNR
equals to ρ while other nodes are silent. The method of
power control is simple; however, it causes extra interfer-
ence into the other nodes due to the power increase of the
recovering node.
From (24), we define the SINR of other nodes colliding

in the same network (nodes in set s) after the compensa-
tion of one node as:

ρs = ρ

1 + ρc + ρ(N − 2)
= ρ

1 + ρ (ρ + 1)(N − 1)
(25)

Now, we are interested in comparing the per-node EC in
three cases: (i) no collision, (ii) collision without compen-
sation, and (iii) collision with compensation of one node.
Here, we look for the maximum achievable per-node EC
in each case. Define the collision loss factor α as the ratio
between the maximum effective capacity ECmax in case of
collision and in case of no collision as:

α = EC(ρi, θ , ε∗
i )

EC(ρ, θ , ε∗)
(26)

where ε∗ and ε∗
i are the optimal error probabilities for

the cases of no collision (N = 1) and collision with-
out compensation, respectively, and both are obtained
from (19).

To determine the effect of compensation of one node
on the other nodes, we define the compensation loss fac-
tor αc as the ratio between maximum EC of other nodes
(set s) in case of one node compensation and in case of no
compensation, that is:

αc = EC(ρs, θ , ε∗
s )

EC(ρi, θ , ε∗
i )

(27)

where ε∗
s is the optimum error probability obtained from

(14) when the SINR is set to ρs. To understand the effect
of increased interference on the network performance, we
study the effect of SINR variations on EC for different
delay constraints.

Proposition 1 SINR variations have comparably lim-
ited effect on EC when the delay constraint becomes more
strict and vice versa.

Proof Please refer to Appendix 2.

Furthermore, we include the compensation factor γc
as the ratio of the maximum achievable EC of the com-
pensated node after and before compensation which is
expressed as:

γc = EC (ρ, θ , ε∗)
EC

(
ρi, θ , ε∗

i
) = 1

α
(28)

where γc is a gain factor (i.e., γc ≥ 1). Finally, we define
the total loss factor αt as the ratio between the maximum
attainable effective capacity of colliding nodes in the sys-
tem (set s) when a node compensates to the maximum
attainable EC of these nodes if they were not colliding at
all, that is:

αt = αc
γc

= α.αc (29)

5.2 Graceful degradation of the delay constraint
Here, we discuss how to compensate for the decrease in
the per-user EC for the multiuser interference scenario
by changing the value of delay constraint θ . More specif-
ically, we determine how the delay exponent θ should be
gracefully degraded to obtain the same ECmax as if the
target node was transmitting without collision. This rep-
resents the cases where a node has flexible QoS constraint
delay wise, so that the EC could be attained given a slight
variation on the overall delay as envisioned in [1]. Let θ

be the original delay exponent and θi represent the new
gracefully degraded one; θi is obtained by solving:

EC(ρ, θ , ε∗) = EC
(
ρi, θi, ε∗

i
)

(30)

where ε∗
i is the maximizer of EC for the parameters ρi

and θi, and ε∗
i is the optimum error probability for ρi and

θi. The solution of (30) renders the necessary value of
θi to compensate for the EC decrease due to collision in
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this case. Notice that (30) can be solved numerically to
obtain the necessary value of θ2 to compensate for the rate
decrease due to collision in this case.

5.3 Joint compensation model
To mitigate the side effects of power control and grace-
ful delay constraint degradation, we apply a joint model
in which both methods are partially employed. Define the
operational SINR in power controlled compensation for
nodes in set s as ρso , where ρso lies on the interval [ρs ρi].
Using (25), the operational SNR for the recovering node
can be written as:

ρco = ρ

ρso
− 1 − ρ(N − 2), (31)

and the operational point of the compensation loss factor
αco is

αco = EC
(
ρso , θ , ε∗

so
)

EC
(
ρi, θ , ε∗

i
) (32)

where ε∗
so is the optimum error probability obtained from

(14) for the parameters ρso and θ1. αco is considered to
be the loss factor caused by the part of compensation
performed via power control.
Next, we perform the rest of compensation via graceful

degradation of θ as in Section 5.2. To obtain θ2, we solve:

EC(ρ, θ , ε∗) = EC
(

ρco
1 + ρ(N − 1)

, θ2, ε∗
2

)
(33)

From (33), we compute the necessary value of θ2 to con-
tinue the compensation process via graceful degradation
of the delay constraint.

Now, we propose an objective function leveraging the
network performance for the joint model. First, we define
the priority factor ηα as a measure of the risk of decrease
in EC of nodes in set s when the compensating node
boosts its transmission power. In other words, the higher
the value of ηα , the more important it is not to allowmuch
degradation of EC of nodes in set s, and hence, we try
not to compensate via power control and shift compensa-
tion towards θ graceful degradation. On the other hand,
we define the priority factor ηθ as a measure of strictness
of the delay constraint (i.e., the higher the value of ηθ , the
more strict it is not to degrade delay constraint and hence
the less we are allowed to relax θ to get higher EC for the
compensating user). Thus, we can formalize our objective
function as the summation:

η = ηααco + ηθθ2 (34)

where αco and θ2 are the operational point. Now, we
choose this operational point to satisfy:

ηmax =max
θ2�0

ηααco + ηθθ2 (35)

s.t ρs � ρso � ρi

where the solution to this problem gives the optimum
operational point which can be found from (31), (32),
and (33).

6 Results and discussion
Figure 3 depicts the operational and maximum EC as a
function of the number of nodes N for Tf = 1000, ρ =
10 dB, εt different values of θ . The figure reveals that
operating in the UR region necessitates a considerable
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Fig. 3 Effective capacity in the ultra-reliable region. Operational and maximum effective capacity as a function of the number of machines N for
Tf = 1000 and ρ = 10



Shehab et al. EURASIP Journal onWireless Communications and Networking  (2018) 2018:194 Page 9 of 14

sacrifice in the EC. Specifically, as the number of nodes
increases and the SINR decreases, the amount of EC
sacrifice becomes more significant as the gap between
operational and optimum EC becomes higher. For exam-
ple, at N = 30, the nodes lose up to 50% of its EC to
maintain reliability.
As an example, consider three colliding nodes where

Tf = 500, θ = 0.01, and ρ = 0.5. Applying (24), we
get ρc = 1. Hence, the interference effect is canceled
for a certain node by boosting its SNR from 0.5 to 1. To
elucidate more, Fig. 4 shows the effect of the collision
of five nodes with and without compensation for Tf =
1000, θ = 0.1, and ρ = 1. We plot the per-node EC before
the compensation of one node. Then, we compare it to the
effective capacities of the four remaining nodes after one
node compensates using (24). The figure also shows the
EC of the compensating node.
Consider Tf = 1000 and ρ = 1, then the left axis of

Fig. 5 depicts the compensation loss factor αc for differ-
ent number of nodes N with θ = 0.1 and 0.001. The
figure shows that αc is lower for smaller values of θ . Hence,
the effect of compensation appears to be more severe for
less stringent delay constraints. This follows from Propo-
sition 1, which states that SINR variations have less of an
effect on delay strict networks and vice versa. Finally, we
notice that the compensation loss factor decreases rapidly
for a less dense network. The right axis of Fig. 5 shows the
compensation factor γc vs the number of nodes in the sys-
tem N. γc appears to have a linear behavior as a function
of N. That is, the effect of compensation for the compen-
sated node increases linearly with N. The rate by which γc
increases is faster for smaller θ . The compensation factor

γc (compensation gain) is higher for less stringent delay
constraint (less θ ). It appears that αc and γc are inversely
correlated to each other as envisioned by (28).
The collision loss factor α and the total loss factor αt are

also depicted in Fig. 6. As observed from the figure, the
total loss is nearly the same as the collision loss for small
N. The gap starts to appear and becomes almost constant
for high number of nodes. This gap is tighter in the case of
small θ (i.e., the collision loss α is more dominant). Also,
there is a higher loss (both collision and total) in case of
less stringent delay constraint θ . Thus, the effect of col-
lision and compensation is more annoying in case of less
stringent delay constraint (smaller θ ). Furthermore, α and
αt have the same behavior as αc. They decrease rapidly for
small number of nodes and tend to be constant for highN.
Consider (30) with N = 5, θ1 = 0.05, ρ = 1, and

Tf = 1000, we get θi = 0.023. Thus, by gracefully
degrading the delay constraint from 0.05 to 0.023, we
attain the same value for the maximum effective capac-
ity ECmax = 0.066 as was depicted in Fig. 4 in [26].
Here, in Fig. 7, we illustrate the graceful degradation of
the delay constraint by plotting the delay outage probabil-
ity Pout_delay as a function of the maximum delay bound
Dmax before and after compensation. The figure shows
that for a delay outage probability of 10−3, the compen-
sation process is performed by extending the allowable
delay Dmax from 3600 to 4600 channel uses. We perform
a limited delay extension (≈ 25%) because the rise in
EC partially compensates the graceful degradation of θ in
(8). Note that the optimum error probabilities have dif-
ferent values in each case due to the change in SINR in
(13) [26].
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Fig. 4 Compensation via power control. Per-node effective capacity as a function of error outage probability ε with Tf = 1000, θ = 0.1, and ρ = 1
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Fig. 5 Power-controlled compensation loss and compensation factors. Compensation loss factor αc and compensation factor γc as a function of the
number of nodes N, for distinct QoS exponents

Figure 8 illustrates different operational points for the
joint model for different blocklength Tf where N = 5,
ρ = 1, Pout_delay = 10−3, and θ1 = 0.1. For example, when
Tf = 700, we select the operational point αco = 0.9 and
θ2 = 0.075. This implies that a part of compensation will
be performed via power control, which leads to a 10% loss
in EC of other nodes (set s). Then, the rest of the com-
pensation will be performed by gracefully degrading its θ

from 0.1 to 0.075. The maximum delay of the recovering

node remains 2500 channel uses before and after recovery
as restoring the EC compensates for the decrease in θ in
(8). The figure also shows that for smaller packet sizes, the
amount of losses due to compensation is higher.
According to the system parameters, certain values of

the priority factors ηα and ηθ may produce a concavemax-
imization problem for the objective function η. For an
MTC network with 15 devices where Tf = 1000, ρ =
2, θ1 = 0.1, ηα = 1, and ηθ = 4, the optimum value of

0 5 10 15 20 25 30

Number of machines N

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Lo
ss

 fa
ct

or

Collision loss 
Loss to compensation factor (Total loss) 

t

=0.1

=0.001

Fig. 6 Power-controlled loss factors. Loss factors α and αt vs number of nodes N
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ρso which maximizes the objective function η will be 0.057
according to Fig. 9. This value corresponds to the opera-
tional point αco = 0.9397 and θ2 = 0.053. The SNR of the
recovering node becomes ρco = 8.08. In other words, in
order to maximize the network throughput according to
the given priority factors, the compensating node boosts
its SNR from 2 to 8.08 and gracefully degrades its delay
exponent from 0.1 to 0.053. This results in only 6% loss

in EC of other nodes as depicted in Fig. 10. Priority fac-
tors are left for the designer’s preferences depending on
the reliability or latency requirements.
Finally in Fig. 11, we compare the EC vs the delay con-

straint θ for fixed and variable rate transmissions. The
SNR and the blocklength are set as ρ = 1 and Tf = 1000,
respectively. It can be observed that for high values of θ ,
fixed-rate transmission performs strictly better. The figure
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also confirms the fact that EC degrades with the increase
of delay constraint θ .

7 Conclusions
In this work, we presented a detailed analysis of the EC for
delay-constrainedMTC networks in the finite blocklength
regime. For quasi-static Rayleigh fading channels, we pro-
posed an approximation for the EC and defined the opti-
mum error probability.We characterized the optimization

problem to maximize EC with error constraint which
showed that there is a relatively small sacrifice in EC for
high SINR. Our analysis indicated that SINR variations
haveminimum effect on EC under strict delay constraints.
In a denseMTC network scenario, we illustrated the effect
of interference on EC. We proposed power control as an
adequate method to restore the EC in networks with less
stringent delay constraints. Another method is graceful
degradation of delay constraint, where we showed that a
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Tf = 1000, θ1 = 0.1, ρ = 2, and N = 15
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Tf = 1000

very limited extension in the delay bound could success-
fully recover the EC. Joint compensation emerges as a
combination between these two methods, where an oper-
ational point is selected to maximize an objective function
according to the networks design aspects. Finally, we con-
cluded that for high values of θ , fixed-rate transmission
performs strictly better. As future work, we aim to analyze
the impact of imperfect CSI on the EC and coordination
algorithms that maximize EC with fairness constraints.

Appendix 1: Proof of Lemma 1
For Rayleigh envelope of PDF given in (7), the EC expres-
sion in (10) can be written as:

ψ(ρi, θ , ε) =
∫ ∞

0

(
ε + (1 − ε)e−θTf r

)
e−zdz. (36)

From (4), we have

exp
(−θTf r

) = exp
(−θTf log2(1 + ρiz)

)×

exp
(
θ

√

Tf

(
1− 1

(1+ρiz)2

)
Q−1(ε) log2 e

)
.

(37)

Elaborating, we attain

exp
(−θTf log2(1 + ρiz)

) = (1 + ρiz)d, (38)

exp
(

θ

√

Tf

(
1− 1

(1+ρiz)2

)
Q−1(ε) log2 e

)
= exp(cx).

(39)

We resort to the second order Taylor expansion to obtain
ecx = 1 + cx + (cx)2

2 and place it into (37), then (36)
becomes:

ψ(ρ, θ , ε) = ε

∫ ∞

0
e−zdz + (1 − ε)

(∫ ∞

0
(1 + ρz)de−zdz

+c
∫ ∞

0
(1 + ρz)dxe−zdz + c2

2

∫ ∞

0
(1 + ρz)dx2e−zdz

)

(40)

The first integral reduces to unity. Applying Laurent’s
expansion for x [33], we attain:

x ≈ 1 − 1
2 (1 + ρz)2

. (41)

Replacing (41) into (40) yields

ψ(ρ, θ , ε) = ε + (1 − ε)

[
e
1
ρ ρd�

(
d + 1,

1
ρ

)

+ c
(
e
1
ρ ρd�

(
d + 1,

1
ρ

)
− 1

2
e
1
ρ ρd−2�

(
d − 2,

1
ρ

))

+ c2

2

(
e
1
ρ ρd�

(
d + 1,

1
ρ

)
− e

1
ρ ρd−2�

(
d − 2,

1
ρ

))]
.

(42)

After manipulating (42) and inserting it into (10), we
obtain (12).

Appendix 2: Proof of Proposition 1
Differentiating (10) with respect to ρi

∂EC
∂ρi

= ∂EC
∂r

∂r
∂ρi

= e−Tf θr

ε + (1 − ε)e−Tf θr
K,
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where K = ∂r
∂ρi

(1 − ε) is strictly positive since the achiev-
able rate r is an increasing function of the SINR ρi.
Differentiating once more with respect to θ :

∂

∂θ

(
∂EC
∂ρi

)
= − KTf re−Tf θr

(
ε + (1 − ε)e−Tf θr

)2 , (43)

which is strictly negative and thus validating our proposition.
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