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Abstract

In cognitive radio (CR) system, secondary user (SU) should use available channels opportunistically when the
primary user (PU) does not exist. In CR network, SUs have to detect the PU signal with sufficient sensing time to
guarantee the detection probability and minimize the interference to the PU, while the CR system should have
enough data transmission time to maximize the transmission opportunity of the SU. Therefore, the sensing time and
data transmission time of the SU are generally considered as main optimization parameters to maximize the throughput
of the CR system. In this paper, a separate sensing node is designated and the sensing is continuously performed using
the interference alignment (IA) technique. In this paper, the designated sensing node estimates the interference ratio
and transmission opportunity loss ratio. To satisfy the primary user’s interference requirement and maximize secondary
throughput, we proposed dynamic adjustment mechanism for sensing slot time and sensing report interval using
reinforcement learning in time-varying communication environment. The experimental results show that the proposed
approach can minimize the interference on PU and enhance the transmission opportunity of SUs.
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1 Introduction
As the demand for multimedia services explosively
increases, the need for bandwidth to meet the require-
ments of communication systems is also rapidly increasing.
Periodic frequency auctions in each country are a major
issue of interest to telecom operators due to astronomical
costs, and these costs are included in the CAPEX plans of
operators, so they are inevitable to be passed on to the
consumers for the purpose of operating profit safeguard
guarantee [1]. Therefore, it is necessary to use the
frequency more efficiently to drastically reduce the cost
of the frequency and reduce the communication cost.
Cognitive radio (CR) is a technology that can improve
the efficiency of frequency spectrum use and has been in
continuous research since it was proposed by Mitola [2].
CR should be able to intelligently monitor and adapt to
the surrounding environment to share the frequency band
with the licensed primary user (PU) in a frequency band
not occupied by the PU [3]. In the last few years, several

research works have been done in order to apply CR to
spectrum sharing and for secondary users (SUs) to coexist
with PUs in relation to wireless standards: the IEEE
802.22 Wireless Regional Access Network in TV white
spaces (TVWS), IEEE 802.11af for wireless local area
network service in TVWS, IEEE 802.19, IEEE 1900.x,
and the European Telecommunications Standards Institute’s
Reconfigurable Radio Systems for coexistence of license-ex-
emption systems. Besides these considerations, CR sys-
tems are considered in the complex system problem
consisting of heterogeneous systems, like the coexistence
problem of a femtocell that can be installed indiscriminately
in a macrocell, device-to-device (D2D) coexistence problem
within the licensed band, and the coexistence of WiFi and
Long Term Evolution in unlicensed spectrum (LTE-U) in
the Industiral, Scientific and Medical (ISM) band [4, 5].
CR users are basically required to have spectrum sensing

to gain access to the spectrum without interfering with the
primary networks. Therefore, various efforts have been
made to improve the accuracy of sensing, such as matched
filter detection, energy detection, feature detection, and
cooperative detection [6]. Since the radio frequency front
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end cannot distinguish between the PU and SU signals,
sensing and data transmission must be separated [7].
Although feature detection can identify the modulation
types of PU signal, the processing time is considerably
longer, and higher computational complexity is required
[8]. There is a tradeoff between the interference with PUs
and throughput of the SU in the mechanism that separates
the sensing and data transmissions. For interference avoid-
ance, the observation time (i.e., sensing time) should be
long enough to ensure the accuracy of PU detection. How-
ever, a longer observation time reduces the transmission
time of the SU, thereby reducing the data throughput of
the CR system. In this regard, Liang et al. constructed an
optimization function using the ratio of sensing time and
transmission time, and detection probability in the SU’s
frame, and showed that the maximum data throughput of
the optimization function can be found by concavity [9]. It
is also proposed to specify the operation region for the
bounded false alarm assuming the characteristic of the
PU activity and to find the optimal sensing time and
period in the operation region. Lee and Akyildiz esti-
mated the detection probability, false alarm probability,
expected interference ratio, and lost spectrum opportunity
by assuming the PDF (probability density function) of the
busy/idle times of the PU, and calculated the guaranteed
operation interval related to the SU’s sensing time and the
data frame time through the constraints calculated [10].
In addition to the conventional optimization considering
tradeoff between sensing time and period, an effort to
further reduce the interference to the PU was proposed.
Choi and Yoo defined the PU as an unprotected primary
user transmission (UPT) in case the SU cannot detect
the PU in the transmission interval of the SU [11, 12].
In addition to the constraints related to the existing
time-constrained detection probability, the UPTconstraint
is additionally used to optimize the sensing schedule. In
the multi-input multi-output (MIMO)-based CR system
for increasing the channel capacity, spectrum sensing
utilizing the characteristics of the MIMO system has also
been proposed. In order to solve the tradeoff between
sensing and transmission time, Lee and Cho proposed a
system in which a MIMO-based SU can perform sensing
and data transmission simultaneously using zero forcing
(ZF) [13]. Moghimi et al. proposed a system that divides
the receiving stream of a MIMO-based SU and operates
the data reception stream as a tradeoff for sensing and
receiving, while the rest is dedicated to sensing [14].
In wireless communication networks composed of various

communication systems, interference is an unavoidable
phenomenon. In order to solve this problem, multiple access
methods such as time division multiple access, frequency
division multiple access, code division multiple access, and
space division multiple access are used to make the signals
orthogonal to each other in terms of time, frequency, and

spatial domain. These methods can avoid interference by
dividing the resources in each area, but cannot use enough
of the capacity that the channel can provide. In this context,
interference alignment (IA) has recently attracted attention
as a technique capable of eliminating interference between
multiple links and maximizing transmission capacity. In an
existing communication system, since each user pair cannot
know information about other users in the network, the
optimal strategy is to maximize its own transmission rate.
Thus, the sum of data rates in the network increases to the
same order of a single communication link. However, using
IA, the sum rate increases linearly with the number of users
at high SNR (signal-to-noise ratio). The IA arranges all
interference in a common subspace of a total received signal
space in a receiver configured with a multi-antenna system.
It separates the interference space from a desired signal
space so that a plurality of transceivers can operate at
the same time and or same frequency. Applying the IA
to the CR was recently studied because of the advantages
in eliminating interference with the PU and removing
mutual interference between the SUs to increase the
transmission capacity of the SUs [15].
The IA is combined with the CR system to divide the

signal space and the interference space so that the inter-
ference can be avoided between PU and SU signals. Amir
et al. analyzed the degree of freedom (DoF) available in
IA-based PU and SU networks and maximized the
transmission rate of the PU through water-filling [16].
Zhou et al. proposed optimizing the precoding matrix
and power allocation to increase the transmission rate
of SUs in a network of single PUs and multiple SUs
[17]. Men et al. proposed an algorithm that guarantees
the transmission performance of the PU using a partial IA
algorithm [18]. IA-based CR can be applied to applications
considering interference between heterogeneous systems.
Chatzinotas and Ottersten applied IA to small cells to
mitigate interference in macrocell base stations in small
cells [19], and Huang et al. investigated a joint opportunis-
tic interference avoidance scheme using the interweave
paradigm-based Gale-Shapley spectral-sharing scheme to
mitigate interference between a macrocell network and a
femtocell network [20]. Sharma et al. proposed a coordi-
nated and uncoordinated approach in a system consisting
of monobeam and multibeam satellites as well as
macrocell and small-cell systems [21]. On the other
hand, methods of accessing the information of the PU
and performing IA were proposed. Chen et al. proposed
a system that helps the PU to transfer data while the
SU uses a DoF that is not used by the PU [22], and
Guler and Yener collected all channel information and
proposed an interference technique using successive
semi-definite programming (SDP) relaxation [23]. And
Perlaza et al. allow the SU to transmit signals without
interfering with the PU through the remaining eigenmodes
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that are not used by the PU [24]. Hasani-Baferani et al.
enabled the SU to perform IA by providing a femtocell
with eigenmode information of the PU in a macrocell and
femtocell system [25]. Zhao et al. optimized the sum rate
of SUs, limiting it to the transmission rate threshold of the
PU so that the sum rate of the entire network is optimized
according to PU requirements [26].
Previous researches on the optimization of sensing

and data transmission time cannot fundamentally block
the interference to the PU because it cannot continu-
ously sense the spectrum. Also, assuming the operating
characteristics of the PU cannot be a reasonable assump-
tion because the PU cannot be continuously observed or
the signal of SUs cannot be transmitted while they process
spectrum sensing even if it can continuously observe the
spectrum for a while. Meanwhile, even if sensing is
continuously performed through the MIMO-based CR
system, still secondary systems need the optimization of
the sensing and transmission time, and this optimization
is very difficult to derive as a closed form specially in
dynamic wireless environments in terms of time-varying
channel characteristics and primary activities. In a CR
system research with IA, if it is not possible to include
the PU in IA or perform IA process by providing PU
information to the CR, the conventional IA-based CR
system cannot achieve the desired interference alignment
performance. Therefore, in this paper, we design a des-
ignated sensor in an IA-based SU system that uses a
conventional IA algorithm to limit transmission signals
of SUs to the interference space and to sense the PU
through the remaining signal space. Since the sensing
and data transmission roles are separated, continuous
sensing is possible, and the tradeoff problem of sensing
time and transmission time disappears. The problem of
not detecting the PU during data transmission also
disappears. However, since the sensing role is limited to a
specific SU, another problem arises in that the sensing
result should be transmitted to other SUs. In this paper,
we propose a dynamic adjustable sensing report interval
control mechanism using reinforcement learning.
There is a tradeoff regarding the period of sensing

interval (or the sensing result transmission). If it is too
long, interference time to the PU increases due to the
transmission time increases for the SUs; conversely, if it is
too short, transmission performance of the SUs decreases.
In this regard, this paper proposes an algorithm that dynam-
ically determines the sensing time and reporting interval of
sensing result by using Q-learning based on reinforcement
learning for interference control in target-level and enhance-
ment of SU’s transmission opportunities. Meanwhile, the
interference ratio and the transmission opportunity loss ra-
tio are defined as the criteria for selecting the sensing time
and the reporting interval according to the performance of
the system. From the busy and idle time that are statistical

characteristics of the PU, interference ratio and the trans-
mission opportunity loss ratio can be estimated precisely
from only the sensing results without any knowledge of
operating characteristics about PU. First, in order to
minimize the interference to the PU, the sensing is
basically set to satisfy the required detection probability
preferentially so that the interference to the PU can be
ensured in the sensing step. In the reward design of
Q-learning, the target interference ratio value is used
so that the interference resides in desired range. Also,
the target transmission opportunity loss ratio value is
used to secure the transmission opportunity of the SU.
Based on the designed reward, Q-learning dynamically
selects the sensing time and reporting interval time to
operate the system in the selected interference ratio
and loss ratio range.
Since the Q-learning is a model-free reinforcement

learning technique, Q-learning could be very fascinating
method for spectrum sensing in time-varying environ-
ment. Liwang et al. used Q-learning to minimize mutual
interference between SUs according to the sensing order
[27]. Jan et al. has assigned a sub-band for spectrum
sensing order to obtain high throughput while minimizing
the number of sub-bands that the SU should sense [28].
Das et al. has cooperatively calculated the reward for the
idle and busy states of the channel and evaluated the
priority of the channel [29]. Yang et al. considered
hardware reconfiguration energy consumptions and time
delays when selecting a sub-band for wide-band sensing
[30]. Oliver et al. solved the throughput optimization for the
sensing and transmission time with Q-learning [31]. In this
paper, we can observe the activity of the PU continuously so
that the interference ratio and the transmission loss ratio
can be calculated. Therefore, we can use Q-learning to select
the appropriate sensing time and reporting interval to meet
the primary protection and secondary throughput require-
ments in a dynamic environment.
In this paper, we describe proposed system model in

Section 2 and examine the feasibility of the proposed
IA-based sensing system through DoF analysis. Section 3
shows the real-time estimation method for the interfer-
ence ratio and transmission opportunity loss ratio used
as states related with Q-learning. Section 4 compares the
proposed system with conventional schemes, and it shows
that the proposed method provides stable and desired
operation in the dynamic wireless environments. Finally,
the conclusion is made in Section 5.

2 Proposed IA-based sensing structure for
continuous spectrum sensing
2.1 System model
Typical IA in cognitive radio system is shown in Fig. 1
[18]. There are K s secondary transmitter-receiver pair
and one SU with MIMO-CR interface and one primary
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transmitter. All the SUs share the transmission resource
with the PU at the same time. Each transmitter and re-
ceiver has M and N antennas, respectively. H[ij] ∈ℂN ×M

represents the channel between the jth transmitter and
the ith receiver, where i, j ∈ {0, 1,…,K} and 0th user repre-
sents the PU. All the elements of H[ij] are independent
and identically distributed (i.i.d.) and follow complex
Gaussian distribution with zero mean and unit variance
CN ð0; 1Þ . Then, the received signal at the ith receiver is
expressed as:

y i½ � ¼ H ii½ �x i½ � þ
XK
j¼0; j≠i

H ij½ �x j½ � þ z i½ � ð1Þ

where x[i] expresses the transmitted symbols of user i and
z[i] ∈ℂN × 1 represents the circularly symmetric additive
white Gaussian noise vector with CN ð0; σ2INÞ , in which
σ2 is noise variance and IN is an identity matrix.
In the IA system consisting of a pair of MIMO-based

transceivers, the transmitter controls the precoding
matrix so that the transmitted signal is limited to the
interference space at an undesired receiver, and the receiver
controls the decoding matrix to remove undesired received
signals and to recover the signal. This IA design conditions
can be represented as follows:

U i½ ��H ij½ �V j½ � ¼ 0 ð2Þ

rank U i½ ��H ii½ �V i½ �
� �

¼ dk ;∀i≠ j ð3Þ

where dk is the desired number of streams of user i.
V[j] ∈ℂM × dand U[i] ∈ℂN × d denote precoding matrix of

jth user and decoding matrix of ith user, respectively. U½i��

is the conjugate transpose of U[i].
We can represent the received signal recovered by

decoding matrix and adjusted by precoding matrix from
the IA design conditions as follows.

~y i½ � ¼ U i½ ��H ii½ �V i½ �s i½ �|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
desired signal

þ
XK
j¼0; j≠i

U i½ ��H ij½ �V j½ �s j½ �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
interference signals

þU i½ ��z i½ �|fflfflffl{zfflfflffl}
noise

ð4Þ
where s[i] is the transmission signal of the ith transmitter.
From the IA condition, interference signals term of (4) is
eliminated.
In this paper, we designate one of the SUs as a sensor

node only responsible for spectrum sensing, as shown in
Fig. 2, in order to eliminate dependence on the PU infor-
mation in the CR system for IA.
The designated sensor node should sense the primary

signal continuously so that it cannot transmit or receive
data during the sensing process. It may also consume

Fig. 1 General interference alignment in CR system. The PU
participates in the interference alignment of the transceiver pairs of
the CR system and they can transmit data without interfering with
each other

Fig. 2 Proposed system with interference alignment in CR system.
The sensor node can sense the PU by using interference alignment
even while the SUs are transmitting data use, and it will notify
whether or not to transmit to the SUs depending on whether or not
the PU is present
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more energy than other secondary nodes. Therefore, a
new sensor node needs to be selected after certain given
time. In wireless ad hoc networks or wireless sensor
networks, there have been similar studies on selecting
the cluster head (CH) [27, 32–34]. In order to select
the CH, various parameters can be considered, such as
the number of member nodes covered by the CH, the
current residual energy level, and the history of CH
nodes. In this paper, the sensor is selected by considering
the residual energy and energy draining rate of every node
as in [34]. In this paper, for the selection of spectrum
sensing node, the node with the largest ratio of residual
energy to draining rate of energy is selected.

sensor t þ T selð Þ ¼ argmax
i

Ei

Di

� �
ð5Þ

where Tsel is a cycle for selecting sensor node. Ei and Di are
the residual energy and the draining rate of energy of node
i, respectively.
The use of the designated sensor node can reduce the

sensing overhead of other secondary nodes, but it may
bring sensing accuracy degradation in some wireless
scenarios. When a cooperative sensing method is used
in the conventional CR system, by combining each SU’s
sensing result, it can increase the sensing accuracy and
detect hide primary transmitters. Even though the sensor
node in the proposed method is the only node that senses
the primary signal, by performing consecutive spectrum
sensing as a form of sequential chaining of a fixed sensing
time, in which the fixed sensing time is determined to
satisfy the required minimum primary detection probabil-
ity, our proposed method also can combine time-domain
multiple sensing results. It can compensate the lack of
physical cooperative sensing.
As with the usual IA scheme, the sensor performs the

IA process with other SUs to limit signals from other
SUs to interference space and remove them through the
decoding matrix. The remaining signal space can be
used to sense the PU. As the sensing role is dedicated to
a particular sensor, other SUs do not need to participate
on spectrum sensing and also can transmit data without
wasting of time for sensing.
To satisfy the required primary detection probability, a

fixed sensing time slot (ts) is determined as in (27). The
sensor node performs spectrum sensing every consecu-
tive sensing time slot. In this paper, to notify the sensing
result by the sensor node to all CR SUs, we propose two
mechanisms.

i. Periodic notification (default mode): the sensor
node broadcasts sensing report which includes
primary detection information at every
predetermined sensing reporting interval. When

SUs receive the primary detection notification, they
should not transmit data until the next report
broadcasting time. The sensing reporting interval is
represented as tr.

ii. Notification using dedicated control channel
transceiver: every secondary nodes including sensor
node have dual transceivers, in which one is for
data transmission (or spectrum sensing) and the
other one is control signal exchange. When the
sensor node detects the primary signal, it transmits
detection notification signal on the dedicated
narrow band channel, and other SUs seize their
data transmission. If the data channel returns to
idle, then the sensor also send channel idle
notification and then SUs can again utilize the data
channel.

The spectrum sensing and primary detection comparison
for the conventional CR system and proposed IA-based
spectrum sensing system is represented in Fig. 3. Figure 3a
represents the primary system activities as a form of busy
with times. Figure 3b shows the conventional CR system
which uses a fixed spectrum sensing time and interval. The
conventional CR system can only sense the primary signal
only during the short sensing time so that if the primary
appears during the secondary data transmission time
(i.e., between two consecutive sensing times), then the
secondary system will give harmful interference to the
primary system. As shown in Fig. 3c, the designated
sensor node can continuously sense the primary signal.
At time (1), the sensor node broadcasts the primary
non-detection report to SUs so that SUs can utilize the
data channel using interference alignment. At time (2)
and time (3), the sensor node detects the primary signal
so that it sends the primary detection report at (4). As
we can see in Fig. 3c, SUs can seize their transmission
until the primary signal is not detected. In conventional
CR in Fig. 3b, since SUs are not able to detect the primary
signal during the short sensing time, they send data and
cause strong interference to the primary user. Figure 3d
shows the case that dual transceivers are used. At time (5)
when the sensor node detects the primary signal, it can
immediately send the detection notification using the
dedicated control channel. And when the data channel
returns to idle at time (6), the sensor node notifies the
non-detection notification to SUs and SUs utilize the
data channel again. Therefore, secondary node’s data
throughput is enhanced.
The sensing time ts and sensing reporting interval tr

impact on not only primary protection performance but
also secondary system data transmission opportunity.
The longer the sensing time, the lower miss detection
and false alarm probabilities are obtained. On the other
hand, the shorter sensing time results in the higher miss
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a

b

c

d
Fig. 3 Conventional CR system and proposed IA-based spectrum sensing. According to the busy/idle state of PU in a, this figure represents the
process of conventional CR system in b, default mode in c, and dual transceiver mode in d. Since the conventional CR system can only sense the
primary signal only during the short sensing time, the secondary system gives harmful interference to the primary system during the data
transmission as shown in b. As shown in c, the sensor node can continuously sense the primary signal. At time (1), the sensor node broadcasts
the primary non-detection report to SUs so that SUs can utilize the data channel using interference alignment. At time (2) and time (3), the
sensor node detects the primary signal so that it sends the primary detection report at (4). As we can see in c, SUs can seize their transmission
until the primary signal is not detected. d The case that dual transceivers are used. At time (5) when the sensor node detects the primary signal,
it can immediately send the detection notification using the dedicated control channel
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detection and false alarm probabilities especially at low
signal-to-noise ratio (SNR) of the longer sensing reporting
interval makes the more transmission opportunity for
secondary users; however, it generates the higher possible
interference to primary users. In CR wireless network, the
primary activity and wireless channel condition vary
dynamically so that it is very difficult to derive the optimal
sensing time and reporting interval. Therefore, in this
paper, we propose a new dynamic optimal parameter
control using reinforcement learning. The multi-objective
function of the secondary system is given as in (6), in
which the multi-objective function consists of three reward
functions: interference ratio reward, transmission oppor-
tunity loss ratio, and overhead for sensing. The reward
functions will be explained in detail in Section 3.3. There-
fore, the proposed method derives the optimal ðt�s ; t�r Þ
value that maximizes the multi-objective function with
subject to primary protection and secondary throughput
requirements.

Maximize : f intf RIð Þ þ f loss RLð Þ þ f overhead ts; trð Þ
Find : t�s ; t

�
r

Subject to : Pd ≥Pth
d ;RI ≤Rth

I ;RL≤Rth
L

ð6Þ
where fintf(RI) and floss(RL) are the functions of interference
and transmission opportunity loss ratio; foverhead(ts, tr) is
the function of the overhead related to sensing time ts and
reporting interval (integer multiple of ts); t�s ; t�r are the
optimal spectrum sensing time and reporting interval, re-
spectively; Pth

d is the required primary detection probability
Pd; Rth

I and Rth
L are the tolerable interference ratio and sec-

ondary transmission opportunity loss ratio, respectively.
The main novel features of the proposed system archi-

tecture are as follows:

1. The dedicated sensor is responsible for the sensing
function and can operate spectrum sensing by IA
process when SUs transmit the signal so that the
operation of the PU can be continuously observed.

2. We specify the target detection probability to
basically satisfy the detection probability and operate
in the range that satisfies the interference ratio and
the secondary transmission opportunity loss ratio.

3. We use the Q-learning to determine sensing time
and reporting interval dynamically and design the
suitable reward function.

2.2 Interference alignment and degree of freedom in the
proposed system
A minimum DoF must be ensured for each transceiver pair
to communicate using IA process. We derive the condition
of DoF that the proposed system can obtain. In addition,
this section provides a theoretical basis for the sensor node

to perform sensing while the SU is transmitting. Suppose
there is a MIMO-CR interference network with K SUs,
one sensor and one PU in Fig. 4. It is assumed that SU’s IA
network is consist of symmetric (i.e., same transmission
antennas and receive antennas). The 0th SU is a sensor,
and each transmitter and receiver of the SU has M and N
antennas. Then, received signals at the sensor and the ith
SU receiver are as shown in (7) and (8):

y 0½ � ¼ H 0p½ �x p½ � þ
XK
j¼1

H 0 j½ �x j½ � þ z 0½ � ð7Þ

y i½ � ¼ H ii½ �x i½ � þ
XK
j¼0; j≠i

H ij½ �x j½ � þ z i½ � ð8Þ

where x[p] and x[i] are the transmission symbol of PU
and SU i, z[0], z[i] are circularly symmetric additive white
Gaussian noise vectors, with CN ð0; σ2INÞ . H[ij] ∈ℂN ×M

represents the channel between the jth transmitter and
the ith receiver, where i, j ∈ {0, 1,…, K}, K represents
the number of SUs, and the index p represents the PU.
All elements of H[ij] are i.i.d. distributed and follow
CN ð0; 1Þ . We assumed a quasi-static channel, i.e., the
channel realization remains fixed throughout the duration
of transmission.
In order to eliminate interference in a sensor and each

SU, we use a decoding matrix and the received signal with
d data streams of the ith user is recovered as follows:

~y 0½ � ¼ U 0½ ��H 0p½ �V p½ �s p½ � þ
XK
j¼1

U 0½ ��H 0 j½ �V j½ �s j½ �

þU 0½ ��z 0½ � ð9Þ

~y i½ � ¼ U i½ ��H ii½ �V i½ �s i½ � þ
XK
j¼0; j≠i

U i½ ��H ij½ �V j½ �s j½ � þ U i½ ��z i½ � ð10Þ

where s[p], s[j] are transmission signals of the PU and the
jth SU. V[p] and V[j] are the precoding matrix of the PU
and jth SU, and U[0], U[i] ∈ℂN × d are the decoding matrix
of the sensor and the ith user. To completely remove
interference from the SUs to the sensor or between
the SUs, V[j], U[0], and U[i] must satisfy the following
conditions:

U 0½ ��H 0 j½ �V j½ � ¼ 0d ð11Þ

U i½ ��H ij½ �V j½ � ¼ 0d ð12Þ

rank U i½ ��H ii½ �V i½ �
� �

¼ d i½ � ð13Þ
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rank U 0½ ��H 0p½ �V p½ �
� �

¼ d 0½ �; ∀i≠ j; i≠0; j≠0; ∀i;

j∈ 1; 2;…;Kf g
ð14Þ

where d[i] is the desired number of stream of user i.
Equations (11) and (12) show that interference in

receiving signal dimension of sensor and SU receivers
should be zero. Equations (13) and (14) represent the
number of signal stream that each SU transceiver pair
and sensor node can acquire. From these constraints,
the DoF condition is expressed by (15):

d≤
N

K þ 1
þ KM

P þ Kð Þ K þ 1ð Þ ð15Þ

Proof. See the Appendix.
Therefore, in the network with satisfying the DoF condi-

tion from (11), the sensor node can remove the interfer-
ence from the signals of other SU and sense the PU signal.
To fulfill the requirements in (11) and (12), the iterative

IA algorithms in [35, 36] can be adopted with some modi-
fications. The sensor should minimize the total leakage
interference that remains after canceling the interference by
decoding. Other SUs can obtain the precoding and decod-
ing matrix by the maximum SINR algorithm considering

the total leakage interference of the sensor. By fixing all V[i],
we can solve U[ j] as

U j½ � ¼ νmax
H jj½ �V j½ �V j½ ��H jj½ ��P

i≠ jH
ji½ �V i½ �V i½ ��H ji½ �� þ σ2IN

 !
ð16Þ

where νmax(∙) denotes the dominant eigenvector when the
eigenvalues are real.
Reversely, by fixing all U[j], we can solve V[i] as

V i½ � ¼ νmax
H ii½ ��U i½ ��U i½ �H ii½ �P

j≠iH
ji½ ��U j½ ��U j½ �H ji½ � þQ0

 !
ð17Þ

where Q0 is the interference covariance matrix at the
sensor.
The interference covariance matrix at the sensor is

Q0 ¼
XK
i≠0

U 0½ ��H 0i½ �H 0i½ ��U 0½ � ð18Þ

The decoder minimizing the total leakage interference
at the sensor is

U0 ¼ νmin Q0ð Þ ð19Þ

where νmin(∙) is the least dominant eigenvector.

Fig. 4 Interference alignment in sensor. In the proposed system, the SU transceiver pair behaves like a normal interference alignment, but added
sensor node removes the transmission signals of other SUs in the interference space. Therefore, the signal of the PU can be sensed in the
remaining signal space of the sensor node
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Summarizing the process, the transmitters choose
the initial precoders randomly and receivers choose the
decoders maximizing SINR. The sensor node calculates
the interference covariance matrix and chooses the decod-
ing matrix. The transmitters choose the precoders by
maximizing SINR by considering the total interference
leakage at the sensor node. Then, the choices of decoding
matrix of the receivers are followed and this sequence of
processes continues to convergence.

2.3 Energy detection with/without interference alignment
Spectrum sensing in the proposed system stops transmis-
sion of SUs when PU is detected and performs general
MIMO-based spectrum sensing. If the sensor determines
that the PU is in an idle state, the SUs send the signal
through IA and the sensor performs IA-based spectrum
sensing that allows sensing during communication of the
SUs. Therefore, in the proposed system, MIMO-based
or IA-based spectrum sensing is selected according to
the detection result of the PU signal. Since the parameters
to be used to set thresholds for energy detection depend
on the choice of sensing method, this section focuses on
MIMO-based sensing and IA-based sensing.
If an SU does not transmit because the PU state is

determined as busy state, the hypothesis from the received
signal yi of the sensor is expressed in (20):

H0 : yi nð Þ ¼ zi nð Þ
H1 : yi nð Þ ¼ his nð Þ þ zi nð Þ;where1≤ i≤N ð20Þ

where H0 represents the hypothesis corresponding to “no
signal transmitted,” and H1 represents “signal transmitted.”
s(n) is the signal waveform, and zi(n) is a zero mean addi-
tive white Gaussian noise (AWGN). The PU is assumed to
phase shift keying (PSK) modulated signal. The channel
coefficient hi follows CN ð0; σ2

hÞ, and zi follows CN ð0; σ2nÞ;
σ2h and σ2n are the variance in channel gain and Gaussian
noise. N is the number of receiving antennas.
The test statistic for the energy detector is given by

Y ¼
XN
i¼1

Xns−1
n¼0

yi nð Þj j2 ð21Þ

where ns is the samples of spectrum sensing.
We assumed the test statistic follows a Gaussian distri-

bution under the central limit theorem. Therefore, each
pdf of (21) under H0 and H1 is given by

Y jH0 � N μ0;non−IA; σ
2
0;non−IA

� �
;Y jH1

� N μ1; non−IA; σ
2
1;non−IA

� �
ð22Þ

where μ0;non−IA ¼ Nnsσ2n, σ
2
0;non−IA ¼ Nnsσ4n, μ1;non−IA ¼ N

nsðPσ2hλm þ σ2
nÞ, σ21 ¼ NnsðPσ2hλm þ σ2nÞ2. λm is eigenvalue

of the correlation matrix, and P is transmission power
of the PU.
False alarm and detection probability for the non-IA

case are given by

Pnon−IA
f ¼ Pr Y > εnon−IAjH0f g ¼ Q εnon−IA−μ0;non−IA

σ0;non−IA

� �

Pnon−IA
d ¼ Pr Y > εnon−IAjH1f g ¼ Q εnon−IA−μ1;non−IA

σ1;non−IA

� �
ð23Þ

The hypothesis for the received signal of the spectrum
sensor produced from the decoding matrix when a SU
transmits because the PU state is determined as idle is
expressed with (24):

H0 : ~yi nð Þ ¼ ~zi nð Þ

H1 : ~yi nð Þ ¼
XMp

j¼1

~G
ij½ �
s j nð Þ þ ~zi nð Þ;where1≤ i≤N

ð24Þ

where sj(n) is the signal waveform from jth antenna of PU,

and ~ziðnÞ is an AWGN. ~G
½ij�

is the compound channel gain
between the PU transmitter and the sensor, and Mp is the
number of PU’s transmit antenna. We assumed that the
gain does not change for multiple CR frames and can be
estimated blindly while the PU is known to be present.
Each statistical pdf of (24) is given by

Y jH0; ~Hp � N μ0;IA; σ
2
0;IA

� �
;Y jH1; ~Hp

� N μ1;IA; σ
2
1;IA

� �
ð25Þ

where μ0;IA ¼ Nnsσ2n , σ
2
0;IA ¼ Nnsσ4

n , μ1;IA ¼ NnsðP~g2mσ2h
λm þ σ2nÞ, σ21;IA ¼ NnsðP~g2mσ2

hλm þ σ2nÞ
2
. ~g2m is the sum of

~G
½ij�

on j indexes.
False alarm and detection probability for the IA process

case are given by

PIA
f ¼ Pr Y > εIAjH0f g ¼ Q εIA−μ0;IA

σ0;IA

� �

PIA
d ¼ Pr Y > εIAjH1f g ¼ Q εIA−μ1;IA

σ1;IA

� � ð26Þ

For a given pair of target probabilities ðPth
d ; P

th
f Þ , the

number of required samples can be determined by

ns ¼
Q−1 Pth

f

� �
−Q−1 Pth

d

� �
ζλm~g

2
m þ 1

� �2
ζλm~g

2
m

0
@

1
A

2

=N ð27Þ
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where ζ is SNR and ~g2m ¼ 1 when this represents about
the non-IA case.

3 Control of interference and transmission
opportunity loss through Q-learning
3.1 Probabilistic estimation of interference ratio and
transmission opportunity loss ratio
In the proposed system, the sensing time and reporting
interval time must be determined to protect the PU and
to guarantee the SU transmission rate. To determine
these sensing parameters appropriately according to the
loss of PU and gain of CR system, we must be able to
predict interference with the PU and the transmission
opportunity access of the CR user as a result of the selected
sensing parameters. Most of conventional sensing time and
sensing period optimization algorithms have assumed that
the statistics of the PU activation (busy and idle). In the
proposed system, we estimate the required probabilistic
parameters without any prior knowledge of PU operations
by sensor node’s observation using IA process. The per-
formance of interference with the PU can be predicted
by the interference ratio, which means the predicted
rate at which the PU’s busy state interval is interrupted by
transmissions by CR users. The transmission performance
of the CR users can be estimated by the transmission

opportunity loss ratio, which is the idle state ratio of
the PU that is not detected by the SU, compared to the
transmission-possible interval.
Figure 5 shows the interference ratio. Figure 5a indi-

cates the operation of the PU, and Fig. 5c indicates the
operation of the SU according to the sensor node of
Fig. 5b. As shown in Fig. 5b, the sensor node operates
as IA-based sensing until the second sensing period,
detects PU in the second sensing period, and switches
to non-IA-based sensing. Finally, it confirms that the
PU is in the idle state in the fifth sensing period and
switches to IA-based sensing. Since the sensor node
instructs the SU to stop transmission after the second
sensing period by the k out of N rule, the transmission
stream of the SU overlapping with the transmission
interval of the PU in the second sensing interval inter-
feres with the PU.
The interference ratio is estimated by the following

equation:

RI ¼
P

window RI1f gP
window RI1 þ RI2f g ð28Þ

a

b

c

Fig. 5 Interference ratio. The interference ratio is the ratio between the conditional probability that the SU interferes with the PU and the PU
exists within the measurement interval
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RI1 ¼
X

SUon;D0

tsPIA H1jD0ð Þ

þ
X

SUon;D0

tsPIA H1jD1ð Þ ð29Þ

RI2 ¼
X

SUoff ;D0

tsPnon−IA H1jD0ð Þ þ
X

SUoff ;D1

tsPnon−IA H1jD1ð Þ

ð30Þ

where ts denotes the sensing time, and D0 indicates that
PU is not detected, and D1 indicates the PU is detected.
H0 and H1 represent the hypothesis of the PU’s presence.
The interference ratio is the ratio of the transmission

interval of the SU overlap with the transmission interval
of the PU over the transmission interval of the PU
within the measurement window. In (28), the numerator

is the interference probability and denominator is the
probability of PU existence. In order to estimate the
interference probability, we calculate the conditional
probabilities and sum the results of that PU is busy
from each sensing result (D0, D1) in the interval
(SUon) where the SU operates from the decision the
PU is in idle state in the previous sensing time as
show in (29). In the interval in which the SU operates,
the sensor node performs the IA-based sensing. In
order to estimate the probability of the PU busy state
(H1) in the measurement window, we compute the
conditional probabilities and sum the results of that
PU is busy for each sensing result (D0, D1) in
non-IA-based sensing intervals in which the SU oper-
ates (SUon) and the interval in which the SU is idle
(SUoff ). Therefore, the probability of PU existence in

a

b

c

Fig. 6 Transmission opportunity loss ratio. The transmission opportunity loss ratio is the ratio between the conditional probability that the SU
misses a transmission opportunity and the PU is idle within the measurement interval
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measurement window is expressed in the denominator
of (28) as the sum of (29) and (30).
Figure 6 shows the transmission opportunity loss ratio.

The PU switches to idle in the second sensing interval,
but the sensor node instructs the SUs to operate from
the third sensing interval by k out of N rule. Therefore,
a disabled term in the second sensing period is the loss
of transmission opportunity.
The transmission opportunity loss ratio of the SU is

expressed in (31):

RL ¼
P

window RL1f gP
window RL1 þ RL2f g ð31Þ

RL1 ¼
X

SUoff ;D1

tsPnon−IA H0jD1ð Þ þ
X

SUoff ;D0

tsPnon−IA H0jD0ð Þ

ð32Þ

RL2 ¼
X

SUon;D1

tsPIA H0jD1ð Þ þ
X

SUon;D0

tsPIA H0jD0ð Þ

ð33Þ
The transmission opportunity loss ratio is the ratio

of the interval that the SU does not transmit and for
the interval in which the PU is idle within the meas-
urement interval when the sensor node cannot detect

the idle state of PU. In (31), the numerator is the
probability where PU is idle when SU do not use the
vacant time and the denominator is the probability
where PU is idle in the measurement window. First,
we calculate the conditional probabilities and sum of
them that the PU is idle for each sensing results (D0,
D1) in the idle interval of SU (SUoff ) to estimate the
probability of the interval in which the SU does not
transmit despite the idle PU as shown in (32). In
order to estimate the probability of the interval in
which the PU is idle, we sum up the conditional
probabilities of the PUs idle (H0) for each of the sensing
results (D0, D1) in intervals in which the SU operates
and IA-based sensing is operated and in which the SU
is idle and performs non-IA-based sensing. The esti-
mate for the probability in the measurement window in
which the PU is idle is expressed in the denominator of
(31) as the sum of (32) and (33).
Each conditional probability from (28) to (33) can be

expressed by Baye’s rule as follows.

Pnon−IA or IA H0D0ð Þ
¼ Pnon−IA or IA D0jH0ð ÞP H0ð Þ

Pnon−IA or IA D0jH0ð ÞP H0ð Þ þ Pnon−IA or IA D0jH1ð ÞP H1ð Þ
¼ 1−P f ;non−IA or IA

� �
Poff

1−P f ;non−IA or IA
� �

Poff þ Pm;non−IA or IAPon

ð34Þ

Pnon−IA or IA H0jD1ð Þ
¼ Pnon−IA or IA D1jH0ð ÞP H0ð Þ

Pnon−IA or IA D1jH0ð ÞP H0ð Þ þ Pnon−IA or IA D1jH1ð ÞP H1ð Þ
¼ P f ;non−IA or IAPoff

P f ;non−IA or IAPoff þ Pd;non−IA or IAPon

ð35Þ

Fig. 8 Q-learning mechanism of the proposed scheme. In the proposed Q-learning system, the sensor acts as an agent and uses sensing time
and reply time as an action. In an environment where the PU operates in an alternating busy/idle state, it obtains the interference ratio and the
transmission opportunity loss ratio for the action, and uses it to change the state and calculate the reward

Fig. 7 General Q-learning mechanism. In general Q-learning
mechanism, system moves to the next state using the optimal
action in the corresponding state and selects the optimal action in
the changed state and transitions to the next state

Jang and Yoo EURASIP Journal on Wireless Communications and Networking  (2018) 2018:160 Page 12 of 24



Pnon−IA or IA H1jD0ð Þ
¼ Pnon−IA or IA D0jH1ð ÞP H1ð Þ

Pnon−IA or IA D0jH1ð ÞP H1ð Þ þ Pnon−IA or IA D0jH0ð ÞP H0ð Þ
¼ Pm; non−IA or IAPon

Pm; non−IA or IAPon þ 1−P f ; non−IA or IA
� �

Poff

ð36Þ

Pnon−IA or IA H1jD1ð Þ
¼ Pnon−IA or IA D1jH1ð ÞP H1ð Þ

Pnon−IA or IA D1jH1ð ÞP H1ð Þ þ Pnon−IA or IA D1jH0ð ÞP H0ð Þ
¼ Pd; non−IA or IAPon

Pd; non−IA or IAPon þ P f ; non−IA or IAPoff

ð37Þ

where each conditional probability can be the case of
non-IA or IA-based sensing. Pon and Poff represent
P(H1) and P(H0). They can be estimated from measured
P(D0) and P(D1), as follows:

P D0ð Þ ¼ Pnon−IA or IA D0jH0ð ÞP H0ð Þ
þ Pnon−IA or IA D0jH1ð ÞP H1ð Þ ð38Þ

P D1ð Þ ¼ Pnon−IA or IA D1jH0ð ÞP H0ð Þ
þ Pnon−IA or IA D1jH1ð ÞP H1ð Þ ð39Þ

Through the simultaneous equations, P(H0) and P(H1)
are calculated as follows.

P H0ð Þ ¼ 1−P H1ð Þ ð41Þ

As a result, we can obtain P(D0) and P(D1) from the
sensing result in the set window and obtain P(H0) and
P(H1) from these simultaneous equations and then estimate
the each conditional probability. Again, the conditional
probability can be used to track the state of the PU and the
CR system by interference ratio and transmission oppor-
tunity loss ratio for the selected sensing time and reporting
interval time. In the next section, we propose a system dy-
namically operates by Q-learning. This system uses sensing
time and reporting interval as an action. The response of
an action is state which can be represented as interference
ratio and transmission opportunity loss ratio.

3.2 Dynamic sensing parameter control using Q-learning
Q-learning is one of the off-policy techniques of
reinforcement learning based on a Markov decision
rule. It operates adaptively to the experienced environment
and allows the system to operate dynamically to suit the
desired purpose [37]. First, the object that recognizes and
learns the surrounding environment is called an agent.
The agent obtains a response from the environment after
determining the action and recognizes where the agent
belongs in the defined states. The mechanism in which
general Q-learning operates is shown in Fig. 7. st, rt,
and ait represent state, reward, and ith action at time t,
respectively. The agent recognizes the state st and selects
the action a�t which gives the maximum reward rt among
the selectable actions. The operation of Q-learning is
performed by repeating this series of processes.
As shown in Fig. 8, there is an agent to perform

decision-making and learning in the environment of the
current state. The agent performs an action, evaluates
the effect of the environment on the taken action,
obtains the reward, and acts as a series of processes in
which the state changes. In the proposed method, the
agent is the sensor, and the sensor operates by using

P H1ð Þ ¼ Pnon−IA or IA D1jH0ð ÞP D0ð Þ−Pnon−IA or IA D0jH0ð ÞP D1ð Þ
Pnon−IA or IA D1jH0ð ÞPnon−IA or IA D0jH1ð Þ−Pnon−IA or IA D0jH0ð ÞPnon−IA or IA D0jH1ð Þ ð40Þ

Table 1 Q-learning algorithm for the proposed scheme

Algorithm 1 Q-learning algorithm for the proposed scheme

1: while required packet exists

2: if time index > sensing window size

3: initialize the sensing results and obtained results

4: else

5: time index = time index +1

6: while time index < nsensingnreply

7: Determine sensing tool (with IA or without IA)

8: from the k out of N rule with N = nsensingnreply sensing results

9: end

10: Obtain P(D0), P(D1) from the sensing results

11: Calculate P(H0), P(H1) from the simultaneous equations of P(D0),P(D1)

12: Calculate RI,RL from the conditional probabilities and determine the
state

13: Select an action at based on the optimal policy from the current
state st

14: Obtain the immediate payoff R from action at

15: Observe the next state st + 1 by RI,RL

16: Update Qðst ; atÞ based upon this experience as

17: Qðst ; atÞ←ð1−αÞQðst; atÞ þ αfrt þ γ max
atþ1

Qðstþ1; atþ1Þg

18: end

19: end
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sensing time and reporting interval as an action. When
the sensor performs a specific action in the environment
of repeated PU busy/idle state, the sensor can estimate
RI and RL from the sensing results. After that, the sensor
obtains the reward by using the gain or loss function
related to RI and RL, and the overhead function of the
action. The sensor recognizes the state change composed
of the observed RI and RL and performs another action
based on it. When the PU is busy, the SUs do not trans-
mit, so the sensor performs basic MIMO-based sensing,
and when it is idle, the sensor performs IA-based sensing
because SUs transmit using IA.
In the Q-learning, the Q-table is used as a data base in

which the agent selects action in a given environment
and records information with the reward and state
changes obtained from the selected actions. The Q-table
records this information for (state, action) pairs. When
the system starts to operate in a given environment, there
is no information in the Q-table. The Q-table stores

information on how to maximize the designed reward in
the given environment in the Q-table as a series of process
that obtain the reward through the selected action and
change the state is repeated. A Q-table consists of rows
representing the states and columns representing the
actions. An action is a set of products of sensing time
and reporting interval, which can be expressed as A ¼ fa1;
a2;…; at ;…; aMg where at is fast ; artg, and t represents the
serial number of the action; ast is sensing time, and art is a
multiple of the sensing time to express the reporting inter-
val. The state is the product set of RI and RL, which can be
expressed as S ¼ fs1; s2;…; st ; ::; sNg where st is fsIt ; sLt g ,
and t means serial number of the state; sIj is interference

ratio, sLj represents loss ratio. Each action and state is

quantized as some steps because Q-learning implementa-
tion requires the input and environment to be modeled as
a finite-state system.

Fig. 9 Flow chart for reward function. We use (27) or (26) for the reward function depending on whether the interference ratio meets the
constraint. If (27) is used, the sign of the parameter changes depending on whether or not the transmission opportunity loss ratio satisfies the
restriction condition. If (26) is used, the sign of the parameter is changed according to the tendency of whether the interference ratio is
improved or deteriorated. After that, the sign of the parameter is changed according to the tendency of the transmission opportunity loss ratio is
improved or not for each divided case

Table 2 Parameters of PU activity and spectrum sensing

E[Tbusy] of PU
[ms]

E[Tidle] of PU
[ms]

Sensing
bandwidth
[MHz]

Measurement
window
[ms]

2.5 2.5 1.5 500

Table 3 Target value and experimental parameter

Target interference
ratio
ðRthI Þ

Target loss
ratio
ðRthL Þ

Parameters for reward

0.1 0.2 ρ1=3.15, ρ2=1.35, ω1=3, ω2=2,
ϕ=25, K=40, L=30
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The Q-value is updated according to (42):

Q st ; atð Þ← 1−αð ÞQ st ; atð Þ
þ α rt þ γ max

atþ1

Q stþ1; atþ1ð Þ
	 


ð42Þ

where α ∈ [0, 1] is the learning rate. If α has high value, the
system consider more for present and future experience. If
α has low value, it takes longer time to learn the environ-
ment as the stored Q-values have more weight. On the

right side of (42), rt þ γ max
atþ1

Qðstþ1; atþ1Þ is the actual

value for the action and future value. Q-learning finds the
Q-value by iteratively approximating the Q-function using
the difference between the predicted value and the actual
value as the estimation error [38]. γ ∈ [0, 1] is the discount
factor and if γ is high, the system gives a higher weight to
the Q-value of the new state by the action than the reward
of the past action. On the other hand, if γ is low, the
immediate reward is weighted and is more influenced by
the current action.
If an agent chooses an action by only the maximum

value of the Q-value, a local optimization problem occurs.
Therefore, we used the action in consideration of the
ε-greedy policy, as follows:

a ¼
argmax

~a∈A
Q s; ~að Þ; with probability 1−ε

randoma∈A; with probability ε

(
ð43Þ

where ε ∈ [0, 1] is the probability of choosing a random ac-
tion. When the random number is less than ε, the action
is selected randomly, and in the opposite case, the highest
Q-value is chosen. Table 1 shows the sequence of steps for
Q-learning in the proposed algorithm.

3.3 Reward function design
In this section, we describe the proposed reward function
of the Q-learning-based dynamic sensing time and report-
ing interval selection algorithm for the sensor. A false alarm
depends on the sensing time from fixing the required detec-
tion probability to protect the PU preferentially. The false
alarm is a parameter that seriously affects the capture of
the transmission opportunity for the SU. A long reporting
interval can increase interference with the PU due to the
sudden appearance of the PU, while ensuring the continuity
of the transmission of the SU and saving sensor power by
not sending the sensing results frequently. Therefore, in
Q-learning, action is defined as a combination of sensing
time and reporting interval, and state is defined as a com-
bination of interference ratio and loss ratio that change
through action. In addition, we designed the reward as
expressed in the flow chart of Fig. 9. It should be noted that
because the wireless environment conditions can change
dynamically and we do not assume any prior environmental
statistics, the proposed learning-based mechanism may
have a difficulty to meet the required constraints in terms

of the interference ratio threshold and secondary trans-
mission opportunity loss ratio at every time instance.
Therefore, we have relaxed the constraints in (6) not for
every time instance but long-term average. From this
point of view, the proposed reward function composed of
the multi-objective in (6) dynamically controls the sensing
and reporting parameters and satisfies the constraint
condition.
Reward is divided into two types. Considering the

interference ratio RI as a priority, (44) is used when RI is
smaller than the threshold of RI (RI < Rth

I Þ, and (45, 46)
is used in the opposite case.

r ¼ δ1ρ1 exp φ RI−Rth
I

�� ��� �
þ δ2ρ2 exp φ RL−Rth

L

�� ��� �
−K

E NsNr½ �
NsNr

þ L ð44Þ

where φ, ρ1, ρ2, and L are the constant value. ρ1, and ρ2
should be carefully selected to reduce or increase the re-
ward appropriately if R1 and RL exceed the threshold or
not; δ1 and δ2 are the signs for the first and the second
term; Rth

I and Rth
L are the threshold of interference ratio

and loss ratio; Ns and Nr are the sample numbers of sens-
ing and a multiple number of the sensing time to represent
the reporting interval. These are obtained by sampling the
sensing and reporting intervals at twice the sensing fre-
quency. The first, second, and third term of (44) is related
to fintf(RI), floss(RL), and foverhead(ts, tr) of (6), respectively.
The first term gives a positive value (δ1 = + 1) for RI

satisfying the condition (RI < Rth
I ), and the second term

gives a positive (δ2 = + 1) or negative (δ2 = − 1) value
according to whether RL is satisfied (RL < Rth

L ). The value
of ρ1 is greater than ρ2 in order to consider RI prior to RL.
The exponential function is used for more dramatic
Q-value changes in the reward terms for RI and RL when
the interference ratio and loss ratio become significantly
worse. The third term is designed to indicate that the
overhead on the system increases, as the response time
(the product of the sensing length and the multiple for the
response length) is shorter than the average response
time.
If RI does not satisfy the condition (RI < Rth

I ), we do
not consider the system overhead in order to focus on
the interference ratio satisfaction as follows:

r ¼ δ1ω1 exp ϕ Rnew
I −Rold

I

�� ��� �
þ δ2ω2 exp ϕ Rnew

L −Rold
L

�� ��� � ð45Þ

where ϕ, ω1, and ω2 are the constant values. Rnew
I and

Table 4 Parameters for Q-learning

Learning rate (α) Discount factor (γ) Random selection probability(ε)

0.5 0.5 0.3→0.1
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Rnew
L are the present values of interference ratio and loss

ratio. Rold
I and Rold

L are the previous value of interference
ratio and loss ratio. Since the interference ratio and loss
ratio could not be changed by the action, we try to
choose the action which shows a good tendency when
the interference ratio does not satisfy the constraint. The
first and second term of (44) is related to fintf(RI) and
floss(RL), respectively. The constant values should be
carefully selected to increase or reduce the reward
appropriately if tendency of interference ratio and loss
ratio is good or not.
The expression in (45, 46) is again divided based on

whether the previous value (Rold
I ) of RI of measurement

window is larger than the current value (Rnew
I ) of the

measurement window or not. The first term of (45, 46)
takes a positive value (δ1 = + 1) when RI is improved
for Rold

I > Rnew
I and has a negative value (δ1 = − 1) when

RI deteriorates for Rold
I ≤Rnew

I . Similarly with respect to
RL, ω2 has a positive value (δ2 = + 1) when RL is lower
than the threshold or is improved (RL≥Rth

L ; Rold
L > Rnew

L ),
and has a negative value (δ2 = − 1) when RL is exacerbated
RL≥Rth

L ; Rold
L ≤Rnew

L ). Using the algorithm designed in
this way, we will see that we select the sensing time and
reporting interval dynamically according to the surrounding
environment through the results of Section 4.

4 Simulation results
In this section, we first show an accurate estimation of
Pon, Poff, interference ratio, and transmission opportunity
loss ratio. Second, we compare the simulation results of
interference ratio and transmission opportunity loss ratio
at each SNR about Q-learning and the case in which the
sensing and reporting interval are fixed. We also show the
simulation results of interference ratio and transmission
opportunity loss ratio of Q-learning according to SNR
change with time. Finally, we represent the advantage
from the continuous sensing.
The simulation was performed using MATLAB. The

alternate sequence about busy and idle states of PU follows
exponential distribution. More details could be found in
[39] and for the MIMO-based sensing, antenna correlation

a

b

c

Fig. 10 Comparison between estimated and real Pon. a Measurement
time = 0.5 s. b Measurement time = 1 s. c Measurement time = 1.5 s.
We must calculate the Pon to accurately calculate the interference ratio
and the transmission opportunity loss ratio. Therefore, Pon’s estimation
must also be accurate. The average on/off cycle of the PU is 0.05 s. The
measurement time is 0.5 s in a, 1 s in b, and 1.5 s in c. For each case,
the solid line represents the estimated Pon, the dashed line represents
the actual Pon, and bar represents the estimation error. a, b, and c
indicate that the proposed method accurately estimate the real Pon. As
the measurement time becomes longer, the change of the value
decreases by the nomalization
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is 0.5 which is referred to [40]. The parameters of PU
activity and spectrum sensing are shown in Table 2.
Table 3 represents the experimental parameter for (44),
(45) and (46) in Section 3.3 and the target value for
interference ratio and loss ratio. The parameters used
in Q-learning are shown in Table 4. The parameters for
reward are selected experimentally. And we assume the
compound channel gain is 0.9.
As shown in Section 3.1, we can estimate Pon and Poff

without any assumption about the statistics of the PU as
[10, 39]. We can successfully estimate RI and RL as (27)
and (30). Figure 10 shows the results of Pon estimation for
each measurement time. We set SNR = − 5 dB, sensing
bandwidth as 1.5 MHz, the sum of the average busy/idle
time of the PU 5 ms, and the ratio of ON time is 0.5. The
average estimation error is only 0.0264, 0.0265, and 0.0264
for each of (a), (b), and (c) in Fig. 10 according to meas-
urement time. They are similar to each other. If the
measurement interval is short, it is possible to estimate
the ON state of the PU that is dynamically fluctuating,
and it can be confirmed that the variation of the value
decreases as the measurement interval becomes longer.
Figure 11 shows the estimated RI and RL using the Pon

estimation of about 0.5 s of the measurement window.
Similar to Fig. 10, we can see that the estimated RI and
RL are close to the actual values, and the average estima-
tion errors are 0.0395 and 0.0427, respectively. From this
result, it is possible to guarantee the reliability of the ef-
fect estimation from the selection of each action because
the interference ratio and transmission opportunity loss
ratio can be estimated approximately which are the re-
sponse of the actions selected by the Q-learning.
In the simulation, we evaluated the performance of the

proposal compared with fixed action (i.e., fixed sensing
time and reporting interval). The actions of Q-learning
are combinations of sensing time in the form of number
of sensing samples (ss = 200, 600, 1000, 1400) and the
reporting interval as multiples of sensing time (sr = 3, 6, 9).
For the state, we divide RI into four states (0~ 0.07, 0.07~
0.1, 0.1~ 0.2, and 0.2~), and we split RL into three states
(0~ 0.1, 0.1~ 0.2, 0.2~). The states are the combinations of
RI and RL. We set the parameters for Q-learning at α = 0.5,
γ = 0.5, and the random action choice parameter is
0.1 ≤ ε ≤ 0.3 (starts from 0.3, and the lower limit is 0.1)
using ε-greedy exploration. The value of the low limit
of ε is necessary to allow for a flexible adaptation of the
Q-table when the environment changes. The fixed case
is the combination of the sensing sample (ss = 200, 600,
1000, and 1400) and the reporting interval as multiples
of sensing time (sr = 3 and 9).
Figures 12, 13, and 14 show boxplots of RI and RL-

according to fixed cases and Q-learning at a SNR of − 6,
−9, and −12 dB, respectively. If the response time is
short, like ss200sr3 (ss = 200, sr = 3, reply length = 200×3)

and ss200sr9 (ss = 200, sr = 9), a high false alarm probability
arises because there is not enough sensing time. Although
the SU system will abandon the transmission for this rea-
son and has very low interference, the loss of transmission
opportunity increases at a low SNR (−9 and −12 dB). For
ss600sr3 and ss600sr9, the performance is good in terms of
interference ratio and loss ratio up to −9 dB, but transmis-
sion loss increases at −12 dB for the same reason. Both
ss1000sr9 and ss1400sr9 have high values in interference
ratio and loss ratio because the reporting interval itself is
long. For ss1400sr3, the interference ratio and loss ratio are
stable at all SNRs. However, it has low performance com-
pared to Q-learning on the reward side, since Q-learning
that dynamically selects actions in all environments has
better performance in terms of system load

a

b

Fig. 11 Comparison between estimated and real RI, RLa interference
ratio and b transmission opportunity loss ratio, a shows the
interference ratio and b shows the transmission opportunity loss ratio.
For each case, the solid line represents the estimated value and the
broken line represents the real value. a and b are approximate to the
real values
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(transmission power loss, continuous transmission pos-
sibility). Q-learning has superior mean and a low vari-
ance over the fixed case for all SNRs on the reward

side. From these results, it can be seen that the loss of
transmission opportunity increases in order to minimize
the interference to the PU in almost fixed cases, and both

a

b

c

Fig. 12 Interference ratio, transmission opportunity loss ratio, and reward of the fixed case and Q-learning @ − 6 dB. a Interference radio. b
Transmission opportunity loss ratio. c Reward. The performance of the interference ratio, transmission opportunity loss ratio, and reward is
compared for cases where the sensing time, and the reply time are fixed and the proposed Q-learning is used for SNR of − 6 dB. In a
representing the interference ratio and b representing the transmission loss ratio, the Q-learning operates within a stable range, but other cases
for fixed sensing time and reply time also operate within a stable range. However, in c, which indicates reward, Q-learning shows overwhelming
performance difference compared to other cases. Thus, it can be shown that the system load can be reduced by using Q-learning
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the interference to the PU and the loss of the CR system
are unsatisfactory in certain cases. On the other hand,
the Q-learning dynamically tracks the busy/idle of the

PU which are frequently change when the SNR is fixed,
satisfying the interference ratio and the transmission op-
portunity ratio within the selected range. In the reward

a

b

c

Fig. 13 Interference ratio, transmission opportunity loss ratio, and reward of the fixed case and Q-learning @ − 9 dB. a Interference radio. b
Transmission opportunity loss ratio. c Reward. The performance of the interference ratio, transmission opportunity loss ratio, and reward is
compared for cases where the sensing time and the reply time are fixed and the proposed Q-learning is used for SNR of − 9 dB. In a
representing the interference ratio and b representing the transmission loss ratio, the Q-learning operates within a stable range. For the case
where the sensing time and the reapply time are fixed, the transmission opportunity loss ratio increases for ss200sr3 and ss200sr9, and the
intereference ratio and transmission opportunity loss ratio for ss100sr9 and ss1400sr9 increase. In c indicating a reward, the Q-learning shows
overwhelming performance difference compared to other cases. Thus, it can be shown that the system load can be reduced by using Q-learning
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a

b

c

Fig. 14 Interference ratio, transmission opportunity loss ratio, and reward of the fixed case and Q-learning @ − 12 dB. a Interference radio.
b Transmission opportunity loss ratio. c Reward. The performance of the interference ratio, transmission opportunity loss ratio, and reward is compared
for cases where the sensing time and the reply time are fixed and the proposed Q-learning is used for SNR of − 12 dB. In a representing the interference
ratio and b representing the transmission loss ratio, the Q-learning operates within a stable range. For the case where the sensing time and the reapply
time are fixed, the interference ratio is low, but the transmission opportunity loss ratio increases significantly in most cases. In c indicating a reward, the
Q-learning shows overwhelming performance difference compared to other cases. Thus, it can be shown that the system load can be reduced by
using Q-learning
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aspect, it can be seen that the overhead of sensor is con-
siderably reduced because the reward is higher than the
fixed case and low variance.
Figures 15 and 16 show that Q-learning operates

adaptively according to SNR changes. In the overall
region, we can see that the interference ratio stays around
the threshold, and for the loss ratio, we can see the
phenomenon of returning to around the threshold although
it sometimes has a value of bouncing at −12 dB. Therefore,
Q-learning can select the sensing time and the reporting
interval dynamically even in the environment where the
SNR varies, so that the system can operate within the
desired range of interference ratio and transmission
opportunity loss ratio.
Figure 17 shows the actual interference ratio according

to the average primary ON time E[on] changes, and the
proposed method is compared with the general sensing
time optimization method for throughput maximization
[9] for which the data frame length is 17.5 ms (52,500
samples). For the proposed method, we implemented
two primary detection notification models (default
periodic reporting and dual transceiver). Since the con-
ventional method cannot detect the PU in the data
transmission period, the interference ratio is always lar-
ger than that of the proposed method. For the smaller
average primary ON time (i.e., the shorter primary sys-
tem activation time), the more conventional method
cannot detect primary signal and gives the more harmful
interference because the primary may appear only be-
tween consecutive sensing times. In the case of two pro-
posed notification models, the dual transceiver method
shows little better performance than that of periodic
reporting because it can make immediate stop of sec-
ondary data transmission using the dedicate narrow
band control channel.
Figure 18 shows the primary appearance detection ra-

tio for different average primary ON time E[on]. The
primary appearance detection ratio indicates whenever
primary turns on how accurately the secondary system
detects the primary appearance. In the conventional
method, for shorter E[on] case, the primary activation
time can be smaller than the sensing interval so that sec-
ondary system cannot sense the primary appearance.
The primary only can be detected when primary activa-
tion time is overlapped with the secondary sensing time.
The proposed methods always show very high (> 0.98)
primary appearance detection ratio.

5 Conclusions
In this paper, we proposed an algorithm to dynamically
select the sensing time and reporting interval in order to
adapt to the surrounding environment using Q-learning
in an IA-based CR network. We change the system to
eliminate the dependence on the PU information unlike

the conventional IA-based CR system. Therefore, we can
continuously monitor the PU by designating a sensor
dedicated to sensing. However, the remaining SUs need
to periodically receive the sensing results from the sen-
sor. In this mechanism, the optimization issue turns into
how often to receive the sensing results. We define this
as the sensing time and its multiple for reporting inter-
val, and solve this problem using Q-learning, a typical

Fig. 15 RI, RL according to SNR change. Figure 15 shows the change
in interference ratio and transmission opportunity loss ratio when
SNR changes over time. Even when the environment changes, Q-
learning uses a Q-table to find the state of the interference ratio and
the transmission opportunity loss ratio and uses the appropriate
action to maintain a stable system. At low SNRs, the transmission
opportunity loss ratio increases, but it can be confirmed that it
returns to a stable range

Fig. 16 RI, RL according to SNR change. Figure 16 shows the change
in interference ratio and transmission opportunity loss ratio when
SNR changes over time. Even when the environment changes, Q-
learning uses a Q-table to find the state of the interference ratio and
the transmission opportunity loss ratio and uses the appropriate
action to maintain a stable system. At low SNRs, the transmission
opportunity loss ratio increases, but it can be confirmed that it
returns to a stable range
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reinforcement learning algorithm. We assigned the ac-
tion of Q-learning as the set of products from sensing
time and multiple of that. We designate state as the set
of products of the interference ratio and transmission
opportunity loss ratio. We propose a method to predict
the interference ratio and loss ratio without any assump-
tions about the operation of the PU and confirm that it
is close to the actual interference ratio and loss ratio.
We designed the reward considering the interference ra-
tio, the loss ratio, and the load on the system and com-
pared it with the fixed case for each SNR through
simulation. In addition, as the SNR changes, we can con-
firm that the system operates dynamically and operates
stably. Furthermore, we also assure that benefit of the
proposal since this system can sense the channel
continuously.

6 Methods/experimental
The purpose of this study is to minimize the interference
to the primary user and to keep the monitoring of pri-
mary users by continuously sensing without alternating
between sensing and data transmission. For this purpose,
the IA-based cognitive radio system performs the
spectrum sensing by assigning a secondary user as a sen-
sor. In this paper, we propose a precoding and decoding

method for this system, and propose a sensing method
for each case when the secondary user transmit the data
and does not transmit according to the existence of pri-
mary user. Since the role of the spectrum sensing is lim-
ited to the sensor node, it is necessary to determine the
period for other secondary user to receive the sensing
result from the sensor and the sensing time. Those are
selected by the Q-learning. Q-learning is a representative
learning algorithm that allows the agent to identify the
state of the agent and to take appropriate action by iden-
tifying the surrounding information. In the proposed
system, the state of the agent (CH) is defined as the
combination of the interference ratio of the PU and
transmission opportunity loss ratio of the SU. In this
paper, we propose a method to calculate the interference
ratio and the transmission opportunity loss ratio using
the statistical characteristics of the PU obtained by con-
tinuous sensing. The action of the agent is the combin-
ation of a sensing time and period for reporting the
sensing result. The time-dependent mechanical relation-
ship is stored in the Q-table when the interference ratio
and the transmission opportunity loss ratio are deter-
mined according to the selected action (sensing time
and sensing result). The Q-learning uses the information
stored in the Q-table to select the most appropriate ac-
tion for a given state at each time.
Experimental results in this paper had performed

using MATLAB R2015b on Intel® Core i7 3.4 GHz sys-
tem. The exponential random function to generate the

Fig. 17 Interference ratio according to E[on] ratio. Compares the
actual interference ratio according to the ratio of E[on] with the
proposed method and the general sensing optimization method. If
the sensing and transmission intervals are alternating, there is no
way to recognize the PU during data transmission. Therefore, even if
the idle is detected in the sensing interval, the interference ratio is
high because the PU occurs in the data transmission interval. As the
E[on] increases, the probability of the PU of the sensing interval
continuing to the data transmission interval is high and the
interference ratio decreases. Both proposed methods considerably
lower the interference ratio than the conventional method, and the
second method shows a lower interference ratio because the data
transmission is immediately stopped using the narrow band as soon
as the PU is detected

Fig. 18 PU existence count ratio according to E[on]. Shows the
detection ratio of the number of PU appearances according to the
ratio of E[on]. The proposed method has a high value in all regions
because it continuously sense the channel. However, the
conventional method cannot detect if the PU appears only in the
data transmission interval because the sensing and transmission
intervals are alternately performed. The conventional method
increases the PU existence count ratio because E[on] increases the
probability that the sensing interval overlaps with the PU
busy interval

Jang and Yoo EURASIP Journal on Wireless Communications and Networking  (2018) 2018:160 Page 22 of 24



PU over time and Q-table matrix for Q-learning can be
made by constructing appropriate MATLAB code.

7 Appendix
According to Bezout’s theorem, Ne ≤Nv must be satis-
fied, where Ne is the total number of equations, and Nv

is the total number of variables. Considering the condi-
tions in (11), (12), (13), and (14), Ne and Nv can be ob-
tained as follows:

Ne ¼
X

j≠0; j∈K

d 0½ �d j½ � þ
X

i; j≠0;i; j∈K

d i½ �d j½ �

¼ K þ K K−1ð Þ½ �d2 ð46Þ

Nv ¼ d 0½ � N−d 0½ �
� �

þ
XK
k¼1

d k½ � M−d k½ �
� �

þ d k½ � N−d k½ �
� �h i

¼ d N−dð Þ þ Kd M þ N−2dð Þ
ð47Þ

where the number of desired streams is assumed to be
the same for simple representation.
Then, the DoF condition is expressed by (48):

d≤
N

K þ 1
þ KM

K þ 1ð Þ2 ð48Þ

If we generalize this to P sensors, we can obtain (49)
for Ne and Nv.

Ne ¼ PK þ K K−1ð Þ½ �d2;Nv

¼ Pd N−dð Þ þ Kd M þ N−2dð Þ ð49Þ

The DoF condition is expressed by (50):

d≤
N

K þ 1
þ KM

P þ Kð Þ K þ 1ð Þ ð50Þ

Therefore, in the network environment in which (48)
or (50) are guaranteed, the sensor node can remove the
interference to the signals of other SU and sense the PU
signal.
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