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Abstract

Multivariate signature belongs to Multivariate-Quadratic-Equations Public Key Cryptography (MPKC), which is secure
to quantum computer attacks. Compared with RSA and ECC, it is required to speed up multivariate signature
implementations. A high-speed hardware architecture for signature generations of a multivariate scheme is
proposed in this paper. The main computations of signature generations of multivariate schemes are
additions, multiplications, inversions, and solving systems of linear equations (LSEs) in a finite field. Thus,
we improve the finite field multiplications via using composite field expression and design a finite field
inversion via using binary trees. Besides, we improve solving LSEs in a finite field based on a variant
algorithm of Gauss-Jordan elimination and use the XOR gates to compute additions. We implement the
high-speed hardware architecture based on the above improvements on an Altera Stratix Field-Programmable Gate
Array (FPGA), which shows that it takes only 90 clock cycles and 0.9 μs to generate a multivariate signature. The
comparison shows that the hardware architecture is much faster than other implementations.

Keywords: Cryptographic system, Multivariate-Quadratic-Equations Public Key Cryptography (MPKC), Multivariate
signature, Field-Programmable Gate Array (FPGA)

1 Introduction
Quantum technology has developed rapidly in recent
years. Quantum computer is in a position to attack RSA
[1], ECC [2], and other signature algorithms adopted by
many chips due to the algorithm by Peter Shor [3].
Therefore, chip security is facing severe threats.
Fortunately, there are a few post-quantum candidates

for signature chips, in which multivariate signature is in-
cluded [4]. Multivariate signature belongs to Multivari-
ate Quadratic Equations Public Key Cryptography
(MPKC), which is secure to quantum computer attacks
and general computer attacks [5, 6]. MPKC is first pro-
posed by Matsumoto and Imai in the 1980s. During the
past 30 years, various schemes of MPKC have been pro-
posed [7–32], which includes Rainbow [28], Unbalanced
Oil-Vinegar (UOV) [29], and Tame Transformation Sig-
nature (TTS) [30, 31]. Software and hardware imple-
mentations of multivariate signature schemes have been
one of the topics of many researchers [33–40]. enTTS

belongs to the triangular family, which can be viewed as
extensions of Tame Transformation Method (TTM)
Among the existing enTTS schemes, enTTS(20,28) is
believed to be one of the fastest signature schemes,
which works with 20 B hashes and 28 B signatures.
Compared with the implementations of other public key
cryptosystems, e.g., RSA and ECC, we need to speed up
multivariate signature generations.
Some previous works of efficient implementations of

multivariate signature schemes are as follows:
The work in [33] proposed a fast implementation of

SFlash;
The work in [34] presented an efficient public key gen-

eration for multivariate cryptosystems;
In [35], a minimized PKC of multivariate schemes on

low-resource embedded systems was proposed;
In [36], an efficient implementation of multivariate

quadratic systems was presented;
A fast implementation of Rainbow signature gener-

ation was proposed in [37];
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A high-speed hardware architecture based on Rainbow
signature on Field-Programmable Gate Arrays (FPGAs)
was proposed in [38];
For low area design, a multivariate signature FPGA

processor was proposed in [39];
The work of [40] was a time-area optimized design,

which showed that multivariate cryptosystems are more
efficient than ECC.
Among such multivariate signature schemes, enTTS is

a Tame-like multivariate public key cryptosystem [32].
Hardware implementations of TTS (including enTTS)
signature are mainly proposed in [31, 35, 36, 39, 40].
Most of these implementations are focusing on area op-
timizations. The main computations during generations
of enTTS signature are addition, multiplication, inver-
sion, and solving Systems of Linear Equations (LSEs) in
a finite field.
Thus, the main contributions of this paper are as fol-

lows. We improve the finite field multiplications via
using composite field expression and design a finite field
inversion based on binary trees described in [41]. Be-
sides, we improve solving LSEs in a finite field based on
the algorithm of Gauss-Jordan elimination and use the
XOR gates to compute additions.
We implement the high-speed hardware architecture

based on the above improvements on an Altera Stratix
FPGA. The comparison shows that the hardware archi-
tecture is much faster than other implementations of
public key cryptosystems.
We organize the rest of this paper as follows: the algo-

rithm of multivariate scheme is introduced in Section 2;
the high-speed hardware architecture for multivariate
signature generations is given in Section 3; implementa-
tion results of the high-speed hardware architecture on
FPGAs and comparisons with related cryptosystems are
given in Section 4; Conclusions are summarized in Sec-
tion 5.

2 Method
This study originates from a need to speed up signature
generations of multivariate scheme, since the efficiency
of implementations should be improved as a quantum-
resistance cryptosystems. Specifically, we propose a
high-speed hardware architecture for multivariate
scheme through improving finite field multiplications
based on composite field expression, finite field inver-
sions based on binary trees and solving LSEs based on
the algorithm of Gauss-Jordan elimination.

We implement the high-speed hardware architecture
based on the above improvements on an Altera Stratix
FPGA and the comparison shows that the hardware
architecture is much faster than other implementations.
The multivariate scheme, enTTS is employed to the

architecture for hardware implementations of signature
generations in a finite field. enTTS belongs to the tri-
angular family, which can be viewed as extensions of
Tame Transformation Method (TTM). enTTS is de-
signed with a higher security level than TTS. We illus-
trate enTTS parameters in Table 1.
We use GF((24)2) for implementation of enTTS, which

is a composite field of GF(256). We suppose that y
denotes the message (20 B) of multivariate scheme and
y0, y1, …, y19 denote each byte from the message, where
y0, y1, …, y19 are elements in GF((24)2). We suppose that
x denotes the signature (28 B) and x0, x1, …, x27 denote
each byte of the signature, where x0, x1, …, x27 are
elements in GF((24)2).
The construction of this signature scheme uses affine

transformation L1, central map transformation F, and af-
fine transformation L2.
In order to sign a message, i.e., y(y0, y1,…, y19), it is re-

quired to compute several steps for the following
equation:

F°L2 x0; x1;…; x27ð Þ ¼ L−11 y0; y1;…; y19ð Þ:

First, the following equation is required to solve:

y y0; y1;…; y19ð Þ ¼ L−11 y0; y1;…; y19ð Þ:

L−11 is an invertible affine transformation with the fol-
lowing form:

y ¼ Ayþ B:

A is a matrix with the size of 20 × 20, part of private
keys of enTTS;
B is a vector with the size of 20, part of private keys of

enTTS.
Then, yðy0; y1;…; y19Þ is the result of affine transform-

ation L1, where y0; y1;…; y19 are elements in GF((24)2).
Second, the following equation is required to solve:

x x0; x1;…; x27ð Þ ¼ F−1 y0; y1;…; y19ð Þ:

The construction of central map transformation de-
pends on a map with the following representation.

Table 1 Multivariate scheme parameters

Signature scheme Finite field Message Signature Central map transformation L1
transformation

L2
transformation

enTTS
(20,28)

GF((24)2) y0, y1, …, y19 x0, x1, …, x27 Fðx0; x1;…; x27Þ ¼
ð f 0; f 1;…; f 19Þ:

y ¼ Ay þ B x ¼ Cx þ D
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F x0; x1;…; x27ð Þ ¼ f 0; f 1;…; f 19ð Þ:
We suppose that xðx0; x1;…; x27Þ denote the result of

central map transformation F, where x0; x1;…; x27 are el-
ements in GF((24)2). MQ polynomials f(f0, f1,…, f19) are
defined by the following equations:

f i−8 ¼ xi þ
X7

j¼1
pijx jx8þ iþ jð Þ mod 9ð Þ; i ¼ 8; 9;…; 16;

f 9 ¼ x17 þ p17;1x1x6 þ p17;2x2x5 þ p17;3x3x4
þ p17;4x9x16 þ p17;5x10x15 þ p17;6x11x14
þ p17;7x12x13;

f 10 ¼ x18 þ p18;1x2x7 þ p18;2x3x6 þ p18;3x4x5
þ p18;4x10x17 þ p18;5x11x16 þ p18;6x12x15
þ p18;7x13x14;

f i−8 ¼ xi þ pi;0xi−11xi−9 þ
Xi

j¼19
pi; j−18x2 i− jð Þx j

þ
X27

j¼iþ1
pi; j−18xi− jþ19x j; i ¼ 19; 20;…; 27;

pij are coefficients, part of private key.
The MQ polynomials

y y0; y1;…; y19ð Þ ¼ f f 0; f 2;…; f 19ð Þ
can be divided into three groups:

f i j i ¼ 0; 1;…; 8
f i j i ¼ 9; 10
f i j i ¼ 11; 12;…; 19:

Similarly, xðx0; x1;…; x27Þ are divided into four groups:

xi j i ¼ 0; 1;…; 7
xi j i ¼ 8; 9;…; 16
xi j i ¼ 17; 18
xi j i ¼ 19; 20;…; 27:

The first group variables of x, i.e., x0; x1;…; x7 are ran-
domly chosen and then the first group polynomials of fi,
i.e., f0, f1, …, f8 are evaluated.
Then, the second group variables of x are x8; x9;…; x16

, and we solve the LSEs on such variables.
Next, we evaluate the second group polynomials of fi,

i.e., f9, f10 and solve the third group variables of x , i.e.,
x17; x18.
Then, the third group polynomials of fi, i.e., f11, f12, …,

f19 are evaluated and we solve the LSEs on such variables
of the fourth group variables of x, i.e., x19; x20;…; x27.
After that, the result of central map transformation F,

i.e., xðx0; x1;…; x27Þ is computed.
Last, we solve the following equations based on the

values of x19; x20;…; x27.

x x0; x1;…; x27ð Þ ¼ L2
−1 x0; x1;…; x27ð Þ:

L−12 is an invertible affine transformation

x ¼ Cxþ D:

C is a matrix with the size of 28 × 28, part of private
keys of enTTS;
D is a vector with the size of 28, part of private keys of

enTTS.
Finally, we have computed the signature of y(y0, y1,…,

y19), which is x(x0, x1,…, x27).

3 A high-speed hardware architecture for
multivariate signature
3.1 Overview of the hardware architecture
We choose enTTS (20,28) scheme described in Section
2 for hardware implementations in a composite field
GF((24)2), where the size of message (hash value) is 20 B
and the signature size is 28 B.
We illustrate the generation of a multivariate signature

in Fig. 1. It can be observed from Fig. 1 that the signa-
ture generations of multivariate scheme include seven
steps:
(1) Affine transformation L1.
L−11 is an invertible affine transformation with the fol-

lowing form.

y ¼ Ayþ B:

A is a matrix with the size of 20 × 20.
B is a vector with the size of 20.
It can be observed that L−11 is performed via matrix-

vector multiplications and vector additions, where A and
B are parts of private keys.
(2) Polynomial evaluation (first part F)
First, we randomly choose the variables of x0; x1;…; x7,

i.e., the first group variables of x.
Second, we evaluate the polynomials of f0, f1, …, f8, i.e.,

the first group polynomials of fi.
After that, this part of polynomial evaluation is per-

formed via using additions and multiplications in a finite
field.
(3) Solving (LSEs) in a finite field
During the signature generations of multivariate

scheme, it is required to perform solving LSEs twice
with the same matrix of size 9 × 9.
First, for the second group variables of x, i.e., x8; x9;…;

x16, we solve the LSEs on such variables.
Second, for the fourth group variables of x, i.e., x19; x20

;…; x27, we solve the LSEs on such variables.
During this step, solving LSEs is performed via using a

variant Gauss-Jordan elimination in a finite field.
(4) Polynomial evaluation (second part F)
The third group variables of x , i.e., x17; x18 are solved

by evaluating the second group polynomials of fi, i.e., f9,
f10.
This part of polynomial evaluation is performed via

using additions and multiplications in a finite field;
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(5) Polynomial evaluation (third part F)
We evaluate the third group polynomials of fi, i.e., f11,

f12, …, f19.
This part of polynomial evaluation is performed via

using additions and multiplications in a finite field.
(6) Affine transformation L2: L−12 is an affine trans-

formation with the following form:

x ¼ Cxþ D:

C: is a matrix with the size of 28 × 28.
D is a vector with the size of 28.
It can be observed that L−12 is performed via matrix-

vector multiplications and vector additions, where C and
D are parts of private keys.
Our hardware architecture for the signature gener-

ation of multivariate scheme is depicted in Fig. 2. It can
be observed from Fig. 2 that the hardware architecture
consists of adders, multipliers, inverter, parallel Gauss-
Jordan eliminator, polynomial evaluation, matrix vector
multiplication, vector addition, polynomial evaluation,
and processor components in a finite field, where only
the first four components are computing components
and the others are logical components.

3.2 Performance evaluation of irreducible polynomial in
composite fields
Irreducible polynomials in composite fields are involved
in the additions, multiplications, and other operations
during signature generations. Thus, the performance
evaluation of the irreducible polynomial in the compos-
ite field GF((24)2) is very critical for the implementation
of high-speed hardware architecture of multivariate
scheme.
We suppose that q(x) denotes the irreducible polyno-

mial in GF((24)2), and it has the following form.

q xð Þ ¼ x2 þ q1xþ q0:

p1, p0 are elements in GF(24).
We suppose that p(x) denotes the irreducible polyno-

mial in the subfield of GF((24)2), i.e., GF(24), and it has
the following form:

p xð Þ ¼ x4 þ p3x
3 þ p2x

2 þ p1xþ 1:

p3, p2, p1 are bits, i.e., 0 or 1.
The performance of the multiplications and inversions

has been evaluated based on such irreducible polyno-
mials, respectively. q(x) = x2 + x + 9 is chosen as the
irreducible polynomials in GF((24)2) and p(x) = x4 + x + 1
is chosen as the irreducible polynomials in the subfield
GF(24).

3.3 Finite field adder
Let a(x) = ahx + al and b(x) = bhx + bl be the elements in
GF((24)2), where ah, al, bh, and bl are elements in GF(24).
Then the addition of a(x) and b(x) can be expressed as

a xð Þ þ b xð Þ ¼
ahxþ alð Þ þ bhxþ blð Þ ¼
ah þ bhð Þxþ al þ bl:

Then, we suppose that ch, cl are elements in GF(24),
and we can compute their values via the following
expressions:

ch ¼ ah þ bh;

cl ¼ al þ bl:

Thus, c(x) = chx + cl is the addition result of a(x) and
b(x).

3.4 Finite field multiplier
Let a(x) = ahx + al and b(x) = bhx + bl be the elements in
GF((24)2), where ah, al, bh, and bl are elements in GF(24).
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Invertible Affine
Transformation 
L1(Matrix Size 

20*20)

Invertible Affine
Transformation 
L2(Matrix Size 

28*28)

1
Polynomial 
Evaluation 

(First Part  F)

Solving System 
of Linear 
Equations

(Matrix Size9*9)

Polynomial 
Evaluation 

(Second Part  F)

Signature
(28 Bytes)

3

4

6

8

2

7

Polynomial 
Evaluation  

(Third Part  F)
5

Fig. 1 The generation process of multivariate signatures
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Then the multiplication of a(x) and b(x) can be
expressed as

a xð Þ � b xð Þ ¼
ahxþ alð Þ bhxþ blð Þ ¼

ahbhx
2 þ ahbl þ albhð Þxþ albl

� �
modq xð Þ:

We perform the polynomial multiplication and reduc-
tion module the irreducible polynomial q(x) = x2 + x + 9.
We suppose that ch and cl are elements in GF(24), and
we can compute their values via the following
expressions:

ch ¼ ah þ alð Þ bh þ blð Þ þ albl;

cl ¼ albl þ 9ahbh:

It can be observed that the critical path of multiplica-
tion of two elements in GF((24)2) includes one
multiplication, one constant multiplication, and one
addition in GF(24).

p(x) is the irreducible polynomial in GF(24). Let aðxÞ
¼ P3

i¼0 aix
i and bðxÞ ¼ P3

i¼0 bix
i be elements in GF(24),

ai, bi ∈GF(2), and we suppose that

c xð Þ ¼ a xð Þ � b xð Þ mod p xð Þð Þð Þ ¼
X3

i¼0

cix
i

is the multiplication result of two elements, where ci ∈
GF(2).
First, we compute vij for i = 0, 1, …, 6and j = 0, 1, 2, 3

according to the following equation:

0 1 0 1

0 1

1

1110 1111

GF(24)

0 1 0 10 10 1

1 0 1

0 1

0

0 1 0 10 1

1100 11011010 10111000 10010110 01110100 01010010 0011

Fig. 3 Multiplicative inversion based on binary trees

Matrix Vector 
Multiplication

clk
start
end

Multipliers

InverterParallel Gauss-Jordan 
Eliminator (9*9)

Private 
Keys

Message

Signature

Vector 
Addition

Processor

Adders

Polynomial 
Evaluation

Fig. 2 Hardware architecture of multivariate schemes
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xi modp xð Þ ¼
X3

j¼0

vijx
j:

Next, we compute Sifor i = 0, 1, …, 6 by the following
equation:

Si ¼
X

jþk¼i

a jbk :

After that, we compute ci for i = 0, 1, 2, 3 by the fol-
lowing equation:

ci ¼
X6

j¼0

vjiS j:

Finally, the multiplication result is

c xð Þ ¼
X3

i¼0

cix
i:

3.5 Multiplicative inverter
Let a(x) = ahx + aland b(x) = bhx + blbe the elements in
GF((24)2), where ah, al, bh, and blare elements in GF(24).
We suppose that b(x) is the inverse of a(x). Then,

bh ¼ ah þ alð Þ−1ahbl;
bl ¼ al þ 9a2h al þ ahð Þ−1� �−1

:

We use two binary trees for inversions in sub-
field GF(24), which are illustrated as follows:
Each binary tree has four layers in GF(24);
Root nodes are on the third layer;
Each node has at most two child nodes, left node rep-

resents value of zero and right node represents value of
one;

E1,1 E1,2 E1,9

N1

I E1,10

N2 N9 N10

E2,1 E2,2 E2,9 E2,10

E9,1 E9,2 E9,9 E9,10

...

...

...

...

... ... ... ...

Fig. 5 Parallel Gauss-Jordan eliminator with matrix size 9 × 9

n7

n6

n5

1110 1111

GF(24)

n8

n3

n2

n1

n4

1100 11011010 10111000 10010110 01110100 01010010 0011

Fig. 4 An example of inversion
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Each child must either be a leaf or the root of another
tree, each node has a father node when it is not a root
node;
Each element in a finite field (except (0000)2 and

(0001)2) has a unique traversal from root to leaf due to
the fact that (0000)2 has no inverse and the inverse of
(0001)2 is itself;
Each leaf is linked to another leaf.
Figure 3 depicts the architecture for inversions in

GF(24).
Example 1. It can be observed from Fig. 4, if it is

required to inverse the element (0100)2, we search
the binary tree from root nodes to leaf nodes, the
path from n1 to n4 represents (0100)2. n4 is linked
with n8, thus the path from n5 to n8 represents the
inverse of (0100)2, i.e., (1001)2.

3.6 Parallel Gauss-Jordan eliminator
During central map transformation in signature genera-
tions, it is required to solve LSEs in a finite field twice
with the same matrix size 9 × 9.
We adopt a parallel Gauss-Jordan elimination, which

is depicted in Fig. 5. It can solve a LSE with matrix size
of 9 × 9. The parallel Gauss-Jordan eliminator solves
systems of linear equations with 9 iterations, which is
enhanced in the following directions:
First, exclusive adders are used in the parallel Gauss-

Jordan elimination based on the design described in
Section 3.3;
Second, exclusive multipliers are used in the parallel

Gauss-Jordan elimination based on the design described
in Section 3.4;
Third, exclusive inverters are used in the parallel

Gauss-Jordan elimination based on the design described
in Section 3.5.
It can be observed from Fig. 4, I, Nl, and Ekl are three

kinds of cells in the architecture, where k = 1, 2, …, 9
and l = 1, 2, …, 10.
The I cell is used for multiplicative inversion in a finite

field, which includes an exclusive inverter described in
Section 3.5.
The Nl cells are used for normalization of finite field

elements, which includes exclusive multipliers described
in Section 3.4.
The Ekl cells are used for elimination of finite field ele-

ments, which includes exclusive adders and multipliers
described in Sections 3.3 and 3.4.

In conclusion, the architecture includes one I cell, 9 Nl

cells, and 90 Elk cells and solves the LSEs within 9 clock
cycles with the matrix size of 9 × 9.

4 Results
In this section, we investigate the performance of the
high-speed hardware architecture for multivariate
scheme through hardware implementations on an Altera
Stratix FPGA. The implementation is programmed in
the hardware programming language, Verilog.
The implementation of multivariate signature genera-

tions is illustrated in Table 2, where the executing time
for a signature generation of enTTS is 0.9 μs, the time
frequency is 100 MHz, and the clock cycle is 90. It
should be noted that, all of the results from implementa-
tions mentioned are extracted after place and route on
the Altera Stratix FPGA.
We compare the high-speed hardware architecture

with the related implementations of multivariate
schemes and other public key schemes, which is
depicted in Table 3. The ECC cryptosystems proposed in
[2] are efficient implementations and Rainbow crypto-
systems proposed in [38] are fast implementations.
It can be observed from Table 3 that the high-speed

hardware architecture is much faster than the related
implementations of public key cryptosystems.

5 Conclusions
We propose a high-speed cryptographic architecture for
hardware implementation of multivariate signature
generations in this paper. The main computations of sig-
nature generations of multivariate scheme are multipli-
cations, inversions, and solving LSEs in a finite field.
Thus, we improve the finite field multiplications via
using composite field expression and design a finite field
inversion via using binary trees. Besides, we improve
solving LSEs in a finite field based on the variant algo-
rithm of Gauss-Jordan elimination.

Table 2 FPGA implementation of hardware architecture for multivariate signature generation

Signature scheme Message size Signature size L1 matrix L2 matrix Systems of linear equations Clock cycle Time frequency Executing time

enTTS(20,28) 20 B 28 B 20 × 20 28 × 28 9 × 9 90 100 MHz 0.9 μs

Table 3 Comparison on public key cryptographic systems

Scheme Executing Time (μs) Clock cycle

ECC [2] 41 4100

Rainbow [38] 7.9 198

UOV [40] 5.85 1170

amTTS [40] 2.438 195

enTTS [40] 2.025 162

enTTS (this paper) 0.9 90

Yi and Nie EURASIP Journal on Wireless Communications and Networking  (2018) 2018:93 Page 7 of 9



We implement the high-speed hardware architecture
based on the above improvements on an Altera Stra-
tix FPGA device. The implementation results show
that the executing time for a signature generation of
multivariate scheme is 0.9 μs, the time frequency is
100 MHz, and the clock cycle is 90. The comparison
shows that the hardware architecture is much faster
than other implementations.
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