Cheng et al. EURASIP Journal on Wireless Communications and Networking

(2018) 2018:61
https://doi.org/10.1186/513638-018-1069-6

EURASIP Journal on Wireless
Communications and Networking

RESEARCH Open Access

Data quality analysis and cleaning strategy @ oo
for wireless sensor networks

Hongju Cheng'*'®, Danyang Feng', Xiaobin Shi' and Chongcheng Chen?

Abstract

for the same cleaning cost.

The quality of data in wireless sensor networks has a significant impact on decision support, and data cleaning is an
effective way to improve data quality. However, if the data cleaning strategies are not correctly designed, it might
result in an unsatisfactory cleaning effect with increased system cleaning costs. Initially, data quality evaluation indicators
and their measurement methods in wireless sensor networks were introduced. We then explored the impact of
relationship between different indicators which are used in the quality assessment. Finally, data cleaning strategy
for wireless sensor networks based on the relationship between data quality indicators was proposed by comparing
and analyzing data cleaning schemes with different orders. The experimental results showed that the proposed data
cleaning strategy can effectively improve data availability and have a better cleaning effect in wireless sensor networks
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1 Introduction

In wireless sensor networks (WSNs), many errors occur
among the sensor data due to characteristics, such as
low-cost sensors, limited resources, and link variation
[1]. These errors appear in different modes, for example,
the data loss or anomalies caused by hardware, the data
failure due to transmission delays, and the sampling
jitter [2] caused by the node task conflicts. The dataset
collected by the sink node may simultaneously result in
these aforementioned errors.

The data-centric feature is becoming increasingly
prominent with wireless sensor networks that are widely
deployed in the real world. Data is the bridge between
the network and the physical world, and the quality of
data has an important impact on the application.
However, the dataset is not reliable due to numerous
data errors in the network. It is necessary to improve the
data quality to support various applications [3].

There are two main aspects of data management in
wireless sensor networks, data quality assessment and
data cleaning technology. The current mainstream oper-
ation is to decompose the data quality into specific data
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quality indicators [4] such as accuracy, timeliness, com-
pleteness, and consistency [5]. There are dozens of met-
rics currently used to assess the quality of sensory data,
but the search for a common and valid data quality
assessment framework is still ongoing. Data cleaning
aims at how to detect and eliminate data errors origi-
nated from the initial data [6]. The current data cleaning
strategies generally deal with repeated object detection,
outlier value detection, and missing data processing.
Duplicate object detection finds whether there is a data
duplication or inconsistency, or other issue based on the
data volume and consistency indicators. Abnormal data
detection aims at identifying and correcting the abnor-
mal data. Elimination of sample jittering is mainly used
for the time-related indicators, while missing data pro-
cessing for data integrity indicators.

There are relations among different quality indicators
in data cleaning. Fan et al. [7] shows that data quality in-
dicators are not completely isolated. Although the data
cleaning strategy might be designed for a given indicator,
it may influence another indicator at the same time. For
example, the cleaning of missing data mending may lead
to uncertain changes in the accuracy measurement of
the data when improving the integrity, due to the fact
that the related cleaning technologies cannot guarantee
data correctness [8]. For abnormal data correction, the
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data correctness can be improved without changing the
measurement of data integrity indicators. However, the
current research works are less concerned with the im-
pact of the relationship between various quality indica-
tors, and systematic studies on the relationship between
quality indicators in wireless sensor networks are still an
interesting issue.

When cleaning the dataset with different problems
mentioned in the first paragraph, the unsuitable cleaning
sequence might not obtain the expected effect. At the
same time, repeated and poor cleaning will reduce the
cleaning efficiency. For example, data cleaning which
aims at improving the accuracy may result in lower data-
set correctness due to the abnormality of repaired data,
and finally, the correct cleaning may have to be repeated.
Therefore, a proper data cleaning strategy is particularly
important to improve the cleaning efficiency and clean-
ing effect in wireless sensor networks. At present, the
issue of data cleaning instruction solutions for informa-
tion system databases has been studied [8]. This paper
studies the impact of relationship between different indi-
cators on the quality assessment during data cleaning.
By comparing and analyzing data cleaning solutions in
different orders, a cleaning strategy based on the rela-
tionship between data quality indicators is proposed,
which can effectively improve the cleaning efficiency.
The main contributions of this paper are as follows:

(1). We introduce four indicators for the data quality
assessment: amount of data, correctness,
completeness, and time correlation index measure.
We also provide detailed measurement for the
relationship between different indicators.

(2). By utilizing the relationship among different
indicators, we study the final result of different order
of cleaning strategy by theoretical analysis.

(3). An efficient data cleaning strategy is proposed to
solve the multiple mixed errors in wireless sensor
networks, and its effect is verified by experiments.

The paper is organized as follows. In Section 2, we
present the related works. Section 3 describes the system
model and the problem formulation. In Section 4, we de-
scribe the measurement of quality indicators. In Section 5,
we introduce the method including the relationship
between indicators and the proposed cleaning strategy.
Section 6 presents simulation results, and Section 7 is
conclusion.

2 Related works

There are a large number of researches on data quality or
data assessment. Data quality is usually divided into differ-
ent indicators, i.e., accuracy, completeness, and timeliness
[4]. In order to avoid the “dirty” data, Klein et al. [5]
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propose five measures to evaluate the quality of sensor
data flow, namely, accuracy, credibility, integrity, data vol-
ume, and timeliness. A flexible model that presents data
quality dissemination and processing is used to capture,
process, and deliver quality features and provide corre-
sponding business tasks. Li et al. [6] define the metrics
and observe real-world data by the use of three commonly
used indicators: timeliness, availability, and effectiveness.
The definition of these indicators ensures that their pa-
rameters are interpretable and are obtained by analyzing
historical data.

Currently, there are a lot of available works regarding
data cleaning. Ghorbel et al. [9] propose a method of
detecting outliers by using Mahalanobis distance based
on kernel principal component analysis (KPCA). KPCA
calculates the mappings of data points and maps the
data to another feature space, thus separates the excep-
tion points from the normal data distribution patterns.
Experiments show that KPCA performs well in detecting
abnormal values and can obtain the abnormal values
quickly and effectively. Zhuang et al. [10] propose a
method of clearing the network outlier values. It is based
on the correction of outlier values of wavelet and
distance-based DTW (dynamic time warp) outlier. The
cleaning process is completed during the multi-hop data
forwarding process and the neighbor relationship in the
hop-based routing algorithm. Experiments show that
this method can clean the abnormal sensing data.

Hamrani et al. [11] use the radial basis function as the
basic interpolation function to carry out the data restor-
ation in WSN. Li et al. [12] propose a kd-tree based
K-nearest neighbor (KNN) data restoration algorithm
that uses weighted variance and weighted Euclidean dis-
tance to construct a binary search tree for k-dimensional
non-missing data. The size of the weight is inversely
proportional to the amount of data loss of the indicator
and is proportional to the variance of the indicator. For
time-dependent sampling jitter, Rahm et al. [13] aim at
eliminating the non-uniform sampling time series and
propose to eliminate the data error by using linear
interpolation. During the execution of the algorithm, the
linear function is calculated by intercepting the two pre-
vious and subsequent data of the problem data points in
the time series, and the target data points are expected
to obtain an estimate close to the true value at the cor-
rect sampling time. The inaccuracy of data due to node
sampling jitter is eliminated with regular sampling of
WSN datasets.

Although some researches have studied data manage-
ment in the area of data assessment and data cleaning
[14], the relationship between data quality indicators is
still a challenging issue. Fan et al. [7] propose that vari-
ous indicators of data quality are not isolated from each
other, such as completeness and timeliness. Although,
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the paper does not study the specific relationship be-
tween the quality indicators and does not explicitly point
out the relevance between quality indicators. Ding et al.
[8] studies the relationship between data quality proper-
ties that apply to information systems. However, the
quality evaluation property of information systems can-
not be used in WSNs, and the paper does not analyze
the difference of final results of data cleaning strategies
in different orders.

3 Network model and problem

The wireless sensor network consists of a set of sensor
nodes randomly deployed in a planar area, S = {s1, $2, ..., S,,}.
The total time to monitor the area is 7. The time synchro-
nized and the sampling interval is AT. At a given time, one
node can collect k physical quantities, and the collected
data of node i at time ¢ can be represented by set X (i, £).

X(i,t) = {x1, %0, ..o, i}

The data sequence collected by node i during the
monitoring time T is denoted as X:

Xi = [X(i,1),X(i,2), ..., X(i, T/ At)).

Without loss of generality, in the case that only one
physical phenomena is measured by the sensor, for
example, the temperature, the data sequence of node i
during the monitoring time 7 is denoted as Xi:

X; = [vall,val2,...,valT/At]

The dataset collected by all the nodes S is received at
the sink node during the monitoring time 7, which can
be represented by a matrix D with size as (T/Atf) x n,

D=[X1,Xs,...X,]".

By detailed analysis of the different quality indicators
shown in [15-18], we adopt the following metric as the
data quality evaluation for the WSNs: data volume, com-
pleteness, time correlation, and correctness. Let ¢q,, q.,
qs and g, represent the corresponding quality indicators
of dataset D.

The quality assessment and data cleaning of dataset D
are done at the sink node. Data cleaning includes the
missed data patching, sampling jitter correction, and
outliers and correction.

We assume that the signal of a physical object
detected by a sensor node will change in a smooth way.
For example, the temperature or humidity in 1 day
usually changes continuously and smoothly. In data
sampling jitter elimination and the data cleaning
process, this constraint is necessary by assuming that
the sampling interval is smaller than the change
frequency of the physical signal.
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Similar to [8], the relationship between different qual-
ity indicators is defined as follows. For a given dataset D,
let d;, di€iqy 9o g» 94} denote two different quality indi-
cators. The metric of D on d; is denoted as ¢g;, and the
metric on d; is denoted as g;. The new dataset after data
cleaning for d; is denoted as D, The new metric d; on
Dy is denoted as g;" and metric d; is denoted as ¢;".
We have Aq; =¢q;" - g,Aq; =q;" - q;. Here, we assume
that Ag; >0 because the data cleaning is generally used
to improve the data metric.

1. If Ag; >0, it means that indicator d; will lead to in-
crement on the metric of indicator dj. In this case, d; is
positively correlated with dj, which is denoted as d; < dj.

2. If Ag; <0, it means that indicator d; will lead to re-
duction on the metric of indicator 4. In this case, d; is
negatively correlated with d;, which is denoted as d; > d;.

3. If Ag;=0, it means that indicator d; has no impact
on the metric of indicator d;. In this case, d; and d; are
irrelevant, which is denoted as d; « d.

4. If there is a probability p to have Ag; >0, p € (0,1), it
means that indicator d; will lead to increment on the
metric of d; with probability of p. In this case, d; and d;
are not completely related, which is denoted as d; < d.

As mentioned in the introduction, there are different
data errors for the collected dataset D in the WSNs,
such as data missing, data anomaly, sampling jitter, and
data invalidation. Applying the cleaning process on the
given dataset will lead to interactions between two dif-
ferent indicators, d; and d;. The first part of this paper
studies the quality indicators and provides the formula
description between two indicators. The second part of
this paper compares and analyzes the performance of
different data cleaning order and discovers the proper
data cleaning strategy.

4 Data quality indicators and metrics
4.1 Data volume indicators
The data volume describes the size of dataset, which can
be used to describe the working state for a given sensor
node. In the case that the node has less data compared
with other nodes, it is considered that data is lost. The
data volume describes the availability of dataset and the
reliability of related logic results. For example, a mean
operation can be done on two datasets with different
sizes for a given observation object, and the one with
smaller data volume is assumed to be less trustworthy.
Definition 1 (Data volume indicators) Assuming that
the monitoring area has # nodes, the monitoring time
duration is 7, and all nodes collect data with the same
time interval At. The data sequence of the node i in the
monitoring duration T is X;=[X(,1),X(2),..., X T/
At)]. The existence of sampling for node i at time ¢ is
defined as:
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Let v; be the number of samplings for node i:

T /At

vi= Y f,(X(i,1)). (2)
=1
Then, the data volume indicator can be calculated as:

q, = (At x z”:w)/(N x T). (3)

i=1

4.2 Completeness indicator
Completeness describes the seriousness of data loss
problems in the dataset. The completeness indicator is
generally measured with the proportion of the raw data
volume compared with the required data volume.
Definition 2 (Completeness indicator) Assuming that
the monitoring area has # nodes, the monitoring time
duration is 7, and all nodes collect data with the same
time interval At. The data sequence of the node i in the
monitoring duration T is X;=[X(i, 1), X(,2), ..., X(i, T/
At)]. The completeness of data record X(i, t) is defined
as follows:

1,  X(i,t)=null and xjznull

feX(i.0)) = { 0 otherwise ’ (4)

)
where X(i, t) = {x1, %o, ..., X1}

The completeness metric for dataset D at time ¢ is
denoted as cv,, that is:

v =3 FXG 1) ®)

Then, the completeness indicator can be calculated as:

T/At

q, = (At cht)/(N- T).
(6)

4.3 Time-related indicator

There are two main concerns with the time-related indi-
cator, ie., volatility and timeliness. Volatility is generally
used to describe the data variation, and it can be mea-
sured by the valid time period during which the data re-
mains valid. Some physical quantities have high volatility
in the case that they change frequently, such as displace-
ment, the opposite temperature, and humidity. The
timeliness contains two meanings. The first is that data
itself shall maintain the freshness which can be mea-
sured by the variation of time between the times of the

Page 4 of 11

current system and the data instance. The second is that
time alignment of multi-sourced data requires that data
instances originated from the same node shall have the
same interval, or the data instances of different nodes
shall be generated at the same time [19]. It can be mea-
sured by the jitter size. Figure 1 shows an example.

Definition 3 (Time-dependent indicator) Assuming
that the monitoring area has # nodes, the monitoring
time duration is 7, and collection interval of all the
nodes is At. The volatility is defined as the length of
time during which the data remains valid:

volatility = k x -At, (7)

in which, k is a constant which can be chosen for
different values in various situations.

The timely measure of the data of node i in the
moment ¢ is defined as currency, that is

currency = (treal_tideal) + (tarrive_tideal)a (8)

where figea is the ideal sampling time and £,y is the
actual sampling time. The system time needed for sink
nodes receiving the data recording is £, ive-

The time-dependent indicator of data X(i, t) is
described as follows:

. B _currency
f(X(,¢t) = max{O,l Volatility}' 9)

Then, we have the time-dependent indicator of dataset
D as follows:

g =33 FiXG )N,

i=1 t=1

(10)

4.4 Correctness indicator

The correctness indicator describes the closeness of the
monitored value to the true value. To the data obtained
from one sampling of a specific physical quantity (such
as temperature), the data is considered to be correct in
the case that the data error between the measured value
and the real value of the environment is less than a given
threshold.

signal
g Ideal sample

sampling actual sample

error

»ﬂ_l
sampling jitter

-~ v

Fig. 1 Sampling jitter
.
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Definition 4 (Correctness indicator) Assuming that
the monitoring area has # nodes, the monitoring time
duration is 7, and all nodes collect data with the same
time interval At. The data sequence of the node i in the
monitoring duration T is X; = [X(i, 1), X(i, 2), ..., X(i, T/At)].
The observation value can be expressed as val = val,ey
+ A, which is a combination of the real value of the
environment val,.,; and error A. The correctness of node i
at time ¢ is defined as follows:

futl) = {2 S &

where &, is the error threshold.
The correctness indicator of dataset D is defined as
follows:

) WAHIES piot

i=1 t=1

(11)

(12)

4.5 Data quality evaluation coefficient

Definition 5 (Data quality evaluation coefficient) Given
the dataset D in the time duration 7, the data quality Q
is the weighted combination of the data quantity,
correctness, completeness, and time-related indicator.

Q= (Z wi-q;)/ (> w).

i=

(13)

In which w; is the weight of each indicator.

5 Method

Data management requires not only data quality assess-
ment but also high-quality datasets obtained by data clean-
ing or other technologies. Quality assessment indicators
will affect each other in the data cleaning process. This
paper aims at finding the relationship between quality
indicators as well as a proper data cleaning strategy. It is
noted that the relationship between indicators analyzed in
the following is considered in the data cleaning process if
it is not specialized.

5.1 Relationship between data volume indicator and others
Theorem 1 The data volume indicator and completeness
indicator are not completely correlated.

Proof Given the time duration T in the same location,
the sampling frequency At, data sequences collected by
unreliable nodes is X; = [X(i, 1), X(i, 2), ..., X(i, T/At)], and
by the reliable nodes is X, =[X@G1),XG2),...X 6T/
At)]. The data sizes are denoted as v; and v;,
respectively, in which v;" > v;.

For sequence X;, the probability is pj.s in case that
instance X(i, £) is independently lost. Therefore, the data
volume, cv, satisfies the binomial distribution by
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following the completeness constraint. For data
sequence X;’, the probability is pjs and cv,” satisfies the
binomial distribution too. According to the Formula (6),
the variation of the completeness indicator is as follows:

T/At T/At
At - (Z v, - Z cvy)
Ao — =1 i1 14
qc NXT , (14)

in which cv, and cv,” satisfy the binomial distribution
respectively.

So, we have p(Aq, >0) € (0,1). In this way, g,< ¢, m.

Theorem 2 The data volume indicator and time cor-
relation indicator are not completely correlated.

Proof Given the time duration 7, let v; be the size of
data sequence X; collected by unreliable nodes, and v;’
be the size of data sequence X;  collected by reliable
nodes. The probability is pyme in the case that data has
independent jitter. The data instance satisfies the normal
distribution during the network transmission. According
to Formula (10), variation of the time correlation indica-
tor is described as Ag;=q; - q;:

En: Z:ft(X(i, £))->  fi(X(i.¢t)

i=1 t=1

Mg, = = . 3)
in which ¢, and ¢, are independent to each other and
satisfy the binomial distribution respectively.

So, we have p(Ag;>0) € (0,1). In conclusion, there is
not a complete correlation between data volume indica-
tor and correctness indicator, which can be described as
qviqt u

Theorem 3 The data volume indicator and the cor-
rectness indicator are not completely correlated.

Proof Similar to the proof process of Theorem 1, the
probability is pe.or for the situation that data instance is
independently wrong. According to Formula (12), cor-
rectness indicators g, and g,  are independent of each
other and respectively satisfy the binomial distribution.
We have Ag,=q, - q, in which p(Ag,>0) € (0,1). So,
we have g, < g, m.

5.2 Relationship between completeness indicator and
others

Theorem 4 There is a positive correlation between the
completeness indicator and data volume indicator.

Proof In the time duration 7, the data sequence of
node i is X;=[X(i 1),X(;,2), ..., X(i, T/At)]. The missed
data is shown below:

X(i,t) = null or x; = null, (16)

where X(i, t) = {x1, %9, ..., X}
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However, the data is not lost after data repair. Accord-
ing to Definition 1, we have
At X (v’i—vl')

Ag, =

17
v NxT (17)

in which v;" — v;>0.

So, we have g. < g, m.

Theorem 5 There is no correlation between the com-
pleteness indicator and the time-related indicator after
repairing the missing data of the dataset assuming that
only the collected data is calculated by the time-related
indicator.

Proof In the time duration 7, the data sequence of
node i is X; = [X(i, 1), X(i, 2), ..., X(i, T/At)]. When there is
a data loss, we have

X(i,t) = null or x; = null, X (i, £)

= {x1,%, ..., X }. (18)

After data cleaning by fixing these missed data, these
values are no longer empty, and thus the data volume
will increase from cv; to cv,".

However, this increment is independent to the time
because it is carried out at the sink node.

According to Formula (10), Ag, = 0. So we have g, £ g, m.

Theorem 6 There is no complete correlation between the
time correlation indicator and completeness indicator.

Proof In the time duration 7, the data sequence of
node i is X; = [X(i, 1), X(i, 2), ..., X(i, T/At)]. The data loss
is represented as val, = null, where val, € X;. Complete-
ness cleaning will add the lost data into the sequence,
and thus the data volume increases from cv; to c¢v;’, and
we have:

Acv; = cv;—cvi.
Suppose the correctness of the repaired data is judged
as probability p,, that is
p(f,(val;) = 1) = p,,valdAcv,

According to Formula (12), the probability is p(Ag, > 0)
€ (0,1) with Ag, > 0:

n Acv;

p(aq,20) =] ]]~-

i=1 j=1

(19)

So, we have ¢g,<q,.

5.3 Relationship between time correlation indicator and
others
Theorem 7 There is no correlation between time correl-
ation indicator and data volume indicator.

Proof The timeliness measurement is calculated by
Formula (8), and we can see that the currency of X(j, ¢)
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decreases after data cleaning because the jitter is elimi-
nated. At the same time, the cleaning does not increase
the sampling records, which means that X(i, t) is not
changed. According to Definition 1, we have Ag, = 0. So,
we have ¢; £ g, m.

Theorem 8 The time correlation
completeness indicator are irrelevant.

Proof According to the definition of timeliness meas-
urement, currency decreases because the jitter is elimi-
nated after the data related cleaning process, while
f/X(@, t)) remains unchanged for X(i, £). According to
Definition 2, the effective data volume cv, = Xf.(X(i, t))
remains unchanged. According to Formula (14), we have
Ag.=0. So, we have g; £ g, m.

Theorem 9 In the case that the physical signal changes
continuous and smoothly, there is a positive correlation
between time-related indicator and correction indicator
after eliminating jitter in the collected dataset.

Proof As shown in Fig. 1, the sampling time is f,eq =
tigeal + At, while the observation value is val = val,., + A,
where A is the error caused by the jitter At.

Considering the general situation, the physical signals
observed by the nodes change continuously and
smoothly in a long period of time, and the sampling fre-
quency of the nodes is far less than the frequency of sig-
nal changes. When the sampling delay At decreases, we
can assume the error A decreases too. According to
Definition 4, f,(val)=1 when A<¢. So, Xf,(val,) in-
creases for a given data sequence X, According to
Formula (12), we have Ag, > 0. So, we get g, < q, m.

indicator and

5.4 Relationship between correctness indicator and others
Theorem 10 There is no correlation between the correct-
ness indicator and the data volume indicator.

Proof The observed value can be described as val = val-
real + A, in which A is the error. In the case that A>¢,
the value is considered as abnormal and the correctness
data cleaning will eliminate the data error, and accord-
ingly, we have f,(val;) =1. At the same time, the com-
pleteness metric for dataset D at time ¢ is not changed
according to Definition 2, which means Ag, =0. So, we
have g, £ g, m.

Theorem 11 There is no correlation between the cor-
rectness indicator and the completeness indicator.

Theorem 12 There is no correlation between the cor-
rectness indicator and the time correlation indicator.

Proof The proof process is similar to that in Theorem
10 m.

5.5 Analysis of sequential cleaning strategies

As mentioned in the previous section, there are relation-
ships between different indicators, and a directed graph
can be used to describe them. Figures 2 and 3
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Data volume

completeness Time related
P = P,
Fig. 2 The positive correlation between data quality indicators
J
demonstrate the positive/incomplete correlations be- (2)Completeness, correction, and time-related;
tween these data quality indicators separately. (3) Time-related, completeness, and correction;
Assuming that many data errors, such as jitter, data loss, (4) Time-related, correction, and completeness;
and data exception, occur in the collected dataset D. The (5)Correction, completeness, and time-related;
existence of these errors leads to lower metrics for these (6)Correction, time-related, and completeness.
data indicators, i.e., q., g5 and g,. There are several combi-
nations for the data cleaning strategies in which the clean- According to the relationship analysis in the previous
ing process is carried out with different orders: section, completeness cleaning cannot guarantee the data
correctness, and thus abnormal data might still exist if it
(1)Completeness, time-related, and correction; is placed at the end of the cleaning order. It means that

Data volume

completeness Time-related

Correctness

Fig. 3 Incomplete correlation between data quality indicators
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(4), (5), and (6) are not suitable for the WSNs. In order
(3), the performance of the time-related cleaning algo-
rithm cannot be guaranteed, especially in the case that
data loss is serious in the original dataset. In order (2), it is
helpful to reduce the abnormal data by eliminating the
jitter. However, if there is a peak among two adjacent col-
lections, Theorem 9 does not stand, which means possible
poor performance after the cleaning process.

On the other hand, if we adopt the order (1), the com-
pleteness data cleaning is firstly carried out, which will
repair the lost data and is helpful to guarantee the per-
formance of the secondary time-related data cleaning.
The final correctness cleaning will eliminate the abnor-
mal data due to the previous two steps, and the final
metrics for these three indicators will increase accord-
ingly. In this way, we can see that order (1) is the best
compared with other strategies.

5.6 Data cleaning strategy

According to the analysis of the final cleaning effect of
different cleaning sequences in the previous section, it is
considered that the data cleaning strategy by order (1) is
the best one. Therefore, in this paper, we propose the
following data cleaning strategy to avoid redundant
cleaning operation and reducing the cleaning expenses
as well as ensuring the data cleaning effect.

Step 1 Calculate the volume indicator of dataset D.

Step 2 If the volume indicator is larger than a given
threshold, then

Step 3 Clean the dataset by completeness indicator;

Step 4 Clean the dataset by time-related indicator;

Step 5 Clean the dataset by correctness indicator;

Step 6 End.

Steps 1 and 2 are used to determine if the cleaning
process is necessary or not. The volume indicator de-
scribes the size of the collected data. If the size is very
small, it might show that the network is not in the
proper mode because enough data cannot be gathered
by the system. The reliability for these data is very low
in this case. Although data cleaning is helpful to repair
the lost data, it is considered useless since the reliability
is less than the threshold. Steps 3 to 5 will carry out the
cleaning process via completeness, time-related, and cor-
rectness indicators, as mentioned in the previous
section.

6 Simulation

The simulation is carried out based on the dataset of inter
indoor laboratory project with MATLAB as the simulation
tool. The project includes 54 Mica2Dot sensor nodes in
Intel Berkeley Research Lab. The temperature, humidity,
and light data of the environment are collected every 30 s
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by the nodes. Data are gathered through the TinyDB intra-
net query processing system [20]. In this paper, data clean-
ing is carried out with the abnormal data detection and
correction technology based on small waves, the elimin-
ation sampling shaking technique based on linear
interpolation, and the missing data patch technology
based on KNN. We firstly verify Theorem 1 to Theorem
12 by different groups of simulations. Then, we carry out
the cleaning strategy with temperature dataset and com-
pare the final result with the practical values. Finally, the
performance of the proposed data cleaning strategy is
demonstrated.

6.1 Correlation simulation

This group of simulations demonstrates the relationship
between the volume and other indicators. Data loss, jitter,
error, and other mistakes in the dataset are independent
and consistent with binomial distribution. In this paper,
two data volumes are gathered at time At and 2At, and
the metrics in other indicators of these two datasets are
calculated respectively. The results are as follows.

As we can see in Fig. 4, in the case that the data volume
of each node changes from 100 to 200, the metric of the
time-dependent indicator decreases, the dataset complete-
ness increases slightly, and the correctness indicator
increases. It shows that the impact of the data volume on
the other three indicators is not certain. As the data volume
increases, the other three indicators may increase or de-
crease simultaneously. Thus, Theorems 1 to 3 are verified.

The next group of simulation deals with the relation-
ship between completeness and other indicators. Given
one dataset, we carry out the completeness cleaning two
times which will increase the completeness indicators.
Then, we can observe the difference between the other
three indicators.

As we can see in Fig. 5, in the case that the complete-
ness increases, the time-dependent indicator is almost

0.95

0.93 - W data volume = 100

0.91 - @ data volume = 200 ]
0.89 -

0.87 +
0.85 A
0.83 -

0.81 -
0.79 +
0.77 A
0.75 A T T

Completeness

Time Correctness

correlation

Fig. 4 The effect of data volume on other indicators
- J
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0.95 -+
0.93 A
0.91 A
0.89 A
0.87 A
0.85 A
0.83 A
0.81 -
0.79 A
0.77 A

B completeness = 60.36%
O completeness = 75.04%

B completeness = 90.55%

0.75
Correctness
Fig. 5 The effect of completeness on other indicators

Time correlation

unchanged, while the correctness indicator will increase
or decrease. It can be seen that the variation of the time-
dependent and correctness indicator is uncertain while
carrying out the completeness cleaning. At the same time,
the mending of missing data will repair partial lost data.
According to Definition 1, the data volume of nodes will
increase. Thus, Theorems 4 to 6 are verified.

The following group of simulations deals with the rela-
tionship between time-dependent and other indicators.
Similar to the above experiment, the sample jitter is
eliminated twice on the same dataset in order to guaran-
tee that the time-dependent indicator of the dataset
gradually increases. Then, we can observe the difference
between the other three indicators.

As shown in Fig. 6, the cleaning process by eliminating
the sample jitter will enhance the time-dependent as well
as the correctness indicator, while the completeness indica-
tor remains unchanged. Thus, Theorems 7 to 9 are verified.

The following group deals with the relationship be-
tween correctness and other indicators. Twice, data
cleaning operation for the abnormal data are carried out
sequentially, and thus the correctness will increase ac-
cordingly. Then, we can observe the difference between
the other three indicators.

As we can see in Fig. 7, the cleaning process by elimin-
ating the abnormal data will enhance the correctness,
but the time-related and completeness indicators remain
unchanged. Thus, Theorems 7 to 9 are verified.

6.2 Data cleaning simulation

In order to verify the performance of the proposed data
cleaning strategy, we adopt two different sequential
cleaning strategies under the same cleaning cost. The
data before cleaning and the cleaned data are respect-
ively compared with the true values of the environment
so that the difference between them can be observed

0.95 -
0.93 -
0.91 -
0.89 -
0.87 -
0.85 -
0.83 -
0.81 -
0.79 -
0.77 -
0.75

W time correlation = 79.64%
Otime correlation = 84.97%

W time correlation =90.21%

Correctness

Fig. 6 The effect of time-related indicators on other indicators

Completeness
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0.91 -
0.89 -
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0.85 A
0.83 -
0.81 -
0.79 +
0.77 A
0.75

M correctness = 75.63%
O correctness = 80.31%

M@ correctness = 97.25%

time correlation

Fig. 7 The effect of correctness on other indicators
A

completeness

intuitively. The cleaning costs of the two cleaning strat-
egies are the same and abnormal data detection and cor-
rection, missing data mending, and linear interpolation
cleaning operation for eliminating sample jitter are re-
spectively performed. Due to the fact that the practical
value of the environment in the experiment is not avail-
able, we use the average of 54 nodes as the practical
value of the environment.

As we can see from the first value in Fig. 8, there are
many errors, such as data loss, gross error, and sample
jitter in dataset D of node 7. The quality metrics Q is
65.34%. When D is cleaned with the proposed data
cleaning strategy, the final dataset D’ is more similar to

the practical value (the second one in Fig. 2). The new
quality metrics Q is 89.43%. We also carry out the data
cleaning strategy with order (4) in Section 4.5, and com-
pare the performance with the practical value (the last
one in Fig. 8). It can be seen that the proposed data
cleaning strategy performs a better cleaning effect on
dataset D.

7 Conclusions

Reasonable data cleansing strategies which can effect-
ively improve data quality and remove extra cleaning
overhead caused by repeated cleansing are very import-
ant to data management in wireless sensor networks. In

© o The sampled datas of node 7 compared wnth its enwronmental truth
>
<
2 SN A
= ) , ]
s 21 \ \—- —— —j\\x #
g- —-—-true value
= dataset with mixed errors
L 20 n n N
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2 s datas of node 7 with correctly processed compared with its environmental truth
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©
>
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=
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Fig. 8 Comparison of data after cleaning of different data cleansing strategies
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this paper, we introduced four data quality indicators,
namely, data volume, completeness, time-dependence,
and correctness. Theoretic analysis with respect to their
relationships was provided. We analyzed the cleaning ef-
fect of different order of cleaning strategy and proposed
a data cleaning strategy that is suitable for the wireless
sensor networks. Additionally, detailed simulations were
carried out to demonstrate the correctness and perform-
ance of the suggested data cleaning strategy. The pro-
posed data cleaning strategy has a significant effect on
improving data availability.
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