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Abstract

Finding the minimum connected dominating set (MCDS) is a key problem in wireless sensor networks, which is
crucial for efficient routing and broadcasting. However, the MCDS problem is NP-hard. In this paper, a new
approximation algorithm with approximation ratio H(�) + 3 in time O

(
n2

)
is proposed to approach the MCDS

problem. The key idea is to divide the sensors in CDS into core sensors and supporting sensors. The core sensors
dominate the supporting sensors in CDS, while the supporting sensors dominate other sensors that are not in CDS. To
minimize the number of both the cores and the supporters, a three-phased algorithm is proposed. (1) Finding the

base-core sensors by constructing independent set (denoted as S1), in which the sensors who have the largest |N2(v)|
|N(v)|

(number of two-hop neighbors over the number of one-hop neighbors) will be selected greedily into S1; (2)
Connecting all base-core sensors in S1 to form a connected subgraph, the sensors in the subgraph are called cores; (3)
Adding the one-hop neighbors of the core sensors to the supporter set S2. This guarantees a small number of sensors
can be added into CDS, which is a novel scheme for MCDS construction. Extensive simulation results are shown to
validate the performance of our algorithm.
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1 Introduction
Wireless sensor networks (WSNs) play a critical role in
many areas, such as environmental monitoring, disaster
forecast, etc [1]. A key problem in WSN is multi-hop
communication, because the communication range of a
individual sensor is generally limited. In multi-hop com-
munication, any two sensors that are within the commu-
nication range of each other are called neighbors, which
can communicate to each other. Other sensors that are
not within the communication range of each other and
want to communicate, need intermediate sensors between
them to forward their packets (for instance, sensory data
[2, 3] and image data [4, 5]).
However, due to the broadcasting nature of the wireless

communication, if there is not a specific routing path for
packet forwarding, all neighbors are possible to become
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intermediators for forwarding messages, which causes
message flooding problem. The key way to avoid flooding
is to find a communication backbone, so that the packets
are relayed by the backbone sensors to save energy for the
other sensors.
If modeling theWSN into an undirected graph, the con-

nected dominating set (CDS) [6–8] is one of the good
choices to construct virtual backbone of the network,
because the sensor nodes in the CDS form a connected
subgraph to forward messages from other sensors.
However, forwarding message may run into collision,

which introduces retransmissions and increases end-to-
end delays. As the number of sensors in the CDS grows,
the negative effect of retransmissions increases greatly.
Hence, CDS with smaller number of sensors is highly
desired, which leads to the problem of finding the CDS
with the minimum number of sensors, i.e., the minimum
connected dominating set (MCDS) problem. However, it
has been proved that the MCDS problem is NP-hard [9].
Therefore, approximation algorithms become the focus of
addressing the MCDS problem. The majority of proposed
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algorithms in literatures follow a general two-phased
approach [10–14]. In the first phase, a dominating set is
constructed, and the sensors in the dominating set are
called dominators. In the second phase, additional sen-
sors are selected, called connectors. Together with the
dominators, they induce a connected CDS topology.
In this paper, we design a three-phased approximation

algorithm for the MCDS problem in WSNs. Firstly, we
propose a novel method to construct an independent set
S1 for the graph G such that any pair of complementary
sensor subsets for S1 is separated by exactly three hops.
Secondly, sensors in S1 are connected by other sensors
that are added into C to form a subtree. The number of
sensors in C is an even number, since any pair of comple-
mentary sensor subsets in S1 is separated by two sensors.
A supporter set S2 is constructed that neighbors of S1 ∪C
are added into S2. S1 ∪ C ∪ S2 is connected dominated
set. The performances of the proposed algorithms are
thoroughly analyzed.
Our contributions are presented as follow:

• We propose a novel algorithm to generate the CDS
and construct the virtual backbones in WSNs.

• We analyze the performance ratio and time
complexity of our algorithm.

• We conduct extensive simulations to demonstrate
the performance of the algorithms. Simulation results
show that the algorithm generates CDS with smaller
size than the state-of-the-art algorithms in [15].

The rest of the paper is organized as follows. Related
work is reviewed in Section 2. Our novel centralized algo-
rithm for constructing a CDS is presented in Section 3.
The performance of the proposed algorithm is thoroughly
analyzed in Section 4. Section 5 gives the results of sim-
ulations, which show the performance of the algorithm.
Finally, we conclude this paper in Section 6.

2 Related works
In this section, we review the classical algorithms for con-
structing CDS. For more comprehensive approximation
algorithms for CDS construction, one can refer to Du and
Wan and Yu et al. [16, 17]. Since the MCDS problem in
unit disk graph is NP-hard, many algorithms are proposed
to compute approximation solutions. CDS construction
algorithms can be divided into distributed algorithms and
centralized algorithms.

2.1 Distributed algorithms
In the case of distributed algorithms, each node in the
network only knows the local information and commu-
nicates with its neighbors. Recently, the popular meth-
ods for constructing CDS are to firstly construct an
maximal independent set (MIS), then a CDS is formed by
connecting the nodes in the MIS, such as [7, 8, 11–13].

In [7], Wan et al. proposed an ID-based distributed
algorithm to construct a CDS with the performance ratio
8|opt| − 2, where opt represents the minimum connected
dominating set of the unit disk graph. In [8, 11, 12], some
MIS-based algorithms are proposed and the first phase
of these algorithms is to construct an MIS as shown in
[7]. In the second phase of the algorithm in [8], Li et al.
constructed a Steiner tree for connecting all nodes in
MIS. The performance ratio of their algorithm is (4.8 +
ln 5)|opt| + 1.2. In [11] Min et al. improved the construc-
tion of Steiner tree to decrease the size of connectors.
Consequently, they proved that the approximation ratio of
the proposed algorithm is 6.8. In [12], Wan et al. proved
the approximation ratio of [7] is 7.333 and proposed a new
approximation algorithm with ratio 6.389. In [13], Misra
et al. proposed a heuristic algorithm, called collaborative
cover, to obtain an MIS. After that, they constructed a
Steiner tree with minimum number of Steiner nodes to
obtain a small CDS. The size of the CDS they got is at most
(4.8 + ln 5)|opt| + 1.2.

2.2 Centralized algorithms
In the literature, Guha and Kuller [6] proposed the first
approximation algorithm to construct an MCDS as a vir-
tual backbone in a wireless network. They presented two
centralized greedy algorithms for CDS construction with
approximation factor 2H(�) + 2 and H(�) + 2 respec-
tively, where � is the maximum degree of the graph. In
[18], Ruan et al. proposed another centralized algorithm
with the approximation factor ln� + 2. In [19], Fu et al.
proposed a centralized algorithm for CDS construction
with the time complexity O

(
n�2). Note that � can be as

many as O(n). Thus, the time complexity of the algorithm
in [19] is O

(
n3

)
.

In [15], Al-Nabhan et al. proposed three similar cen-
tralized algorithms to construct CDSs in wireless network
with approximation factor of 5. These approximation
algorithms outperform the existing state-of-the-art meth-
ods. Their algorithm contains four phases. The first phase
is to construct a special independent set S1 and any pair
of complementary subsets of S1 is separated by exactly
three hops. The second phase is to compute an MDS for
each disconnected component and all nodes inMDS form
the set S2. The third phase is to connect S2 nodes and S1
nodes. The fourth phase is to connect all nodes in S1.
Some other centralized CDS construction algorithms

also exist in the literatures [20–23].
The MCDS has many applications in the special net-

work models, such as ad hoc networks [24, 25], energy
harvest networks [26], battery-free networks [27], cogni-
tive ratio networks [28], and others [29–31].
In this paper, we propose a three-phased approxima-

tion algorithm for CDS construction with approximation
ratio H(�) + 3 in time O

(
n2

)
. To compare with the three
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Fig. 1 Sensor state transition of our algorithm. The transition conditions are as follows: a has the largest value of |N2(v)|
|N(v)| ; b exists a black neighbor; c

has a red neighbor but does not have black neighbor; d exists a yellow neighbor but does not have black or red neighbor; e has the largest value of
|N2(v)|
|N(v)| among all blue nodes, where N2(v) and N(v) only contain white nodes; f becomes connector; g exists a black neighbor; h has the maximum
number of yellow neighbors among all red nodes; I has a red neighbor but does not have black neighbor; J becomes connector

algorithms proposed in [15], extensive simulations are
conducted, and the results show effectiveness of our algo-
rithm. A preliminary version [32] was published inWASA
2017.

3 MCDS construction
3.1 Model
For simplicity, all sensors in WSN are randomly deployed
in the two-dimensional plane. Assume that all sensors
have the same transmission range in the network. The
WSN is modeled as a unit disk graph G(V ,E), where V is
the set of all sensors and E represents the set of links in
the network. If the Euclidean distance between any two
sensors u and v is less than or equal to 1, then there is
an undirected edge euv between these two sensors. Each
sensor v ∈ V has a unique ID. Let N(v) be the set of all
neighbors of v and dv = |N(v)| be the degree of v. Denote
� = max{dv|∀v ∈ V } and Ni(v) to be the i-hops neighbor
set of v.

3.1.1 Connected dominating set (CDS)
A dominating set (DS) of a graph G = (V ,E) is a sub-
set V ′ ⊆ V such that each node in V\V ′ is adjacent to
at least one node in V ′, and a connected dominating set
(CDS) is a dominating set which also induces a connected
subgraph.

3.1.2 Minimum connected dominating set (MCDS) problem
Given a graph G = (V ,E), the minimum connected dom-
inating set problem is to find the CDS in G such that the
size of the CDS is minimized.
In this paper, we propose a novel approximation algo-

rithm for solving the MCDS problem.

3.2 Algorithm overview
In this section, we overview the proposed approximation
algorithm for the MCDS problem. The algorithm consists
of three phases.

Fig. 2 The process of CDS construction by our algorithm in a–c. d A CDS constructed by algorithm in [7]
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• In the first phase, we construct an independent set S1
(sensors in S1 called base-cores) for the graph G such
that any pair of complementary sensor subsets in S1
is separated by exactly three hops, which differs from
the construction process of the first phase in [15].

• In the second phase, we select connectors from V\S1
to connect the base-core sensors in S1 for obtaining a
subtree, called all sensors on the subtree as cores.

• In the third phase, we construct a supporter set S2
such that neighbors of S1 ∪ C are added into S2.
S1 ∪ C ∪ S2 forms a CDS.

For an illustrative purpose, we employ the different
colors to differentiate sensor states during the construc-
tion process of our algorithm. Figure 1 shows the state
transition process of sensors in the WSN.
We illustrate the CDS construction process of our algo-

rithm by Fig. 2, which is the same network example
G(V ,E) in [7]. Initially, all sensors aremarked as white and
each sensor has a unique ID, as shown in Fig. 2a. In the
first phase, we can know that node 8 has the largest value
of |N2(v)|

|N(v)| among all sensors in the graph. Hence, sensor
8 is colored black and all neighbors in N(8) are colored
red and all sensors in N2(8) are colored yellow. As shown
in Fig. 2b, sensors 3, 4, 5, and 6 are colored red and sen-
sors 0, 1, 2, 7, 9, 10, 11, and 12 are colored yellow. None
of sensors become connector in the second phase since
only one black sensor 8 is added into independent set S1.
In the third phase, we need to select supporters (added
into S2) from red sensors to dominate all yellow sensors.
For all red sensors, sensor 5 has the maximum number of
yellow neighbors, then sensor 5 is marked green and its
yellow neighbors 9, 10, 11, and 12 are colored red. After
that, sensors 6 and 4 have the same number of yellow
neighbors and the ID of sensor 6 is larger than sensor 4;
therefore, sensor 6 is marked green and its yellow neigh-
bors 1 and 7 are colored red. Then sensor 4 is marked
green and sensors 0 and 2 are colored red. Finally, sensors
with black and green form a CDS that contains sensors
4, 5, 6, and 8, as shown in Fig. 2c. Figure 2d shows a
CDS (blue and black sensors) obtained by the algorithm
in [12].

3.3 Independent set S1 construction
In this section, we construct the set S1 such that the hop
distance between any two complementary sensor subsets
in S1 is exactly three hops. The details of S1 construction
process as shown in the following steps.
First, a sensor v ∈ V with the largest value of |N2(v)|

|N(v)|
initiates the S1 construction by coloring itself black. Then,
the black sensor v dominates its neighbors in N(v) and
all sensors in N(v) are marked red. After that, we color
all sensors in N2(v) as yellow and all sensors in N3(v) are
colored blue. Last, each blue sensor u deletes red sensors

from the setN2(u) and deletes yellow sensors from the set
N(u).
Then select black sensor from the current blue sensors,

for this purpose, the algorithm repeats the following steps,
until no blue/white sensors is left in the graph.
We select a blue sensor v and color it black when the

value of |N2(v)|
|N(v)| is largest among all blue sensors. If more

than one sensor node have the same value of |N2(v)|
|N(v)| , then

the algorithm selects the blue sensor with the maximum
number of sensors in N(v). If more than one blue sensor
have the same value of |N(v)|, then the algorithm selects
the blue sensor with the highest ID value among these blue
sensors.
After that, the algorithm executes the following opera-

tions:

• All sensors in N(v) are colored red
• All sensors in N2(v) are colored yellow
• All sensors in N3(v) are colored blue
• Each blue sensor u deletes red sensors from the set

N2(u) and deletes yellow sensors from the set N(u)

The detail illustration as shown in Algorithm 1.

Algorithm 1 S1 Construction
1: Input: G(V ,E)

2: Output: S1
3: Sets of S1 ← ø;
4: All sensors in V are marked white;
5: Choose an initiator v ∈ V with the maximum |N2(v)|

|N(v)|
among all sensors in V ;

6: Colorv = black; S1 = S1 ∪ {v};
7: for each sensor u ∈ N(v) do
8: Coloru = red;
9: end

10: for each sensor u ∈ N2(v) do
11: Coloru = yellow;
12: end
13: for each sensor u ∈ N3(v) do
14: Coloru = blue;
15: end
16: for each blue sensor w do
17: Delete red sensors from the set N2(w) and delete

yellow sensors from the set N(w);
18: end
19: Select blue sensor w with the largest value |N2(w)|

|N(w)|
among all blue sensors and set v = w;

20: Repeat line 4-17 until all sensors in V are black or red
or yellow;

21: return S1;

After Algorithm 1 terminates, the sensors inV are either
black, red, or yellow.We obtain an independent set S1 that
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is composed of black sensors and any red sensor is defi-
nitely dominated by a black sensor and any yellow sensor
has two hops distance from a black sensor. We can prove
that any pair of complementary sensor subsets of S1 is sep-
arated by exactly three hops. The sensors in the set S1 are
called base-cores.

3.4 Connector set C construction
In this section, we propose a novel algorithm to find
a set of connectors C such that S1 ∪ C forms a
subtree.
Before we describe the algorithm, we introduce some

terms and notations. For any subset U ⊆ V , let q(U) be
the number of connected components in G(U). The set U
is initially equal to S1, and the initial value of q(U) is |S1|.
Let M = {e|e ∈ E and the endpoints are red and yellow}
and C be the set of connectors. Let W be the subset of S1
such that any pair of sensors of W is connected by other
sensors in C .
To begin our algorithm, first, we select an arbitrary black

sensor s1 ∈ S1 to start selection of connectors and set
W = {s1}. The algorithm repeats the following steps, until
the condition q(U) = 1 is satisfied:

• Select a sensor si ∈ W such that there exists a sensor
sj ∈ N3(si) ∩ (S1 − W )

• Select an edge exy ∈ M such that x ∈ N(sj) and
y ∈ N(si)

• Delete the edge exy from M, then sensors x and y are
marked blue and added into C

• For each yellow sensor w, if w ∈ N(x) or w ∈ N(y),
then it is marked red

• Execute operations U = U ∪ {u}, U = U ∪ C and
q(U) = q(U) − 1

The detail illustration as shown in Algorithm 2.
After Algorithm 2 terminates, any two black sensors are

connected by a path that consists of black sensors and blue
sensors. That is, we obtain a subtree and all sensors on the
subtree are called cores.

3.5 Supporter set S2 construction
After executing Algorithm 2, we have got a subtree over
on S1∪C. However, there are still some yellow sensors not
being dominated since they have two hops distance from
black sensor or blue sensor.
In this section, we propose a novel greedy algorithm for

acquiring a supporting set S2, in which the sensors are
used to dominate remaining yellow sensors. Sensors in the
set S2 are called supporter.
Let RD be the set {s|s ∈ V ,Colors = red} and YL be

the set {s|s ∈ V ,Colors = yellow}. In each iteration, we
select a red sensor s ∈ RD with the maximum number
of yellow sensors in N(s). If more than one red sensors

Algorithm 2 Connecting S1 sensors
1: Input: G(V ,E), S1
2: Output: C (The set of connectors)
3: Let U = S1, W ,C ← ∅, M = {e|e ∈ E and the

endpoints are red and yellow};
4: q(U) = |S1|;
5: Select arbitrary sensor s1 ∈ S1;
6: W = W ∪ {s1};
7: while q(U) > 1 do
8: Select a sensor si ∈ W such that there exists a sensor

sj ∈ N3(si) ∩ (S1 − W );
9: Select an edge exy ∈ M such that x ∈ N(sj) and y ∈

N(si);
10: M = M\exy, Colorx = blue, Colory = blue, C = C ∪

{x, y};
11: for each sensor w ∈ N(x) or w ∈ N(y) do
12: Colorw = red;
13: end
14: W = W ∪ {sj}, U = U ∪ C, q(U) = q(U) − 1;
15: end
16: return C;

have the same number of the yellow neighbors, then the
algorithm selects the red sensor with the highest ID.
The algorithm repeats the following steps, until the

condition YL = ∅ is satisfied:

• Select a red sensor s ∈ V with the maximum number
of yellow neighbors

• Sensor s is marked green and its yellow neighbors in
N(s) ∩ YL are marked red

• Delete sensors of N(s) ∩ YL from YL

The detail illustration as shown in Algorithm 3.

Algorithm 3 S2 Construction
1: Input: G(V ,E), S1, C
2: Output: S2
3: Let S2 ← ∅, RD = {s|s ∈ V ,Colors = red}, YL =

{s|s ∈ V ,Colors = yellow};
4: while YL 
= ∅ do
5: Select a red sensor s ∈ RDwith themaximum number

of yellow neighbors;
6: Colors = green, S2 = S2 ∪ {s};
7: for each sensor u ∈ N(s) ∩ YL do
8: Coloru = red, RD = RD ∪ {u};
9: YL = YL\{u};

10: end
11: end
12: return S2;
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3.6 CDS construction
In this section, we propose our approximation algorithm
for solving MCDS problem. The algorithm consists of
four steps, and the first three steps correspond to Algo-
rithms 1–3, respectively. The last step is to compute union
of S1 , C, and S2. The detail illustration as shown in
Algorithm 4.
After this algorithm terminates, we obtain a CDS that

is union of S1 (black sensors), C (blue sensors), and
S2 (green sensors). For a given graph G(V ,E), we give
the executing process of the Algorithm 4, as shown in
Fig. 3(a)-(d).

Algorithm 4 CDS Construction
Input: G(V ,E)

Output: CDS
step 1: Obtain independent set S1 by executing
Algorithm 1;
step 2: Obtain connector set C by executing
Algorithm 2;
step 3: Obtain supporter set S2 by executing
Algorithm 3;
step 4: CDS = S1 ∪ C ∪ S2;
return CDS;

4 Performance analysis
In this section, we analyze the performance ratio and time
complexity of our algorithm. Let H(n) = ∑n

i=1
1
i be the

harmonic function and MCDS be an optimal CDS.

Lemma 1 The set S1 found by Algorithm 1 is an inde-
pendent set, and any pair of complementary sensor subsets
of S1 is separated by exactly three hops.

Proof We use {s1, s2, · · ·, sk} to denote the set S1.
Any two sensors si, sj ∈ S1 are not adjacent to each
other according to the process of S1 construction by
Algorithm 1. Therefore, the set S1 is an independent set
of G.
Let Tj = {s1, s2, · · ·, sj} and Hj = (Tj,Ej) for any 1 ≤ j ≤

k. For arbitrary two sensors si, sl ∈ Tj, an edge (si, sl) ∈
Ej if and only if their distance in G is three. We prove by
induction on j that Hj is connected. Since H1 contains a
single sensor, it is connected obviously. Assume that Hj
is connected for 1 ≤ j ≤ k − 1, when the sensor sj+1 is
marked black, according to the Algorithm 1, there exists
si ∈ Ti (1 ≤ i ≤ j) such that the distance between sj+1 and
si in G is three, which means there exists an edge between
si and sj+1 in Hj+1. Due to Hj is connected, Hj+1 is also
connected. Therefore, Hj is connected for any 1 ≤ j ≤ k.
This implies that any pair of complementary subsets of S1
is exactly three hops.

Lemma 2 The CDS = S1 ∪ C ∪ S2 got by Algorithm 4 is
a connected dominating set.

Proof According to lemma 1, we know that S1 is an
independent set and S1 ∪ C is connected.
According to Algorithm 3, each sensor in S2 is adja-

cent to at least one sensor in S1 ∪ C. Therefore, the set
CDS is connected. Since the distance between any sen-
sor not in S1 ∪ C and S1 ∪ C in G is at most 2, all other
sensors not in CDS are dominated by sensors in CDS
according to the selection process of S2. Therefore, for
any sensor v ∈ V , it belongs to the set CDS or has at
least a neighbor in CDS, which means CDS is a connected
dominating set.

Lemma 3 The size of S1 is less than or equal to |MCDS|.

This lemma has been proved by lemma 2 in [15].

Lemma 4 The size of the set C obtained by Algorithm 2
is at most 2|MCDS| − 2.

Proof Let S1 be the set {s1, s2 · ··, sk}. According to lemma
1, we obtain that auxiliary graph Hk over S1 is a tree.
Hence,Hk contains k−1 edges. According to Algorithm 2,
any two endpoints of an edge in Hk are two sensors in S1.
Therefore, two connectors are added intoC to connect the
two sensors.
Therefore, the size of set C is 2|S1| − 2. By lemma 3, we

get |C| is at most 2|MCDS| − 2 .

Lemma 5 The size of the set S2 obtained by Algorithm 3
is less than H(�)|MCDS|.

Proof For a sensor v∈MCDS, let Pv be the sensors set
including v in which each sensor is dominated by v.
According to Algorithm 3, when a red sensor v is marked
green, all yellow neighbors of v are dominated by v.
We will prove that the total number of sensors in Pv for

any node v is at most H(�).
Assume that when we pick a sensor v from RD to add to

S2, y yellow sensors turn to red. We obtain that each of y
yellow sensors spends at most 1

y .
Assume that the number of yellow sensors is initially

y0 < � in Pv, and finally drops to 0. Let yj denote the num-
ber of yellow sensors in Pv after step j. Here, we assume
that some yellow sensors in Pv aremarked red at each step.
Therefore, the number of yellow sensors in Pv decreases
at each step. After the first step, the number of sensors
which changed color is y0 − y1. In the jth step, the num-
ber of sensors that change color in set Pv is yj−1 − yj, and
the cost of each sensor which changed color is at most
1
yj . Let yh = 0. We can get the total number of sensors
in Pv is
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Fig. 3 Let the transmission range R be 250 m and deploy 100 sensors in the 1000*1000 m2 detection area. The execution process of the Algorithm 4
as follows: a Select a sensor s to start S1 construction and sensor s is marked black. b An independent set S1 that contains four black sensors is
constructed in step 1. c The connector set C that contains six blue sensors is constructed after executing step 2, and we obtain a subtree that
contains all cores. d The supporter set S2 that consists of four green sensors is constructed in step 3, then we can obtain a CDS that consists of all
black, blue, and green sensors

h∑

j=1

1
yj−1

(yj−1 − yj) =
h∑

j=1

yj−1∑

i=yj

1
yj−1

≤
h∑

j=1

yj−1∑

i=yj

1
i

=
h∑

j=1

(yi−1∑

i=1

1
i

−
yi∑

i=1

1
i

)

= H(y0) < H(�).

Therefore,

|S2| ≤ ∪v∈MCDS|Pv| < H(�)|MCDS|.
This lemma is proved.

We know that CDS = S1 ∪ C ∪ S2. According to lemma
3–5, we obtain the following theorem.

Theorem 1 The number of sensors in CDS found by
Algorithm 4 is less than (H(�) + 3)|MCDS| − 2.
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Lemma 6 The time complexity of Algorithm 1 is O
(
n2

)
.

Proof According to Algorithm 1, we need |S1| iterations
for obtaining the set S1. In the first iteration, we need at
most n steps to choose a sensor v with the largest value
of |N2(v)|

|N(v)| from V. Since any black sensor comes from blue
sensor, we need at most n steps to select a black sen-
sor from blue sensors in ith iteration. Therefore, the total
number of black sensor selection over all iterations is
O

(
n2

) = O(n|S1|), since |S1| < n, and we obtain that
the time complexity of Algorithm 1 is O

(
n2

) + O(n) =
O

(
n2

)
.

Lemma 7 The time complexity of Algorithm 2 is O
(
n2

)
.

Proof Firstly, we pick out all edges with a red endpoint
and a yellow endpoint from set E. Therefore, the operation
needs the running time of O(|E|).
Secondly, due to the initial value of q(U) is |S1|, the

number of iterations is less than |S1| by lemma 3. In the
interior of the loop, first, we need |W | steps to select a
sensor si ∈ W such that there exists a sensor sj ∈ N3(si) ∩
(S1−W ). The maximum value of |W | is equal to |S1|. Sec-
ond, we select an edge exy ∈ M for connecting si and sj
such that exy is composed of an endpoint x ∈ N(si) and an
endpoint y ∈ N(sj). Therefore, we need at most 2� steps
to select edge exy. Last, 2� steps are needed for coloring
all sensors in N(x) ∪ N(y).
Therefore, the time complexity of Algorithm 2 isO(|E|+

(|W | + 2� + 2�) × |S1|) = O
(
n2

)
.

Lemma 8 The time complexity of Algorithm 3 is O
(
n2

)
.

Proof We need n steps to pick out red sensors (added
into RD) and yellow sensors (added into YL) from V.
Algorithm 3 executes at most |YL| iterations. In a single
iteration, due to the size of RD is less than n, we need at
most n steps a red sensor v ∈ RDwith themaximum num-
ber of yellow neighbors among all sensors in RD. And at
most � steps are needed to mark all yellow neighbors of v.
Therefore, the time complexity of Algorithm 3 isO((n+

� + n) × |YL|) = O(n2), since |YL| < n.

We know that Algorithm 4 consists of four steps and
the first three steps correspond to Algorithms 1, 2, and 3,
respectively. The last step needs single time to compute
the union of S1 , C, and S2. According to lemmas 6–8, we
obtain the following theorem.

Theorem2 The time complexity of Algorithm 4 is O
(
n2

)
.

5 Simulation
In this section, we evaluate the performance of our algo-
rithm through simulations. In the simulations, N sensors

are randomly deployed in the two-dimension plane. All
sensors are assumed to have the same transmission range
R. Each experimental result is the average of 100 runs.
We first evaluate how the network configuration, such as
the number of the sensors, the transmission range, and
the area of the deployment, impact on the size of CDS, as
shown in Section 5.1. After that, we compare the perfor-
mance of our algorithm with the performance of the three
algorithms (Approach I, Approach II, and Approach III) in
[15], as shown in Section 5.2. We used MATLAB R2013a
for all simulations.

5.1 Impact of network configuration
In this section, we evaluate the impact of the different
parameter settings on the size of CDS.
Firstly, Fig. 4a illustrates the impact of the transmission

range R on the size of CDS with different number of sen-
sors. We randomly deploy N sensors in a 1000 × 1000 m2

area, and measure the size of CDS when the transmis-
sion range R varies from 200 to 500 m increased by
50 m. As shown in Fig. 4a, we can observe that the size
of CDS decreases as the transmission range R increases.
This is because when the transmission range becomes
longer, the number of neighbors of sensors increase. That
is to say, a backbone sensor is able to dominate more
non-backbone sensors. When the transmission range R
is large enough and the number of senors reaches to
some number, the CDS size is almost same no mat-
ter how big the number of sensors N is. It is because
the some sensors can cover the whole detection area
when the transmission range R is large enough. From
Fig. 4a, when R = 500 m, the CDS sizes are almost the
same. We can also find that the ratio of CDS size to
the total number of sensors in the network decreases
with the increasing of the density of network deploy-
ment. For example, we fix R to 300 m, when N = 100
and N = 500, the size of CDSs are 11.2 and 14.5, respec-
tively, and the ratio of the former is 11.2% and the
latter is 2.9%.
Secondly, we evaluate the impact of the number of sen-

sors N on the size of CDS with the different transmission
range R. In the 1000× 1000 m2 monitor area, the number
of sensors N changes from 200 to 1200 sensors, we can
find that the size of CDS increases with the number of sen-
sors increasing when R = 100 m and that the size of CDS
levels off as R is more than 250 m, as shown in Fig. 4b. We
also obtain that, whenN is fixed, the size of CDS decreases
more andmore slowly with the increasing of the transmis-
sion range when the transmission range reaches to some
value.
Thirdly, we measure the effect of the size of the deploy-

ment area on the size of CDS. We deploy network sensors
in the detection areas 300 × 300m2, 400 × 400m2, 500 ×
500m2, and 600 × 600m2, respectively. First, we evaluate
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ba

dc
Fig. 4 The performance of our algorithm. a Size of CDS with a different value of N when R varies between 200 and 500 m. b Size of CDS with the
different value of R when N changes from 200 and 1200 sensors. c Size of CDS with fixed R = 80 m when N varies between 200 and 1000 sensors. d
Size of CDS with fixed N=1000 sensors when R changes from 50 to 120 m

the impact of the number of sensors N on the size of CDS
in different detection areas, as shown in Fig. 4c. When we
fix the transmission range to 80 m and the number of sen-
sorsN (from 200 to 1000), we can notice that the CDS size
increases as the deployment area grows. Afterwards, we

evaluate the impact of the transmission range on the size
of CDS in different detection areas, as shown in Fig. 4d.
When we fix the number of sensorsN to 1000 and R (from
50 to 120 m), we can notice that the CDS size increases as
the deployment area grows.

a b
Fig. 5 Comparing results in the 300× 300 m2 detection area. a The average performance of four algorithms when N = 1000 sensors and R changes
from 50 to 120 m. b The average performance of four algorithms, when R = 50 m and N varies between 100 and 1000 sensors
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ba
Fig. 6 Comparing results in the 600 × 600m2 detection area. a The average performance of four algorithms, when N = 1000 sensors and R changes
from 50 to 120 m. b The average performance of four algorithms when R = 100m and N changes from 100 to 1000 sensors

5.2 Performance evaluation
In this section, we compare the performance of our
algorithm with the performance of the three algorithms
(Approach I, Approach II, and Approach III) in [15].
To compare the performance of our algorithm with the
three algorithms, we set the same value of the experiment
parameters of our algorithm as the other three algorithms
in [15].
Firstly, we give the comparison of the algorithms when

the sensors are randomly deployed in the 300 × 300 m2

area, as shown in Fig. 5. When the number of sensors
N = 1000 and the transmission range R is increased by
10 m from 50 to 120 m, we give the comparative results
of the four algorithms in Fig. 5a. The results show that the
size of CDS got by our algorithm is always better than the
other three algorithms as the transmission range becomes
longer. And CDS sizes decrease with the transmission
range increasing, which is because the transmission range

is bigger, the coverage area is larger, and the network area
size is finite. Similarly, we fix the transmission range R to
50 m and changeN from 100 to 1000 sensors increased by
100. The comparative results in Fig. 5b illustrate that our
algorithm outperforms the other three algorithms.
Secondly, for 600 × 600 m2 monitor area, Fig. 6 shows

the performance of the compared algorithms. If setting
the number of sensors N = 1000 and changing the trans-
mission range R between 50 and 100 m, our algorithm
is better than the other three algorithms and the gap
between the four results is getting smaller and smaller
with increasing of the transmission range. By setting
R = 100 m, Fig. 6b gives the comparison in terms of CDS
size through increasing the number of sensors from 100
to 1000. We can observe that our algorithm is still better
than the other three algorithms.
Finally, to better illustrate the superiority of our

algorithm, we deploy the sensors 1000 × 1000 m2 area

ba
Fig. 7 Comparing results in the 1000× 1000m2 detection area. a The average performance of four algorithms when N is fixed to 1000 sensors and R
changes from 150 to 500 m. b The average performance of four algorithms when R = 200 m and N varies between 1000 and 10,000 sensors
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randomly, as shown in Fig. 7. In Fig. 7a, when the num-
ber of sensors N is fixed to 1000 and R varies from 150
to 500 m, we can observe that our algorithm also outper-
forms the other three algorithms in the larger detection
area. And the size of CDS of the four algorithms tends to
be stable when transmission range is big enough. Accord-
ing to Fig. 7b, if we set R = 200 m and vary N from 1000
and 10,000, our algorithm still outperforms other three
algorithms and the CDS sizes of the algorithms level off
as the number of sensors increases, which means that our
algorithm is also suitable in dense networks.

6 Conclusions
This paper proposes an approximation algorithm for the
MCDS problem in wireless sensor networks. The key
idea is to separate sensors in CDS into core sensors and
supporting sensors. The core sensors dominate the sup-
porting sensors in CDS and some sensors are not in CDS,
while the supporting sensors dominate remaining sen-
sors that are not in CDS. Simulation results show that
the algorithm generates CDS with smaller size than the
state-of-the-art algorithms.
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