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Abstract

As mobile devices, such as smart phones, become more and more popular, localization based on mobile devices has
gained much attention in both the academia and industry. Although global positioning system (GPS) has been widely
deployed in many fields, it has several disadvantages such as consuming too much power and requiring the line of
sight to satellites. Cellular network-based localization is much more robust. However, this type of localization scheme
cannot achieve enough accuracy for some localization-based services. With the existence of densely deployed WiFi
access points, WiFi-based localization seems very promising in terms of positioning precision and power consumption.
However, different than GPS and cellular network based localization, most of the existing WiFi-based localization
schemes are supposed to be used in indoor environments. Note that indoor WiFi-based localization schemes cannot
be simply ported to urban outdoor environments due to several factors such as weaker signal and more serious
interference. In this paper, we present a hybrid outdoor localization scheme utilizing crowdsourced WiFi signal data
and built-in sensors in smart phones, which can achieve high-positioning accuracy and low power consumption.
Our experimental results show that the proposed hybrid localization scheme outperforms the widely-adopted GPS-
based method in terms of both positioning accuracy and power consumption. In addition, the idea of crowdsourcing
fingerprints is effective.
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1 Introduction
Over the past decades, localization service has been
applied to a variety of different applications. So far, the
global position system (GPS) has been the dominant tech-
nology to enable outdoor localization. However, since
GPS localization requires the line of sight to four or more
satellites, it does not work well in certain urban regions,
such as a downtown canyon surrounded by skyscrap-
ers. Another problem with GPS is its high power con-
sumption, which is a serious challenge to battery-based
mobile devices. To tackle the problems with GPS, many
researchers have proposed a series of alternative local-
ization schemes, including cellular-based systems [1, 2],
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infrared-based systems [3], ultrasonic-based systems [4],
and radio frequency (RF)-based systems [5–7]. In terms
of whether distance estimation is required or not, these
schemes can be divided into two groups: range-based and
range-free methods. Range-based methods rely on the
estimated distances to achieve localization while range-
free methods do not need the distance information.
In our research, we focus on the outdoor localization

schemes that can be adopted by smart phones. Among
the alternative schemes mentioned previously, RF-based
systems, especially those based on WiFi [8], are very
promising. WiFi fingerprinting localization [9] is a RF-
based positioning scheme that has been well studied. The
key information in WiFi fingerprinting localization is the
received signal strength indicator (RSSI), which can be
easily obtained by all WiFi-enabled devices. Since most
smart phones are equipped withWiFi,WiFi fingerprinting
localization is more feasible than most other localization
methods. Technically, this schedule does not utilize the
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estimated distance information based on signal strength.
Instead, it first collects the WiFi fingerprints of varied
locations and thereafter use the collected fingerprints to
find the position of mobile devices.
In this paper, we present a hybrid outdoor localization

scheme for smart phones which is based on our previous
work [10]. It exploits WiFi fingerprinting, sensor informa-
tion, and GPS statistics. Technically, the proposed scheme
utilizes two phases to locate mobile devices. In the first
phase, an offline WiFi fingerprint database is constructed
via corwdsourcing [11]. This database includes not only
the WiFi fingerprint data but also the GPS statistics. In
the second phase, the real-time WiFi and GPS measure-
ments are used to match the records in the database in
order to achieve localization. In order to improve the
localization accuracy and matching speed, we devised a
map tile method, which utilizes sensor readings to limit
the matching space. Our experimental results indicates
that the accuracy of the proposed localization scheme is
higher to that of GPS. In addition, the proposed scheme
outperforms GPS in terms of power consumption.
In summary, our contributions can be listed as follows:

1. We proposed a hybrid outdoor localization scheme,
which takes advantage of WiFi fingerprints, sensor
information, and GPS statics. The proposed
localization scheme achieves both high positioning
accuracy and low power consumption.

2. The training phase of WiFi fingerprinting localization
is often impractical in real-life applications because
too much work needs to be completed in this phase.
The proposed scheme is based on crowdsourced
data, which effectively eliminates the bottleneck of
the training phase of WiFi fingerprinting localization.

3. We proposed a map tile mechanism, which utilizes
sensor readings to limit the matching space.
Specifically, with the map tile method, not all records
in the constructed database needs to be retrieved to
find the matching record, which improves the
localization speed significantly.

4. A prototype localization system based on the
proposed scheme is implemented in our research.
Our experimental results indicates that the proposed
localization scheme outperforms GPS in terms of
both positioning accuracy and power efficiency in the
real outdoor environments.

The rest of this paper is organized as follows. In
Section 1, the related work on existing localization
schemes is presented. The problem formulation and
three important observations are included in Section 2.
Section 3 describes the proposed hybrid localization
scheme. Section 4 includes the details of our experimental
results. Finally, our conclusions are presented in Section 5.

2 Related work
As mentioned previously, to tackle the problems with
GPS, many researchers have proposed a variety of dif-
ferent schemes for outdoor localization based on mobile
devices. In terms of whether distance estimation is
required or not, these schemes can be divided into two
groups: range-based and range-free methods.

2.1 Range-based methods
Range-based localization methods have been extensively
studied in past decades. In [12–15], the authors built opti-
mization models utilizing physical distance to solve local-
ization problems. Generally, range-based methods are
mainly based on relative distance, which can be obtained
through measuring methods like time-of-arrival (ToA),
time difference of arrival (TDoA), or propagation model
generated from RSSI value.
Time of arrival (ToA): The ToA methods measure the

distance from the unlocated devices to the anchor nodes
through calculating the travel time of the signal. By doing
so, the device can be located on a circle centered at the
anchor node and the distance can be obtained by the
time of arrival. Obviously, determining the precise posi-
tion requires at least three anchor nodes and the estimated
location is the intersection of these circles. However, due
to the interference or accuracy, the circles may not inter-
sect at the same point and therefore some filtering tech-
niques, such as LS [16] or weighted least square (WLS)
[17], are needed to estimate the position. In [18], the
authors proposed an indoor localization named “Guoguo”,
which utilized the fine-grained adaptive time-of-arrival
estimation approach.
Time difference of arrival (TDoA): By deploying the

receivers at some known positions, the time of the sig-
nal arriving at each receiver are different, which can be
exploited to measure the distance. The signal sender is
on a hyperboloid of one receiver and different receivers
have a constant range difference. This kind of methods
use relative time measurements rather than absolute time
measurements and time synchronization is only needed at
the receivers. The estimated location is the intersection of
the hyperbolic curves, and this kind of technique is also
known as multilateration. Luo et al. [19] is an instance of
TDoA. The authors utilized the time difference of arrival
instead of the time of arrival as an distance indicator.
Propagationmodel: The received signal strength (RSS)

could also be used for measuring distance. This type of
methods are based on the path loss lognormal shadow-
ing model. When a device detects available signals, it
can calculate the distance between the base station and
itself using the propagation model and the RSS. With the
distance to at least three base stations, the location can
be estimated using the trilateration. In [20], the authors
proposed an indoor localization system called EZ, which
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consider the propagation of wireless signals as constraints
and exploits it to locate the devices.
Angle of arrival (AoA): The angle of the arrived signals

could also be used to locate the devices. When a device
receives some signal from an anchor node, it can infer the
region of the anchor node through the angle at which the
signal is received. Typically, the region of the anchor node
is a line. Therefore, at least two anchor nodes are required
for this kind of localization methods. Besides, the error of
the estimated position could be quite large since the esti-
mation depends on both inferred region and the error can
be scaled in the final result. Therefore, this kind of local-
ization method is not implemented widely without large
antenna arrays.
However, these range-based methods are sensitive to

the surrounding environments and obstacles can easily
produce errors. Other distance measuring technique like
dead reckoning could assist user tracking, but produces
accumulative errors over time.

2.2 Range-free methods
One of the most widely used range-free method is finger-
print localization method, especially in indoor localiza-
tion. Basically, fingerprint methods in indoor localization
can be categorized into three types: visual fingerprint-
based localization, motion fingerprint-based systems, and
signal fingerprint-based methods.
Visual fingerprint-based localization: With image

processing ability, smart phones can acquire their posi-
tions through imagematchingmethods. By taking a phone
of one landmark, Google Goggles can identify it and then
localize the device. In [21], the authors provides several
corresponding visual-based localization systems. How-
ever, one of the greatest challenge in visual fingerprint-
based localization is the matching speed. Additionally,
the operation of camera also consume too much bat-
tery energy of smart phones. Furthermore, these kind of
localization methods still cannot reach a high precision.
Motion fingerprint-based localization: Generally, to

obtain the user’s location, fingerprint-based localization
methods need to detect the motion data of users, which
can be obtained by the built-in sensors such as accelera-
tor and gyroscope. CompAcc [22] finds out the moving
pattern or trail of users to match with the pre-generated
motion signatures. Unfortunately, since sensors may pro-
duce noise, with time goes on the errors generated by the
sensors will accumulate.
Signal fingerprint-based localization: Signal

fingerprint-based localization is widely used in places
where a large number of WiFi infrastructures are
deployed, especially in the indoor environment. Some
outdoor applications such as [23] and [24] also use this
method. These positioning methods commonly consist
of offline training phase and online fingerprint matching

phase. The goal of the first phase is to form a finger-
print database which stores the correlation between
received signal strength(RSS) patterns from various
access points(APs) and fix locations. Then the location
of the device is determined at the matching stage. In this
process we use matching algorithm to search the finger-
print in database which has the minimum difference with
the device need to be located and the labeled location
is our estimated location of user. Actually,fingerprints
can be expressed in deterministic form (e.g., Radar [5])
and probabilistic form(e.g., Horus [25]). Calculating
the difference between the patterns based on Euclidean
distance are called deterministic form. And, probabilistic
form can excellently store the information about the
distribution signal strength at a fix position. However,
using probabilistic method may generate time delay in
mobile localization environment. This is because that we
need to spend a lot of time in collecting enough samples
to fit the fluctuating state of signals. In terms of effect,
signal fingerprint-based localization has the ability to get
fine-grained results. However, it is impractical to transfer
this method directly from the indoor environment to the
outdoor environment, because there are many problems
such as complicated training work and complex outdoor
environment.

3 Preliminaries
In this section, we present our problem formulation and
three important observations related to WiFi fingerprint-
ing and GPS localization. The notations used in this paper
are listed in Table 1.

3.1 Problem formulation
In this paper,we use f = {r1, r2, · · · , rn} to represent a
fingerprint, where ri represents the RSS value of the AP

Table 1 Table of notations

Notation Description

L̂ The estimated location

Li The location of fingerprint i

wi The weight of fingerprint i

P0 The RSS value received at distance d0

Pd The RSS sensed in a distance of d

γ The path loss exponent

ρi The discrimination factor of AP i

ρN
i Normalized form of ρi

h(f , f ′) The modified dissimilarity between f and f ′

σi The RSS strength value difference of AP i

ψ The health of GPS

snri Signal-to-noise ratio of satellite i

η The ultimate synthesized dissimilarity metric
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Ai ∈ A and there are n APs appear in f. We calculate the
dissimilarity between two fingerprints based on RSS dif-
ference. For example, σi = |ri − r′i| is the difference of
fingerprints f ′ and f at each Ai. Due to the fact that two
fingerprints may contain different set of APs, so it may
appear that AP Ai appears in f but does not appear in
f ′. For the above situation, we assume the signal strength
is weak and let the missing value equal to − 100. The
dissimilarity between f ′ and f can be shown as

η(f , f ′) =
√
√
√
√

p
∑

i=1
σ 2
i (1)

where p = |A ∪ A′|.
We found the sample with minimum dissimilarity

through compare all samples stored in the fingerprint
database F with the query fingerprint f.

f ∗ = argmin
fi∈F

η(f , fi) (2)

L(f ∗) is the corresponding location of f ∗ which is delib-
erated as the location of user. Locating errors is defined
by ε = ∥

∥L(f ) − L(f ∗)
∥
∥. As our problem is more com-

plex, only considering the above content is inadequate. In
the next section, we will present three important observa-
tions. Some improvements could be done in these three
aspects and the proposed hybrid scheme has adopted
these improvements.

3.2 Three key observations
WiFi fingerprinting and GPS localization work in different
manners. Each of them has their advantages and dis-
advantages. In this section, we present three important
observations based on our preliminary experiments about
WiFi fingerprinting and GPS localization. These obser-
vations clearly indicate the key problems with these two
schemes, which lead to either low positioning accuracy or
high power consumption.

3.2.1 High power consumption
As we know, GPS is one of the most typical outdoor local-
ization. It is an energy-hungry technology and two reasons
lead to it’s high battery energy cost. The first is that GPS
antenna needs to continuously search for and communi-
cate with the satellite at a low speed of data transmission.
In this process, continued supply of electricity must be
provided. The second is frequent network requests, which
is happening when data is exchanged between user clients
and the servers.

3.2.2 Localization outliers
The environment has a great impact on the accuracy of
GSP positioning. In some interfering areas such as in

forests or around buildings, the signals quality of GPSmay
be bad and get locating outliers. According to our pre-
liminary experiments, we get the result shown in Fig. 1.
It shows that GPS positioning abnormalities when the
device bracket is near the building.

3.2.3 Computational cost of global matching
Most of previous research work use the global matching
method to search the corresponding fingerprint infor-
mation in the fingerprint database, which result in a
lot of unnecessary computational consumption. Previous
matching algorithms get the estimated location through
searching the whole fingerprint database. But as the fin-
gerprint database grows, computing costs and time delays
are increasing. Although previous studies such as cluster-
ing method [25] have been proposed to reduce computa-
tional costs, updating fingerprints through crowdsourcing
methods can still lead to additional computational over-
head.

4 A hybrid localization scheme for outdoor
environments

In this section, we present the details of the proposed
hybrid localization scheme for outdoor environments.
The major steps in the proposed scheme are included
in Fig. 2. Technically, our localization scheme consists
of three phases. The first phase is the traditional train-
ing phase. In this phase, the system will collect finger-
print data, including GPS status and corresponding WiFi
signal state, through crowdsourcing technique and then
build up a fingerprint database in server. In the second
phase, the server will divide the map into map tiles using
our map tile cache mechanism. The final phase is user
online localization phase, where users’ devices can calcu-
late the dissimilarity between the collected patterns and
the sample patterns in the database built before. The sam-
ple patterns are restricted in certain map tiles, which is
stored in local cache and determined by sensor infor-
mation, to reduce the computing time. And then the
location of fingerprint with minimum difference will be
selected as estimation for the location of the device. In
the rest of this section, each phase will be presented in
detail.

4.1 Map tile mechanism
As mentioned earlier, frequent network requests can gen-
erate very high energy cost and even have a long response
time when the network is congested in typical positioning
scheme. Although several offline applications have been
proposed (e.g., big planet tracks [26]) to solve this prob-
lem, the effect of them is not ideal. So, in this paper we
propose a cache mechanism based on map tiles, using
geographic features to divide the map into many map tiles
and maintain a local database cache.
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Fig. 1 GPS: localization outlier in interference area

As Fig. 3 shows, we divide an area into n map tiles and
the length of each side is wmeters. According to the loca-
tion (longitude and latitude) of uploaded fingerprint data,
we allocate it into different map tile. And onlymmap tiles
is stored in client side local database. In Fig. 3, m is equal
to 4. The premise of using the user device to sense the
surrounding WiFi signal information is that we are able
to ensure that the user is roughly located in the map tile
in the local database through sensor assistance methods,
which is described in detail in the next section. When
the rough location is absent from the local fingerprint
database, we need to update the cache from the server
before proceeding with the prefetching operation, because
the local data cache is out of date. When the total number
of location requests is r, the typical fingerprint mecha-
nism requires r network requests, and our map tile cache
mechanism requires only r/m network requests. It can be
seen that the proposed approach achieves the purposes of
energy-saving and efficient.

4.2 Sensor-assisted matching
Comparing the measured RSS features fingerprint with
the whole data base is inefficient and unnecessary. In this
section, we introduce a sensor-assisted matching method
which can restrict the matching operation in a small space
through sensor information including direction and travel
distance.
Figure 4 is an illustration. The current location can be

calculated from the initial location P. Note that the ini-
tial location can be obtained by GPS or other localization
methods. The distance and direction from the previ-
ous location to current location are denoted as l and θ ,
respectively. Actually, the distance and direction can be
estimated using dead reckoningmethodwith built-in iner-
tial sensors like accelerometer, gyroscope, and compass.
It indicates that the accuracy of count steps in dead reck-
oning can reach 98% [27]. The moving distance l can
be obtained by multiply the user’s step length and the
footsteps. In [27], the authors also introduced how to
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Fig. 2 System architecture

get direction θ using gyroscope and compass in detail.
Because of the noisy sensors and heterogeneous devices,
the distance l and the direction θ cannot be precisely cal-
culated. Two variables 	l and 	θ are introduced here
as fault tolerant range to cope with this problem. An
annular region ABCD can be obtained with all the above
variables determined, which contains the current posi-
tion. Estimating the current location requires finding out
which fingerprint points in local cache are contained in
this restricted area. Here, we offer a solution based on
Haversine formula [28].

Given the longitude and latitude (ϕ, λ) of the start point,
and the distance d and bearing θ from the start point, the
destination point (ϕ′, λ′) can be calculated using the fol-
lowing Eq. (3), where δ is the angular distance 1/R and R
denotes the Earth’s radius.

{

ϕ′ = arcsin(sinϕ · cos δ + cosϕ · sin δ · cos θ)

λ′ = arctan
(

sin θ ·sin δ·cosϕ
cos δ−sinϕ·sinϕ′

)

+ λ
(3)

Using the above formula, a subset of local fingerprint
database cache can be obtained F = {f1, f2, · · · , fn}.

Fig. 3Map tile mechanism
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Fig. 4 Sensor-assisted matching in local map tile cache

Within this subset, the location Li(fi) of every fingerprint
fi locates in the constrained area ABCD.

4.3 High-accuracy localization
The observation in Section 3.2 shows that it costs much
time for the probabilistic fingerprinting algorithm to col-
lect samples for estimating current position. Therefore,
we introduce a modified deterministic framework here.
The basic idea is to estimate the result using weighted K-
nearest neighbormethod. The weight of these fingerprints
includes two aspects: the GPS signal state and dissimi-
larity in RSS. We will first introduce how to estimate the
location L̂ and then describe the calculation of weights.
The algorithm chooses each fingerprint sample f ∈ F

to compare with query fingerprint signal f ′. Estimating
the final result of current location L̂ can be done with
weighted K-nearest neighbor method [29] using the most
similar K points.

L̂ =
K

∑

i=1

wi
∑K

j=1 wj
Li (4)

In the above equation, all weights wi are nonnegative
and represents the dissimilarity in RSS and the stored GPS
states like number of satellites n and signal noise ratio snr.
Different WiFi APs have different level of discrimina-

tion. Since the discrimination factor depends on the dis-
tance between AP and user device, by using Log-Distance
Path Loss Model Pd = P0 − 10γ log d

d 0, we specify the
discrimination factor ρi of the i-th AP with (5).

ρi = 1
di

= 10
ri−P0
10γ (5)

In (5), P0 is the RSS value received at distance d0. γ is the
pass loss exponent. And Pd is the RSS sensed at distance d.
Then, an normalized form ρN

i from
∑p

i=1 ρi can be used to
calculate the modified dissimilarity in RSS between query
fingerprint and stored one in (6).

h(f , f ′) =
√
√
√
√

p
∑

i=1

(

ρN
i · σi

)2 (6)

Moreover, the GPS satellite signal health is also an
important part in ultimate synthesized discrimination. In
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our research, GPS satellite statistics is incorporated into
synthesized influence factor. The GPS health here are
represented by the number of effective satellites n and
corresponding signal-to noise ratio snr. The synthesized
influence factor is expressed as follows:

ψ =
∑n

j=1 snrj
10n

(7)

Note that with ψ increases, the reliability of the stored
location of this sample fingerprint increases.
Combine all these factors into unified one, the ulti-

mate synthesized dissimilarity metric is formulated in (8),
where p = |A ∪ A′| and q = |A ∩ A′|. And q denotes the
number common APs in stored fingerprint f and query
one f ′. The dissimilarity of two fingerprints with fewer
common APs will be amplified by p/q.

η = h(f , f ′)
ψ

· p
q

(8)

Finally, the absolute weight is obtained by (9), which can
be used to calculate the current position in (4).

wi = 1
η

(9)

5 Experimental results
In this section, we first present our results on localiza-
tion accuracy and power consumption, which were col-
lected in a realistic testbed incorporating the prototype
localization system. Then, we discuss the compatibility of
crowdsourced RSSI data.

5.1 Localization accuracy and power consumption
In our research, we implemented a testbed around the
Academic Building A at Harbin Institute of Technology
Shenzhen Graduate School, China. In this testbed, a
Samsung Galaxy Grand Prime running the proposed
hybrid localization scheme was used to achieve localiza-
tion. Before the experiment started, we divided the map
area into many map square tiles and the length of them is

Fig. 5 Crowdsourcing data distribution in map tiles
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set to w = 15 m. After that, we collected the fingerprint
data at random locations along the way. The fingerprints
are stored in a key-value format: the position and the
corresponding series of RSS strength. Actually, we col-
lected a total of about 150 sample points and the average
state (including GPS statistics and signals information) of
10 samples is recorded as the fingerprint data. To elimi-
nate the impact of the humans body on the experimental
results, we unified the way of holding the device. After
the training phase, we got a fingerprint database. And part
of real fingerprint data in our database is allocated into
corresponding map tile as the Fig. 5 shows.
According to the altitude and latitude of our location,

we set the radius of the earth at ground level to about
6375.024 km. The estimated position is calculated by
Eq. (3) in online matching process. In fact, we selected
30 points along the road as the pre-calibrated point and
repeat this process 10 times. In order to compare the
mobile phone for GPS position and our hybrid method
for the consumption of electricity, we recorded the bat-
tery energy percentage every ten minutes and form a
power-consuming log.
According to the coordinates calculated by GPS, our

hybrid localization and calibrated coordinates, we plot-
ted these results into Google map as Fig. 6 shows. We
compare the real position of 30 pre-calibrated points with
GPS results and ours, respectively. The error cumulative

distribution of GPS results and ours is shown in Fig. 7.
It shows that the average error of our method results is
7.57 m while the number of GPS is 10.3. Figure 8 shows
the error at each point. At point 17,21 and 24, our hybrid
method gets much smaller errors than GPS. It proves that
our method may handle exception values well to some
extent. As Fig. 9 shows, our method increases the bat-
tery life by about 1.5 times. So, from the perspective of
energy consumption, our approach meet the purpose of
saving energy.

5.2 Compatibility of crowdsourced fingerprints
As mentioned previously, the first phase of the proposed
localization scheme is the training phase, which is highly
time-consuming because the data corresponding to each
training point need to be measured and collected. For a
small-scale system, although the training phase is not ideal
in terms of time consumption, it is still feasible. However,
for a large-scale localization system that covers a city or
a province, the traditional training phase is infeasible in
practice. This is why the proposed scheme attempts to
utilize crowdsourcing to collect the required fingerprint
data. Namely, if the training phase is completed by many
incentive-based volunteers, instead of one individual, the
training phase will take a much shorter period.
Despite the advantage of the crowdsourcing model,

there is also a potential problem with this approach.

Fig. 6 Distribution of pre-calibrated points, GPS positioning results and our hybrid results, represented by black dots, gray icons, and black star icons,
respectively
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Fig. 7 Localization error: GPS and hybrid method

Namely, when fingerprints are collected by many vol-
unteers and these volunteers might use all kinds of
smartphone with varied reception capability, the col-
lected fingerprints might not be compatible. That is,
the fingerprints collected by two different smart phones
at the same location might be highly different. If this

takes place, the resulting localization accuracy will be
degraded.
To verify whether the compatibility of crowdsourced

fingerprints is a problem, we used two different Android-
based smart phones and three WiFi routers to conduct a
series of experiments in a four-story building. Specifically,

Fig. 8 Localization error at each point
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Fig. 9 Power consumption

the smart phones used in this set of experiments are Asus
Zenfone 3 Laser and BLU Advance 5.0. The WiFi routers
are D-Link DIR-819, D-Link WBR-2310, and Apple Air-
port Time Capsule. In our experiments, the two D-Link
routers are placed on the third floor of the building and
the Apple router is deployed on the second floor. In the

first experiment, the smart phones are placed side-by-
side on the first floor. Then they start to collect the RSSI
readings from the routers mentioned previously. After
receiving 200 readings from each of the routers, the aver-
age of the 200 readings is used as the final RSSI value.
In the second, third, and fourth experiments, the smart

Fig. 10 RSSI comparison: D-Link DIR-819
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Fig. 11 RSSI comparison: D-Link WBR-2310

phones are deployed on the second, third, and fourth floor,
respectively.
Our experiments results are summarized in Figs. 10, 11,

and 12. In our research, we found that, overall, the
compatibility of crowdsourced fingerprints is not a seri-
ous issue. Namely, the RSSI values collected by dif-

ferent smart phones at the same location are very
similar. Of course, the similarity varies with dif-
ferent routers. In our experiments, D-Link DIR-819
leads to the best compatibility. D-Link WBR-2310 an
Apple Airport Time Capsule result in slightly degraded
compatibility.

Fig. 12 RSSI comparison: airport time capsule
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6 Conclusions
In this paper, we present a hybrid outdoor localization
scheme, which utilizes crowdsourced fingerprints and
built-in sensors in smart phones. With the map tile mech-
anism and crowdsourcing feature, this scheme is expected
to be more feasible than the existing outdoor localization
methods. Our experimental results indicate that, com-
pared with the widely-adopted GPS-based method, the
proposed localization scheme leads to higher localization
accuracy and lower power consumption. In addition, the
idea of crowdsourcing fingerprints is effective.
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