
Fang et al. EURASIP Journal onWireless Communications and
Networking (2017) 2017:200
DOI 10.1186/s13638-017-0986-0

RESEARCH Open Access

Scheduling multi-task jobs with extra
utility in data centers
Xiaolin Fang1* , Junzhou Luo1, Hong Gao2, Weiwei Wu1 and Yingshu Li3

Abstract

This paper investigates the problem of maximizing utility for job scheduling where each job consists of multiple tasks,
each task has utility and each job also has extra utility if all tasks of that job are completed. We provide a
2-approximation algorithm for the single-machine case and a 2-approximation algorithm for the multi-machine
problem. Both algorithms include two steps. The first step employs the Earliest Deadline First method to compute
utility with only extra job utility, and it is proved that it obtains the optimal result for this sub-problem. The second
step employs a Dynamic Programming method to compute utility without extra job utility, and it also derives the
optimal result. An approximation result can then be obtained by combining the results of the two steps.

Keywords: Multi-task jobs, Extra utility, Scheduling

1 Introduction
Job scheduling is a widely studied topic in computer
science. Many systems such as parallel and distributed
computing, cloud computing, workforce management,
energy management, and network communications
require scheduling of jobs [1–5]. There are many studies
designing efficient approaches to solve the job scheduling
problem so as to improve the resultant performance
subject to the resource constraints [6–9].
Many applications prefer to divide large jobs into multi-

ple small tasks to better utilize the limited resources and
provide better service quality. As stated in [10], most inter-
active services such as web search, social networks, online
gaming, and financial services now are heavily dependent
on computations at data centers because their demands
for computing resources are both huge and dynamic.
Interactive services are time-sensitive as users expect to
receive a complete or possibly partial response within a
short period of time. Thus, a job should be preemptive
and it can be divided into many small tasks (we call this
as multi-task problem) in order to provide interactive ser-
vices and improve the utilization ratio of the computing
resources.

*Correspondence: xiaolin@seu.edu.cn
1School of Computer Science and Engineering, Southeast University, Nanjing,
China
Full list of author information is available at the end of the article

We study the multi-task job scheduling problem in this
paper. Usually, the aim of multi-task job scheduling is
to maximize the profit or minimize the cost while sub-
ject to the resource and deadline constraints. This paper
also studies the profit maximization problem for multi-
task job scheduling where each job has a starting time
and an ending time. The profit is called utility in this
paper. The utility of a task or job can be obtained only
if the task or job is completed. Most state of art works
study the problem considering either the utility of the
tasks or the utility of the jobs. Few works consider both
the utility of the tasks and jobs. In this paper, we study
the problem of multi-task job scheduling at a data cen-
ter with the goal of maximizing the total utility of all the
jobs, where each job is decomposed into multiple tasks,
and both a job and a task have their own utility. That is,
each task has its own utility and each job also has an extra
utility which can only be obtained when all its tasks are
completed.
The problem investigated in this paper is particularly

challenging because it is quite difficult to decide whether
it is better to schedule a job as a whole or to schedule
the tasks of the job separately. Furthermore, it is difficult
to make correct decisions for current jobs because the
requirements of the incoming jobs are unknown.
We first study the single-machine problem where there

is only one machine that can be used. The single-machine

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13638-017-0986-0&domain=pdf
http://orcid.org/0000-0002-0164-2596
mailto: xiaolin@seu.edu.cn
http://creativecommons.org/licenses/by/4.0/

Fang et al. EURASIP Journal onWireless Communications and Networking (2017) 2017:200 Page 2 of 12

problem expects a method to schedule the jobs on
one machine while satisfying the resource and deadline
constraints. We then study the multi-machine problem
where multiple machines can be employed. Because of
the NP-completeness of the problem, we present two
corresponding 2-approximation algorithms for the two
problems.
For simplicity, we only consider the problem where

every task has uniform resource requirement, but the util-
ity of the tasks could be different. Tasks have arbitrary
resource requirements will be studied in the future work.
Our contributions are summarized as follows.

• To the best of our knowledge, this is the first work to
study the problem considering both task utility and
job utility.

• A 2-approximation algorithm is provided for the
single-machine problem. This algorithm includes an
Earliest Deadline First (EDF) scheduling and a
Dynamic Programming (DP) algorithm.

• Another 2-approximation algorithm is provided for
the multi-machine problem. Similar to the algorithm
for the single-machine problem, this algorithm also
employs an EDF scheduling and a DP algorithm.

The rest of the paper is organized as follows. Section 2
introduces the related works. Section 3 presents the prob-
lem formulation. Section 4 studies the single-machine
problem. The multi-machine problem is studied in
Section 5. And Section 6 concludes the paper.

2 Related works
The job scheduling problem can be classified intomultiple
classes, such as single or multiple tasks, single or multiple
machines, and identical or unrelated machines. Usually,
the input of the problem involves n jobs and k machines.
Each job is associated with a release time, a deadline,
a weight, and a processing time on each machine. The
goal is to find a non-preemptive schedule that maximizes
the weight of the jobs subject to their respective dead-
lines. Garey and Johnson [11, 12] show that the simplest
instance of the decision problem corresponding to this
problem is NP-complete.
Bar-Noy et al. [13, 14] study the scheduling problem

where each job includes a single task. The authors present
a 3-approximation algorithm using the local ratio tech-
nique. For arbitrary job weights and a single machine, an
LP formulation achieves a 2-approximation for polyno-
mially bounded integral input and a 3-approximation for
arbitrary input. For unrelated machines, the factors are 3
and 4, respectively. Because of the high time complexity
of the LP-based method, Bar-Noy et al. [13] also provide
a combinatorial approximation algorithm whose approxi-
mation factor is 3 + 2

√
2. Independently, Calinescu et al.

[15] designed a 3-approximation algorithm via rounding
linear programming solutions.
The preemptive version of the single-task problem

for a single machine was studied by Lawler [16]. For
identical job weights, Lawler showed how to apply the
dynamic programming techniques to solve the problem
in polynomial time. The same techniques are employed
to obtain a pseudopolynomial algorithm for the NP-
hard variant in which the weights are arbitrary. Lawler
[17] also designed polynomial time algorithms that solve
the problem in two special cases: (i) the time win-
dows in which jobs can be scheduled are nested, and
(ii) the weights and processing times are in opposite
order. Kise et al. [18] showed how to solve the special
case where the release times and deadlines are similarly
ordered.
Some works [19–22] study the problem where each job

has multiple tasks, which is called the SplitJob problem.
In the SplitJob problem, a task does not have a window
within which the tasks can be scheduled. That is, the
tasks can only be decided to be scheduled or not. The
unit height case of the basic SplitJob problem has been
addressed by finding the maximum weight independent
sets in interval graphs [19, 20]. Bar-Yehuda et al. [21]
present a (2r)-approximation algorithm, where r is the
number of the tasks in a job. They also proved a hardness
result indicating it is NP-hard to approximate the problem
within a factor of O(r/logr). Thus, their approximation
ratio is near-optimal. Bar-Yehuda and Rawitz [22] studied
the uniform case of the basic SplitJob problem and derived
a (6r)-approximation algorithm by utilizing the fractional
local ratio technique.
Venkatesan et al. [23] study the problem of maximizing

the throughput of jobs where each job consists of multiple
tasks. Different from the SplitJob problem, each task has a
window where the task can be scheduled any time within
the window subject to the processing length. The algo-
rithm presented in [23] is an LP-based algorithm which
gives 8r-approximation.
All the above works either consider the utility of tasks

or the utility of jobs. In this paper, we study the prob-
lem where each job consists of multiple tasks, each task
has utility, and each job has extra utility if all its tasks are
completed.
A closely related problem is considered by Zheng et al.

in [10] which study the problem of scheduling interactive
jobs at a data center with the goal of maximizing the total
utility of all the jobs. In their problem, the utility of a job is
a function of the completed workload of that job. That is,
the utility of a job varies when the completed workload of
that job increases. The presented function in their work is
nonlinear and concave. If the scheduling can be preemp-
tive, then the authors can provide an optimal solution to
solve the problem.

Fang et al. EURASIP Journal onWireless Communications and Networking (2017) 2017:200 Page 3 of 12

3 Systemmodel and problem formulation
3.1 Systemmodel
Assume there arem physical machines {M1,M2, . . . ,Mm}
and n jobs {J1, J2, . . . , Jn} in the data centers. Each job Ji
has a starting time si and an ending time ei, i.e., Ji =[si, ei],
which is called the processing interval. Each job needs to
be completed within its own processing interval. Each job
Ji consists of multiple tasks {Ti1,Ti2, . . . ,Tini}, where ni is
the number of the tasks involved in job Ji. Each task Tij
has a processing time of length 1 and a utility uij, which
means it needs 1 machine to take 1 unit of time to com-
plete task Tij, and if the task is completed, then the utility
is uij. With the above assumption, it can be easily found
that each taskTij must be completed within the processing
interval [si, ei]; otherwise, the task is dropped. We define
the assignment of a task Tij as ∅ or a sub-interval Iij of
1 unit of length within the processing interval [si, ei], i.e.,
Iij = ∅, or Iij ∈[si, ei] and |Iij| = 1 for some machine
Mk . Let a(Tij) = k indicate that task Tij is assign to
machineMk . The empty assignment Iij = ∅ indicates that
the task is dropped. If a task is completed, then it has a
non-empty assignment on a certain machine such that the
assigned sub-interval does not overlap (or conflict) with
any assignment on the samemachine. We assume si and ei
are integers. One unit of time is called a slot in this paper.
That is, a task needs to take one slot on a machine to be
completed.We only consider the problemwhere each task
Tij has a processing time of length 1. Tasks with arbitrary
processing times will be studied in the future work.
We consider a situation where the jobs belong to differ-

ent users, and the users are always willing to encourage
the data centers to complete all their tasks. Therefore, job
Ji has an extra utility σi in this paper. If all the tasks of job
Ji are completed, then the utility gain of this job is the sum
of the utility of the tasks included in Ji and the extra utility
σi, i.e. u(i) = ∑ni

j=1 uij + σi. Otherwise, even one task of a
job is not completed, the utility gain is the sum of the util-
ity of the completed tasks, without the extra job utility, i.e.
u(i) = ∑ni

j=1,Iij �=∅ uij.

3.2 Problem statement
Our problem is to find an assignment of all the tasks of n
jobs tommachines such that the total utility is maximized
satisfying that (a) a machine can only process one task at
a time, (b) one task can only be processed at one machine,
and it cannot be split any more, but the tasks of a job can
be assigned to multiple machines. Then, we have

max
n∑

i=1
u(i) (1)

s.t.

Iij ⊆[si, ei] for each task (2)

|Iij| = {0, 1} for each task (3)

a(Tij) = {1, 2, . . . ,m} for each task (4)

Iij ∩ Ii′j′ = ∅ and a(Tij) = a(Ti′j′) for every two tasks
(5)

It is easy to find that this problem is NP-complete. Con-
sider a simple instance where there is only one machine in
the problem, the processing interval of each job is [0,T],
each job Ji consists of ni one-unit tasks, each job has extra
utility σi, and all the tasks have no utility, i.e. uij = 0,
then the problem is to find an assignment within the pro-
cessing interval while maximizing the utility gain, which is
equivalent to the well-known Knapsack problem which is
NP-complete. For simplicity, the single-machine problem
where there is only one machine can be used is first stud-
ied and then followed by the general case where there are
multiple machines.

4 Algorithm design for single-machine problem
We first consider a simpler instance of this problem where
there is only one machine. As stated in the previous
section, even the single-machine problem is NP-complete.
Therefore, we present a 2-approximation algorithm in this
section. The main idea of this algorithm is to solve the
problem in two steps. The first step is to solve the single-
machine problem without considering extra job utility.
The second step is to solve the single-machine problem
by only considering the extra job utility. The final result
of the single-machine problem can then be obtained by
combining the results derived from the two steps.

4.1 Problemwithout extra job utility
In this step, we do not consider the extra job utility. There-
fore, given n jobs, each job Ji has a processing interval
[si, ei], each job Ji consists of ni one-unit-length tasks,
and each task Tij has utility uij. This step is to find an
assignment with the maximum utility gain in a single
machine.
We first consider a special case where the utility of each

task is 1. Then, the problem is to schedule as many tasks as
possible. We introduce the earliest ending time first algo-
rithm which is also called Earliest Deadline First (EDF) in
other works and show that the EDF algorithm schedules
the maximum number of tasks.
The EDF method always schedules the job with the ear-

liest ending time first. Let Ji be the job with the earliest
ending time. EDF scans the processing interval of Ji from si
to ei and schedules the tasks of Ji one by one to the unused
slots. A slot is unused if no tasks are scheduled to this slot.
If all the slots in [si, ei] are scanned, or all the tasks of Ji
are scheduled, EDF begins to schedule the next job Ji+1.

Fang et al. EURASIP Journal onWireless Communications and Networking (2017) 2017:200 Page 4 of 12

Algorithm 1 EDF Algorithm
Input: [si, ei] , ni, 1 ≤ i ≤ n
Output: Scheduling the maximum number of tasks
1: Let J1, J2, . . . , Jn be sorted by the ending time in

increasing order;
2: for i = 1 to n do
3: j = 1;
4: for t = si to ei do
5: if j > ni then
6: break;
7: if slot t is not used then
8: Schedule Tij to t;

Figure 1 shows an example for the EDF algorithm. In
this example, there are four jobs. J1’s processing inter-
val is [2, 4], and it has two tasks. J2’s processing interval
is [5, 10], and it has three tasks. J3’s processing interval
is [7, 11], and it has three tasks. J4’s processing interval is
[0, 13], and it has five tasks. The EDF algorithm schedules
the job with the earliest ending time, and the tasks of a job
are always scheduled as early as possible in their process-
ing interval. As illustrated in Fig. 1, the gray slots represent
the scheduled tasks of the four jobs.

Theorem 1 The EDF algorithm schedules the maximum
number of tasks.

Proof We prove the theorem by induction. Let n = 1,
i.e., there is only one job, then it is easy to find that the
EDF algorithm schedules the maximum number of tasks.
Assume the EDF algorithm schedules the maximum

number of tasks when n = k.
Now, we prove that the theorem is correct when n = k+

1. If all the tasks of Jk+1 can be scheduled in its processing
interval, then the theorem is correct. Otherwise, not all
the tasks of Jk+1 can be scheduled, then there are two cases
as follows.
1) If all the scheduled tasks of J1 to Jk are within the

processing interval [sk+1, ek+1], it indicates that sk+1 ≤
min1≤i≤k{si} and max1≤i≤k{ei} ≤ ek+1, then all the slots
within [sk+1, ek+1] are used.

Fig. 1 An example for the EDF algorithm

2) Otherwise, some tasks of J1 to Jk are scheduled before
sk+1, and some tasks of J1 to Jk are scheduled within
[sk+1, ek+1]. No tasks are scheduled after ek+1 because
the ending time max1≤i≤k{ei} ≤ ek+1. We only need to
consider whether the scheduled tasks of J1 to Jk within
[sk+1, ek+1] can be moved before sk+1. If we can, then
more tasks of Jk+1 can be scheduled. However, the EDF
algorithm always schedules the tasks as earlier as possible;
therefore, it is impossible tomove some of these scheduled
tasks earlier.
It completes the proof.

For simplicity of illustration, we explain the meaning of
link and reaching which will be used frequently later. Both
link and reach are defined towards the tasks/jobs which
are not dropped (the scheduled tasks/jobs). In this paper,
the links are directed.
1) The scheduled tasks of the same job link to each other.

We call this the task link.
2) A scheduled job Ji links to another scheduled job Jj

if there exists a scheduled task T of Ji which is scheduled
within the processing interval of Jj. We call this the job
link and call T the relay task. Figure 2 shows some job
link examples. In this figure, the gray slots represent the
scheduled tasks. In Fig. 2a, J1 links to J2 since there is a
task T belonging to J1 which is scheduled within the pro-
cessing interval of J2. In Fig. 2b, J1 and J2 link to each other.
Because jobs are scheduled one by one, there may be no
task scheduled for the current job. As shown in Fig. 3,
no tasks of J3 are scheduled; however, J2 still links to J3
because task T ′ of J2 is scheduled within the processing
interval of J3.
3) Scheduled task T can reach T ′ belonging to

another job when there exists a job link sequence
〈J(T), Jx1 , Jx2 . . . , Jxk , J(T ′)〉where J(T) links to Jx1 , Jxi links
to Jxi+1 , and Jxk links to J(T ′). J(T) denotes the job includ-
ing T. Figure 4 shows that J1 can reach J3. In this example,
any scheduled task of J1 can reach any scheduled task of
J3. Reaching is defined for task to task, task to job, and job
to job.
We now present a EDF-based algorithm (shown in

Algorithm 2). Same as the EDF algorithm, Algorithm 2
always schedules the job with the earliest ending time first.
Let Ji be the job with the earliest ending time. EDF scans
from si to ei and schedules the tasks of Ji one by one to the
unused slots. Note that the tasks of Ji are sorted by util-
ity in non-increasing order. Thus, the task of Ji with the
largest utility is scheduled first. Let the current task with
the largest utility of Ji be Tij. If there is an unused slot
within [si, ei], Tij is scheduled to the first unused slot in
[si, ei]. If there is no unused slot within [si, ei], then find
the scheduled task with the least utility and implement
a recursive replacement. The replacement is run towards
the link sequence from the task with the least utility to the

Fang et al. EURASIP Journal onWireless Communications and Networking (2017) 2017:200 Page 5 of 12

Fig. 2 a, b Job link examples

current job, and vice versa. That is, the replacement can
also run in a reversed order of the link sequence. In the
recursive replacement towards the link sequence, a prior
relay task is always replaced with a later relay task.

Algorithm 2 EDF-based Algorithm
Input: [si, ei] , ni, uij, 1 ≤ i ≤ n, 1 ≤ j ≤ ni
Output: Scheduling the tasks to maximize utility gain
1: Let J1, J2, . . . , Jn be sorted by ending time in non-

decreasing order;
2: Let the tasks of each job be sorted by utility in non-

increasing order;
3: for i = 1 to n do
4: for j = 1 to ni do
5: if There is an unused slot in [si, ei] then
6: Find the earliest unused slot t in [si, ei] and

schedule Tij to t;
7: else
8: Find the task with the least utility which can

reach Ji and let it be T and its utility be u;
9: if u < uij then

10: Run a recursive replacement to remove T ;

Figure 5 shows an example for the EDF-based algorithm.
In this example, there are 4 jobs. J1’s processing interval
is [0, 7] and it has 5 tasks with utility 10, 9, 8, 7, and 6,
respectively. J2’s processing interval is [3, 8] , and it has 3
tasks with utility 10, 9, and 8, respectively. J3’s processing
interval is [5, 9] , and it has 2 tasks with utility 11 and 10,
respectively. J4’s processing interval is [8, 11] , and it has
3 tasks with utility 14, 13, and 12, respectively. The EDF-
based algorithm always schedules the job with the earliest
ending time first. In the first iteration, the EDF-based
algorithm schedules the 5 tasks of J1 to slots 1–5, respec-
tively. In the second iteration, the EDF-based algorithm
schedules the 3 tasks of J2 to slots 6–8, respectively.

Fig. 3 An example for link and reaching

In the third iteration, the EDF-based algorithm sched-
ules J3’s task with a larger utility of 11 to slot 9, and then,
it finds that there is no slot for J3’s task with smaller utility
of 10. The algorithm then finds the task with the small-
est utility which can reach J3. The found task is the task
of J1, and its utility is 6. In Fig. 6, the red links show a link
sequence for the reachability from the task with utility 6
of J1 to J3. The tasks pointed by the red arrows are the
relay tasks. Every time a relay task is replaced by a later
relay task in the link sequence. The algorithm replaces J1’s
task with utility 6 by J2’s task with utility 8. In the recur-
sive replacement, J2’s task with utility 8 is replaced by J3’s
task with utility 10.
In the fourth iteration, the EDF-based algorithm sched-

ules J4’s tasks with utility 14 and 13 respectively, and then,
there is no slot for J4’s task with utility 12. The algorithm
then finds the task with the smallest utility which can
reach J4. The found task is the task of J1, and its utility
is 7. In Fig. 7, the red links show a link sequence for the
reachability from the task with utility 7 of J1 to J4. The
tasks pointed by the red arrows are the relay tasks. Every
time a relay task is replaced by a later relay task in the
link sequence. The algorithm replaces J1’s task with utility
7 by J2’s task with utility 9. In the recursive replacement,
J2’s task with utility 9 is replaced by J3’s task with utility
11, and J3’s task with utility 11 is replaced by J3’s task with
utility 12.
The final schedule is shown in Fig. 5. The algorithm

schedules the maximum number of tasks achieving the
maximum total utility. In Fig. 5, the gray slots have been
scheduled with tasks, and the numbers on the gray slots
represent task utility.

Theorem 2 The EDF-based algorithm is optimal.

Proof Theorem 1 proves that the EDF algorithm sched-
ules the maximum number of tasks. We now only need

Fig. 4 An example for reaching

Fang et al. EURASIP Journal onWireless Communications and Networking (2017) 2017:200 Page 6 of 12

Fig. 5 An example for the EDF-based algorithm

to prove that the EDF-based algorithm maximizes the
total utility of the scheduled tasks. We also prove it by
induction.
Let n = 1, that is, there is only one job. It is easy to find

that the EDF-based algorithm maximizes the total utility
of the scheduled task because the EDF-based algorithm
always schedules the task with the largest utility first.
Assume the EDF-based algorithm maximizes the total

utility of the scheduled tasks when there are k jobs, i.e.,
n = k.
Next, we prove that the theorem is correct when n =

k + 1. Then, we need to prove the EDF-based algorithm
obtains the optimal result for Jk+1.
If all the tasks of Jk+1 can be scheduled in its processing

interval, then the theorem is correct.
Otherwise, if not all the tasks of Jk+1 can be scheduled,

then the EDF-based algorithm first schedules as many
tasks with the largest utility as possible to the unused
slots. As stated in Theorem 1, the EDF algorithm can-
not schedule more tasks. Therefore, it should determine
whether to schedule the remaining tasks of Jk+1 or not.
For the remaining tasks, the EDF-based algorithm always
uses them to replace the tasks with smaller utility. With-
out loss of generality, let T ′ be the task with the largest
utility in the remaining tasks and its utility be u′. Let T
be the task with the least utility that has been scheduled,
and its utility be u. If u < u′, then the largest utility
gain is achieved if T is replaced by T ′. The utility gain is
u′ − u1 + u1 − u2 + u2 − . . . − uk + uk − u = u′ − u,
where {uk ,uk−1, . . . ,u1} are the utility of the relay tasks in
the link sequence fromT toT ′. Because u is theminimum,
u′ −u is maximum. This property holds for the remaining
tasks. It completes the proof.

Fig. 6 Third interation, for example Fig. 5

The time complexity of the EDF-based algorithm is
O(n2r2), where n is the number of jobs and r is the max-
imized number of the tasks of a job. In the EDF-based
algorithm, the jobs are scheduled according to the ending
time one by one. For the tasks of each job, the algorithm
needs to find a task with the smallest utility that has
already been scheduled. It needs O(nr) time to search the
task in a directed graph constructed by the link relation
for tasks to tasks, tasks to jobs, and jobs to jobs. It also
needsO(n) time to update the graph any time the graph is
changed, i.e. a replacement is implemented.

Ci(s, σ) = min
⎧
⎪⎨

⎪⎩

Ci−1(s, σ)

max{si,Ci−1(s, σ − σi)} + ni
mins′ ,σ ′ {Ci−1(s′, σ ′) + max{0, ni − s′ + si + Pi−1(s, s′, σ − σi − σ ′)}}

(6)

Pi−1(s, s′, σ ′′) = min
{

Pi−1(s+, s′, σ ′′)
min0<σ ′≤σ ′′ {max{0,Ci−1(s, σ ′) − si + Pi−1(s′′, s′, σ ′′ − σ ′)}

(7)

4.2 Problemwith only extra job utility
Now, we address the problem where each job has only
extra utility and every task does not have utility. If all the
tasks of a job are scheduled, then the job obtains the extra
utility. Even one task of a job is not scheduled, the job loses
the extra utility. This problem is similar to the one studied
in [16] where given n jobs with arbitrary processing time,
release dates and due dates, and the job can be scheduled

Fig. 7 Fourth interation, for example Fig. 5

Fang et al. EURASIP Journal onWireless Communications and Networking (2017) 2017:200 Page 7 of 12

preemptively; the objective is to minimize the sum of the
weights of the later jobs. The scheduling of our problem
is not preemptive, but the processing time of each task is
one unit of time. The preemptive scheduling and a task
with one unit of processing time in our problem are sim-
ilar. Therefore, minimizing the sum of the weights of the
later jobs is the same as maximizing the sum of the utility
of the scheduled jobs in our problem. The authors in [16]
give a pseudo polynomial time Dynamic Programming
(DP) algorithm. We also adopt this algorithm to solve the
problem. The DP formulations are represented by Eqs. (6)
and (7).
Given a job set J, let s(J) = minJi∈J {si} be the minimum

starting time of J, p(J) = ∑
Ji∈J ni be the total processing

time of J, σ(J) = ∑
Ji∈J σi be the total extra utility of J, and

c(J) be the time the last job in J is completed in an EDF
schedule.
One can refer to article [16] for the detailed algorithm.

As stated in that work, assume the jobs are ordered by the
ending time in non-decreasing order. Let s be a starting
time, and σ be an integer representing utility. Ci(s, σ) is
defined as the minimum value of c(J) with respect to fea-
sible set J ⊆ {J1, J2, . . . , Ji}, with s(J) ≥ s and σ(J) ≥ σ .
If there is no such feasible set J, then Ci(s, σ) = +∞.
Accordingly, the final result that maximizing the weight of
a feasible set is given by the largest value of σ such that
Cn(smin, σ) is finite, where smin = min1≤i≤n{si}.
If job Ji cannot be contained in a feasible set J, i.e. si <

s(J), then Ci(s, σ) = Ci−1(s, σ).
Otherwise, if job Ji can be contained in the feasible set J,

there exists two cases.
In the first case, job Ji starts after c(J − {Ji}). Either

c(J − {Ji}) ≤ si, then Ci(s, σ) = si + ni; or c(J − {Ji}) > si
and the scheduled tasks in the interval [si, c(J − {Ji})] are
continuous for J−{Ji}, then Ci(s, σ) = Ci−1(s, σ −σi)+ni.
Thus, Ci(s, σ) = max{si,Ci−1(s, σ − σi)} + ni.
In the second case, job Ji starts before c(J − {Ji}), which

indicates there is an idle time between si and c(J − {Ji}).
Let J ′ be the last set of jobs scheduled continuously before
c(J − {Ji}) for J − {Ji}. Then, c(J ′) = Ci−1(s(J ′), σ(J ′)). Let
it be c(J ′) = Ci−1(s′, σ ′) for simplicity.
Let Pi−1(s, s′, σ ′′) be the minimum number of tasks

scheduled between si and s′, with respect to feasible set
J ′′ ⊆ {J1, J2, . . . , Ji−1} with s(J ′′) ≥ s, c(J ′′) ≤ s′, and
σ(J ′′) ≥ σ ′′. Note that it is the minimum number of tasks
scheduled in interval [si, s′], rather than [s, s′]. Then, the
number of slots available for job Ji between si and s′ can be
represented as s′ − si − Pi−1(s, s′, σ − σi − σ ′). Thus, the
completing time Ci(s, σ) = Ci−1(s′, σ ′) +max{0, ni − s′ +
si + Pi−1(s, s′, σ − σi − σ ′)}.
Enumerate every s′ and σ ′. We can get Ci(s, σ) =

mins′>s,σ ′<σ {Ci−1(s′, σ ′)+max{0, ni−s′+si+Pi−1(s, s′, σ−
σi − σ ′)}}. The enumeration of s is among all the start-
ing times of the jobs, rather than among all the possible

times, which can drastically reduce the computation
complexity.
The computation of Pi−1(s, s′, σ ′′) is as follows. Let

J ′′ ⊆ {J1, J2, . . . , Ji−1} be the set of jobs which realize
Pi−1(s, s′, σ ′′). Then, there exists two cases.
If s(J ′′) > s, then Pi−1(s, s′, σ ′′) = Pi−1(s(J ′′), s′, σ ′′).

Enumerate every s+ > s and find the minimum one, then
Pi−1(s, s′, σ ′′) = mins+>s{Pi−1(s+, s′, σ ′′)}.
Otherwise, if s(J ′′) = s and the scheduling of J ′′ is

not continuous, let J ′ be the first set of jobs which run
continuously and s(J ′) = s, then the total num-
ber of tasks scheduled within [si,Ci−1(s, σ(J ′))] is
max{0,Ci−1(s, σ(J ′)) − si}. We now need to compute
the number of tasks which can be scheduled within
[Ci−1(s, σ(J ′)), s′]. It is easy to find that Pi−1(s, s′, σ ′′)
can be represented as max{0,Ci−1(s, σ(J ′)) − si} +
Pi−1(s′′, s′, σ ′′ − σ(J ′)), where s′′ is the minimum starting
time greater than or equal to Ci−1(s, σ(J ′)). For sim-
plicity, let σ ′ = σ(J ′). Enumerate every σ ′. We have
Pi−1(s, s′, σ ′′) = min0<σ ′≤σ ′′ {max{0,Ci−1(s, σ ′) − si} +
Pi−1(s′′, s′, σ ′′ − σ ′)}.
The initial conditions are shown in Eqs. (8) to (11).

C0(s, 0) = s, for all starting time s (8)

C0(s,w) = +∞, for all starting time s andw > 0 (9)

Pj−1 = (s, s′, 0) = 0, for j = 1, 2, . . . , n (10)

P0(s, s′, σ ′′) = +∞, for σ ′′ > 0 (11)
The time and space complexities for this DP algorithm

areO(n3σ 2) andO(n2σ), respectively, where n is the num-
ber of the jobs and σ is the sum of the utility of the jobs.
It can be easily found that the time complexity of the
DP algorithm is pseudo polynomial because the DP for-
mula includes an integer input σ which can be extremely
large in real systems. Therefore, we provide a theoretical
approximation solution for this problem.

4.3 Approximation algorithm for single-machine problem
The main idea of the approximation algorithm is to get
two intermediate results using the two algorithms inde-
pendently and then combine the two results. First, it uses
the EDF-based algorithm to solve the problem without
extra job utility. Second, it uses the DP algorithm to solve
the problem with only extra job utility. Then, it selects
a larger one from the two scheduling results. Algorithm
APPX1 shows the detailed approximation algorithm.

Theorem 3 The APPX1 algorithm is a 2-approximation
algorithm.

Proof Let OPT be the utility obtained by an optimal
solution and ALG be the utility obtained by the APPX1

Fang et al. EURASIP Journal onWireless Communications and Networking (2017) 2017:200 Page 8 of 12

Algorithm 3 APPX1 algorithm
Input: [si, ei] , σi, ni, uij, 1 ≤ i ≤ n, 1 ≤ j ≤ ni
Output: Scheduling the tasks to maximize utility gain
1: Use the EDF-based algorithm to solve the problem

without extra utility;
2: Use the DP algorithm to solve the problem with only

extra utility;
3: Let T be the set of tasks scheduled by the EDF-based

algorithm;
4: Let J be the set of jobs scheduled by the DP algo-

rithm;
5: Let u(T) be the total utility of T inlcuding the utility

of the tasks in T and the extra utility of the completed
jobs among T ;

6: Let u(J) be the total utility of J including the extra
utility of the jobs in J and the utility of all the tasks of
J ;

7: if u(T) < u(J) then
8: Use the scheduling result of the DP algorithm;
9: else

10: Use the scheduling result of the EDF-based algo-
rithm;

algorithm. It is easy to find that OPT can be represented
as OPT = u + σ , where u is the total utility of the sched-
uled tasks and σ is the total extra utility of the entirely
scheduled jobs in an optimal solution. Let u′ be the total
utility obtained by the EDF-based algorithm, and σ ′ be the
total utility obtained by the DP algorithm. From the earlier
analysis, both the EDF-based algorithm for the problem
without extra utility and the DP algorithm for the prob-
lem with only extra utility are optimal. Thus, u ≤ u′ and
σ ≤ σ ′, and then, we have OPT ≤ u′ + σ ′. ALG actu-
ally can be represented as ALG ≥ max{u′, σ ′}. Therefore,
OPT ≤ 2ALG. It completes the proof.

4.4 An improvement for the DP algorithm
Recall the definition of Ci(s, σ), it is the minimum value
of c(J) with respect to feasible set J ⊆ {J1, J2, . . . , Ji}, with
s(J) ≥ s and σ(J) ≥ σ . It can be found that, in the DP
recursion formula Ci(s, σ), the parameter σ is build only
on the extra utility of the scheduled jobs, but does not
consider the utility of the tasks of the scheduled jobs. This
can be improved by computing Ci(s,u)where the pareme-
ter is build on the total utility of the scheduled jobs. Let
ui = ∑ni

i=1 uij + σi. Use ui to replace σi in the DP formula,
then Ci(s,u) represents the minimum value of c(J) with
respect to feasible set J ⊆ {J1, J2, . . . , Ji}, with s(J) ≥ s and
u(J) ≥ u, where u(J) includes the utility of all the tasks of
the jobs in J and the extra utility of the jobs in J. Suchmod-
ification consider the extra utility of the scheduled jobs
and also the utility of the tasks of the scheduled jobs. It

can improve the result derived by the DP algorithm when
the utility of the tasks takes a large proportion comparing
with the extra utility. However, when the extra utility takes
a large proportion (for example, in a worst case where all
the tasks have no utility, the jobs have only the extra util-
ity), the improvement is little. Algorithm APPX1’s use of
suchmodification of the DP algorithm cannot improve the
approximation ratio, but may improve the results in many
scenarios.

5 Algorithm design for multi-machine problem
The solution for the multi-machine problem is similar to
the single-machine problem. It also includes two steps.
The first step is to schedule the tasks without consid-
ering the extra utility of the jobs. The second step is
to schedule the jobs only considering the extra utility of
the jobs. And finally, select a better schedule from the
two steps.

5.1 Problemwithout extra utility
The EDF-multi-algorithm is similar to the one for the
single-machine problem. The difference is that every time
the algorithm needs to schedule a task, it finds the earli-
est unused slot in the task’s processing interval among all
the machines, while the algorithm for the single-machine
problem just needs to search in one machine. If there is no
unused slot, the replacement function also finds the task
with the smallest utility that has been scheduled among
all the machines. The detailed algorithm is shown in
Algorithm 4. The obtained result is optimal for the prob-
lem without extra utility.

Algorithm 4 EDF-Multi algorithm
Input: [si, ei] , ni, uij, 1 ≤ i ≤ n, 1 ≤ j ≤ ni
Output: Scheduling the tasks to maximize utility gain
1: Let J1, J2, . . . , Jn be sorted by ending time in non-

decreasing order;
2: Let the tasks of each job be sorted by utility in non-

increasing order;
3: for i = 1 to n do
4: for j = 1 to ni do
5: if There is an unused slot within [si, ei] in some

machine then
6: Find the earliest unused slot t in [si, ei] among

all the machines, and let it be machine Mk .
Schedule Tij to t at machineMk ;

7: else
8: Find the task with the smallest utility that has

been scheduled among all themachines and let
it be T and its utility be u;

9: if u < uij then
10: Run a recursive replacement to remove T ;

Fang et al. EURASIP Journal onWireless Communications and Networking (2017) 2017:200 Page 9 of 12

5.2 Problemwith only extra utility
We design an algorithm for the multi-machine problem
with only extra utility by adopting the idea of the DP algo-
rithm for the single-machine problem. Given job set J,
let s(J) = minJi∈J {si} be the minimum starting time of
J, p(J) = ∑

Ji∈J ni be the total processing time of J, and
σ(J) = ∑

Ji∈J σi be the total extra utility of J.
Define c(J) = 〈t, j〉 as a 2-tuple where t is the time and j

is the number of used machines at t that the last job in J is
completed in an EDF schedule.
Define 〈t, j〉+p =

〈
t +

⌊
j+p+1

m

⌋
, (j + p) mod m

〉
which

represents scheduling p tasks from time t and after
machine Mj continuously. Because there are m machines,
m tasks can be scheduled in each slot. We focus on
how many machines are used in slot t rather than which
machines are used. Without loss of generality, we assume
〈t, j〉 represent in slot t, machineM1 toMj are used. There-
fore, the ending time after scheduling p tasks from time
t and after machine Mj continuously is t +

⌊
j+p+1

m

⌋
, and

at the ending time, (j + p) mod m machines are used. In
this paper, 〈t + 1, 0〉 equals to 〈t,m〉 representing in slot t,
all themmachines are used.
Define 〈t, j〉 < 〈t′, j′〉 if t < t′ or t = t′ and j < j′. It

represents that 〈t, j〉 is earlier than 〈t′, j′〉. 〈t, j〉 = 〈t′, j′〉
only if t = t′ and j = j′.
We can regard the scheduling process as putting tasks to

a 2-dimensional array from top to bottom and from left to
right. Given a starting place 〈s, j〉, the tasks can be sched-
uled 〈s, j + 1〉 to 〈s,m〉, 〈s + 1, 1〉 to 〈s + 1,m〉, 〈s + 2, 1〉
to 〈s + 2,m〉, and so on. Therefore, 〈t′, j′〉 − 〈t, j〉 can be
regardedas howmany tasks canbeput from 〈t, j〉+1 to 〈t′, j′〉.
Let s be a starting time, j be the number of used

machines in s, and σ be an integer representing utility.
Similarly to but different from the single-machine prob-
lem, Ci(〈s, j〉, σ) is defined as the minimum value of c(J)
with respect to feasible set J ⊆ {J1, J2, . . . , Ji}, with s(J) ≥ s,
σ(J) ≥ σ and j machines are used in s. If there is no such
feasible set J, then Ci(〈s, j〉, σ) = 〈+∞,+∞〉. Accordingly,
the final result maximizing the utility of a feasible set is
given by the largest value of σ such that Cn(〈smin, 0〉, σ) is
finite, where smin = min1≤i≤n{si}.
Ci(〈s, 0〉, σ) = min
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ci−1(〈s, 0〉, σ)

max{〈si, 0〉,Ci−1(〈s, 0〉, σ − σi)} + ni
min〈s′ ,0〉>〈s,j〉,σ ′<σ {Ci−1(〈s′, 0〉, σ ′) + max{0, ni − (〈s′, 0〉 − 〈si, 0〉)
+Pi−1(〈s, 0〉, 〈s′, 0〉, σ − σi − σ ′)}}

(12)

Pi−1(〈s, 0〉, 〈s′, 0〉, σ ′′) = min
{
Pi−1(〈s+, 0〉, 〈s′, 0〉, σ ′′)
min0<σ ′≤σ ′′ {max{0,Ci−1(〈s, 0〉, σ ′) − 〈si, 0〉} + Pi−1(〈s′′, 0〉, 〈s′, 0〉, σ ′′ − σ ′)}

(13)

The dynamic programming recursion formula is shown
in Eqs. (12) and (13). We now introduce the recursion
formula in details. The definition of Ci(〈s, 0〉, σ) whose
value is a 2-tuple represent the smallest ending place
〈t, x〉 where a feasible set J ⊆ {J1, J2, . . . , Ji} can complete,
while satisfying u(J) ≥ σ , s(J) ≥ s and j machines are
used in s.
If Ji /∈ J , i.e., Ji cannot be contained in a feasible set J

satisfying the constraint, Ci(〈s, 0〉, σ) = Ci−1(〈s, 0〉, σ).
Let us consider the situation Ji ∈ J , where Ji is contained

in a feasible set J satisfying the constraint. There are two
cases as follows.
Case 1: Job Ji is apparent to start after 〈si, 0〉. If c(J −

{Ji}) ≤ 〈si, 0〉, or else c(J − {Ji}) > 〈si, 0〉 and J − {Ji}
are scheduled continuously from 〈si, 0〉 to c(J − {Ji}), then
Ci(〈s, 0〉, σ) = max{〈si, 0〉,Ci−1(〈s, 0〉, σ − σi)} + ni.
Case 2: Job Ji is apparent to start after 〈si, 0〉. But the

tasks scheduled between 〈si, 0〉 and c(J −{Ji}) are not con-
tinuous. That is, some tasks of job Ji can be scatterred
between 〈si, 0〉 and c(J − {Ji}) rather than after c(J − {Ji}).
As stated in [16], the EDF method schedules the tasks as
the form of periods of continuous processing. A period of
continuous processing is called a block. We consider the
scheduling of J − {Ji} in the DP algorithm. Let the starting
time of the last block in J − {Ji} be 〈s′, 0〉, and the utility of
the last block in J − {Ji} be σ ′, then the ending time of the
last block is Ci−1(〈s′, 0〉, σ ′)}. Let Pi−1(〈s, 0〉, 〈s′, 0〉, σ ′′) be
the minimum amount of processing done between 〈si, 0〉
and 〈s′, 0〉, with respect to feasible set J ′′ ⊆ {J1, J2, . . . , Ji−1}
with s(J ′′) ≥ s, c(J ′′) ≤ s′, and σ(J ′′) ≥ σ ′′, then the
number of slots available for job Ji between 〈si, 0〉 and
〈s′, 0〉 is

〈s′, 0〉 − 〈si, 0〉 − Pi−1(〈s, 0〉, 〈s′, 0〉, σ − σi − σ ′).
Then, the completing time Ci(〈s, 0〉, σ) can be repre-

sented as
Ci−1(〈s′, 0〉, σ ′)} + max{0, ni − 〈s′, 0〉 + 〈si, 0〉 +

Pi−1(〈s, 0〉, 〈s′, 0〉, σ − σi − σ ′)}
Enumerating every s′ and σ ′, we can get
Ci(〈s, 0〉, σ) = min〈s′,0〉>〈s,0〉,σ ′<σ {Ci−1(〈s′, 0〉, σ ′)} +

max{0, ni−〈s′, 0〉+〈si, 0〉+Pi−1(〈s, 0〉, 〈s′, 0〉, σ −σi−σ ′)}}.
We now introduce how to realize the the compu-

tation of Pi−1(〈s, 0〉, 〈s′, 0〉, σ ′′). Recall the definition of
Pi−1(〈s, 0〉, 〈s′, 0〉, σ ′′). It is the minimum number of tasks
scheduled between 〈si, 0〉 and 〈s′, 0〉 satisfying the utility
constraint. Assume Pi−1(〈s, 0〉, 〈s′, 0〉, σ ′′) is achieved by a
non-empty set J ′′ ⊆ {J1, J2, . . . , Ji−1}.
If 〈s(J ′′), 0〉 > 〈s, j〉, then Pi−1(〈s, 0〉, 〈s′, 0〉, σ ′′) =

Pi−1(〈s(J ′′), 0〉, 〈s′, 0〉, σ ′′). Therefore, we can enumerate
every s+ > s and find the result. The result is the
minimum one among mins+>s{Pi−1(〈s+, 0〉, 〈s′, 0〉, σ ′′)}.
Otherwise, 〈s(J ′′), 0〉 = 〈s, 0〉. Let the first block in

the solution be J ′ and the total extra utility of the first
block be σ ′, then the ending time of the first block
is Ci−1(〈s, 0〉, σ ′). Therefore, Pi−1(〈s, 0〉, 〈s′, 0〉, σ ′′) can

Fang et al. EURASIP Journal onWireless Communications and Networking (2017) 2017:200 Page 10 of 12

be represented as max{0,Ci−1(〈s, 0〉, σ ′) − 〈si, 0〉} +
Pi−1(〈s′′, 0〉, 〈s′, 0〉, σ ′′ − σ ′), where s′′ is the smallest
starting time 〈s′′, 0〉 ≥ Ci−1(〈s, 0〉, σ ′). Enumerat-
ing every σ ′, we can obtain Pi−1(〈s, 0〉, 〈s′, 0〉, σ ′′) =
min0<σ ′≤σ ′′ {max{0,Ci−1(〈s, 0〉, σ ′) − 〈si, 0〉} +
Pi−1(〈s′′, 0〉, 〈s′, 0〉, σ ′′ − σ ′)}.
The initial conditions are shown in Eqs. (14) to (17).

C0(〈s, 0〉, 0) =
〈⌈

s + 1
m

⌉

, smodm
〉

, for all starting time s

(14)

C0(〈s, 0〉,w) = +∞, for all starting time s andw > 0 (15)

Pj−1 = (〈s, 0〉, 〈s′, 0〉, 0) = 0, for j = 1, 2, . . . , n (16)

P0(〈s, 0〉, 〈s′, 0〉, σ ′′) = +∞, for σ ′′ > 0 (17)
An improvement of the DP formula for the single-

machine problem can also be used in the multi-machine
problem. It cannot improve the result in a worst case
where the tasks have no utility, but it can improve the
result for many inputs.

5.3 Approximation algorithm for multi-machine problem
The same as single-machine problem, the main idea
of the approximation algorithm for the multi-machine
problem is to get two intermediate results using the EDF-
multi-algorithms and the DP algorithm for the multi-
machine problem independently and then combine the
two results of the two algorithms. First, it uses the EDF-
multi-algorithm to solve the problem without extra job
utility. Second, it uses the DP algorithm to solve the prob-
lem with only extra job utility. Finally, it selects a larger
one from the two scheduling results. Algorithm APPXm
shows the detailed approximation algorithm.

Theorem4 TheAPPXmalgorithm is a 2-approximation
algorithm.

Proof Let OPT be the utility obtained by an optimal
solution and ALG be the utility obtained by the APPXm
algorithm. It is easy to find that OPT can be represented as
OPT = u + σ , where u is the total utility of the scheduled
tasks and σ is the total extra utility of the entirely sched-
uled jobs in an optimal solution. Let u′ be the total utility
derived by the EDF-multi-algorithm and σ ′ be the total
utility obtained by the dynamic programming algorithm.
From the earlier analysis, both the EDF-multi-algorithm
for the problemwithout extra utility and the dynamic pro-
gramming algorithm for the problem with only an extra
utility are optimal. Thus, u ≤ u′ and σ ≤ σ ′, then we
have OPT ≤ u′ + σ ′. ALG actually can be represented as

Algorithm 5 APPXm algorithm
Input:m, n, [si, ei] , σi, ni, uij, 1 ≤ i ≤ n, 1 ≤ j ≤ ni
Output: Scheduling the tasks tommachines to maximize
utility gain.
1: Use the EDF-Multi algorithm to solve the problem

without extra utility;
2: Use the dynamic programming algorithm to schedule

jobs with only the extra utility tommachines;
3: Use the EDF-Multi algorithm to solve the problem

without extra utility;
4: Use the DP algorithm to solve the problem with only

extra utility;
5: Let T be the set of tasks scheduled by the EDF-Multi

algorithm;
6: Let J be the set of jobs scheduled by the DP algo-

rithm;
7: Let u(T) be the total utility of T inlcuding the utility

of the tasks in T and the extra utility of the completed
jobs among T ;

8: Let u(J) be the total utility of J including the extra
utility of the jobs in J and the utility of all the tasks of
J ;

9: if u(T) < u(J) then
10: Use the scheduling of the DP algorithm;
11: else
12: Use the scheduling of the EDF-Multi algorithm;

ALG ≥ max{u′, σ ′}. Therefore, OPT ≤ 2ALG. It completes
the proof.

6 Simulation result
The simulation result is shown in this section. As the com-
putation complexity of our algorithm is high, especially
the DP algorithm; thus, the input of our simulation is set
to not too large. The number of machines used in our
simulation is at most 5, the number of applications is at
most 100, and the number of tasks for each application is
at most 5. The utility of each task is a random value. The
starting time and the ending time and the extra utility of
each application is also randomly generated.
As the optimal result is hard to compute; thus, we use

an upper bound result to represent the optimal result. The
upper bound is computed by dividing the extra utility of
each application into its tasks in proportion, that is task
with high utility will be assigned with a high extra utility.
The scheuding result in single machine is shown in

Fig. 8. As shown in Fig. 8, the utility that the approxi-
mation algorithm get increases as the number of applica-
tions increases. However, when the number of application
increases to a certain degree, the utility that the approxi-
mation algorithm can get increases slower; this is because

Fang et al. EURASIP Journal onWireless Communications and Networking (2017) 2017:200 Page 11 of 12

Fig. 8 Scheduling with single machine

the single machine is approaching to its maximum com-
puting load. Figure 9 illustrates the scheduling result in
five machines. Similar as the single-machine case, the util-
ity that the approximation algorithm can get increase as
the number of applications increases. And the increasing
rate gets slower as the multiple machines are getting to
their maximum load. Because the upper bound we used
to represent the optimal result is higher than the real opti-
mal result, therefore, the utility that the approximation
algorithm gets can get closer to the optimal result and the
difference is much less than two times, which confirms the
approximation ratio; thus, the performance is acceptable
in our simulation.

7 Conclusions
This paper proposes a class of algorithms to solve the
problem of maximizing utility for job scheduling where
each job consists of multiple tasks. Different from the

Fig. 9 Scheduling with multi-machine

existing works which either consider job utility or task
utility individually, this paper considers both job util-
ity and task utility simultaneously by introducing extra
utility for every job. We analyze the complexity of the
problem and discuss two sub-problems of scheduling
jobs in a single machine and scheduling jobs in multiple
machines. We design two 2-approximation algorithms for
the sub-problems, and the approximation proofs are also
presented. Although the time complexity is pseudo poly-
nomial, we provide a theoretical insight into this problem.

Acknowledgements
This work was supported in part by the National Natural Science Foundation
of China under grant nos. 61502099, 61632008, 61320106007, 61502100,
61532013, 61602084, and 61672154, Jiangsu Provincial Natural Science
Foundation of China under grant no. BK20150637, Jiangsu Provincial Key
Laboratory of Network and Information Security under grant no. BM2003201,
Key Laboratory of Computer Network and Information Integration of Ministry
of Education of China under grant no. 93K-9, and Collaborative Innovation
Center of Novel Software Technology and Industrialization.

Authors’ contributions
XF and WW conceived and designed the study. XF performed the
experiments. XF and YL wrote the paper. JL, HG, and YL reviewed and edited
the manuscript. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1School of Computer Science and Engineering, Southeast University, Nanjing,
China. 2School of Computer Science and Technology, Harbin Institute of
Technology, Harbin, China. 3Department of Computer Science, Georgia State
University, Atlanta, USA.

Received: 10 August 2017 Accepted: 13 November 2017

References
1. SH Bokhari, Assignment Problems in Parallel and Distributed Computing, vol.

32. (Springer US, New York, 2012)
2. M Armbrust, A Fox, R Griffith, AD Joseph, R Katz, A Konwinski, et al., A view

of cloud computing. Commun. ACM. 53(4), 50–58 (2010). Available from:
URL http://doi.acm.org/10.1145/1721654.1721672

3. Q Zhang, L Cheng, R Boutaba, Cloud computing: state-of-the-art and
research challenges. J. Int. Serv. Appl. 1(1), 7–18 (2010). Available from:
http://dx.doi.org/10.1007/s13174-010-0007-6

4. V Sharma, U Mukherji, V Joseph, S. Gupta, Optimal energy management
policies for energy harvesting sensor nodes. IEEE Trans. Wirel. Commun.
9(4), 1326–1336 (2010)

5. C Lefurgy, K Rajamani, F Rawson, W Felter, M Kistler, TW Keller, Energy
management for commercial servers. Computer. 36(12), 39–48 (2003)

6. RL Graham, EL Lawler, JK Lenstra, AHGR Kan, in Discrete Optimization
IIProceedings of the Advanced Research Institute on Discrete Optimization
and Systems Applications of the Systems Science Panel of NATO and of the
Discrete Optimization Symposium co-sponsored by IBM Canada and SIAM
Banff, Aha. and Vancouver. vol. 5 of Annals of Discrete Mathematics, ed. by
ELJ P L Hammer, BH Korte. Optimization and approximation in
deterministic sequencing and scheduling: a survey (Elsevier, 1979),
pp. 287–326. Available from: http://www.sciencedirect.com/science/
article/pii/S016750600870356X. Accessed 29 Apr 2008

7. D Applegate, W Cook, A computational study of the job-shop scheduling
problem. ORSA J. Comput. 3(2), 149–156

http://doi.acm.org/10.1145/1721654.1721672
http://dx.doi.org/10.1007/s13174-010-0007-6
http://www.sciencedirect.com/science/article/pii/S016750600870356X
http://www.sciencedirect.com/science/article/pii/S016750600870356X

Fang et al. EURASIP Journal onWireless Communications and Networking (2017) 2017:200 Page 12 of 12

8. EL Lawler, JK Lenstra, AHGR Kan, DB Shmoys, in Logistics of Production and
Inventory. vol. 4 of Handbooks in Operations Research andManagement
Science. Chapter 9. Sequencing and scheduling: algorithms and
complexity (Elsevier, 1993), pp. 445–522. Available from: http://www.
sciencedirect.com/science/article/pii/S0927050705801896

9. J Blazewicz, JK Lenstra, AHGR Kan, Scheduling subject to resource
constraints: classification and complexity. Discret. Appl. Math. 5(1), 11–24
(1983). Available from: http://www.sciencedirect.com/science/article/pii/
0166218X83900124. Accessed 9 Sept 2002

10. Y Zheng, B Ji, N Shroff, P Sinha, in 2015 IEEE 8th International Conference on
Cloud Computing. Forget the deadline: scheduling interactive
applications in data centers (IEEE, New York, 2015), pp. 293–300

11. MR Garey, DS Johnson, Two-processor scheduling with start-times and
deadlines. SIAM J. Comput. 6(3), 416–426 (1977)

12. MR Garey, DS Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness. (W.H. Freeman & Co, New York, 1979)

13. A Bar-Noy, S Guha, JS Naor, B Schieber, in Proceedings of the Thirty-first
Annual ACM Symposium on Theory of Computing. STOC ’99. Approximating
the throughput of multiple machines under real-time scheduling (ACM,
New York, 1999), pp. 622–631. Available from: http://doi.acm.org/10.
1145/301250.301420

14. A Bar-Noy, R Bar-Yehuda, A Freund, J (Seffi) Naor, B Schieber, A unified
approach to approximating resource allocation and scheduling. J. ACM.
48(5), 1069–1090 (2001). Available from: http://doi.acm.org/10.1145/
502102.502107

15. G Calinescu, A Chakrabarti, H Karloff, Y Rabani, An improved
approximation algorithm for resource allocation. ACM Trans. Algorithms.
7(4), 48:1–48:7 (2011). Available from: http://doi.acm.org/10.1145/
2000807.2000816

16. EL Lawler, A dynamic programming algorithm for preemptive scheduling
of a single machine to minimize the number of late jobs. Ann. Oper. Res.
26(1-4), 125–133 (1991). Available from: http://dx.doi.org/10.1007/
BF02248588

17. G Steiner, Models and algorithms for planning and scheduling problems
minimizing the number of tardy jobs with precedence constraints and
agreeable due dates. Discret. Appl. Math. 72(1), 167–177 (1997). Available
from: http://www.sciencedirect.com/science/article/pii/
S0166218X96000431. Accessed 10 Jan

18. H Kise, T Ibaraki, H Mine, A solvable case of the one-machine scheduling
problem with ready and due times. Oper. Res. 26(1), 121–126 (1978).
Available from: http://dx.doi.org/10.1287/opre.26.1.121

19. V Bafna, B Narayanan, R6 Ravi, Nonoverlapping Local Alignments, Weighted
Independent Sets of Axis Parallel Rectangles. (Center for Discrete
Mathematics & Theoretical Computer Science, Princeton, 1995)

20. P Berman, B DasGupta, S Muthukrishnan, in Proceedings of the Thirteenth
Annual ACM-SIAM Symposium on Discrete Algorithms. SODA ’02. Simple
approximation algorithm for nonoverlapping local alignments (Society
for Industrial and Applied Mathematics, Philadelphia, 2002), pp. 677–678.
Available from: http://dl.acm.org/citation.cfm?id=545381.545471

21. R Bar-Yehuda, MM Halldórsson, JS Naor, H Shachnai, I Shapira, in
Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete
Algorithms. SODA ’02. Scheduling split intervals (Society for Industrial and
Applied Mathematics, Philadelphia, 2002), pp. 732–741. Available from:
http://dl.acm.org/citation.cfm?id=545381.545479

22. R Bar-Yehuda, D Rawitz, Using fractional primal-dual to schedule split
intervals with demands. Discret. Optim. 3(4), 275–287 (2006). Available
from: http://dx.doi.org/10.1016/j.disopt.2006.05.010

23. VT Chakaravarthy, A Roy Choudhury, S Roy, Y Sabharwal, in Proceedings of
the 19th International Conference on Parallel Processing. Euro-Par’13.
Scheduling jobs with multiple non-uniform tasks (Springer-Verlag, Berlin,
Heidelberg, 2013), pp. 90–101. Available from: http://dx.doi.org/10.1007/
978-3-642-40047-6_12

http://www.sciencedirect.com/science/article/pii/S0927050705801896
http://www.sciencedirect.com/science/article/pii/S0927050705801896
http://www.sciencedirect.com/science/article/pii/0166218X83900124
http://www.sciencedirect.com/science/article/pii/0166218X83900124
http://doi.acm.org/10.1145/301250.301420
http://doi.acm.org/10.1145/301250.301420
http://doi.acm.org/10.1145/502102.502107
http://doi.acm.org/10.1145/502102.502107
http://doi.acm.org/10.1145/2000807.2000816
http://doi.acm.org/10.1145/2000807.2000816
http://dx.doi.org/10.1007/BF02248588
http://dx.doi.org/10.1007/BF02248588
http://www.sciencedirect.com/science/article/pii/S0166218X96000431
http://www.sciencedirect.com/science/article/pii/S0166218X96000431
http://dx.doi.org/10.1287/opre.26.1.121
http://dl.acm.org/citation.cfm?id=545381.545471
http://dl.acm.org/citation.cfm?id=545381.545479
http://dx.doi.org/10.1016/j.disopt.2006.05.010
http://dx.doi.org/10.1007/978-3-642-40047-6_12
http://dx.doi.org/10.1007/978-3-642-40047-6_12

	Abstract
	Keywords

	Introduction
	Related works
	System model and problem formulation
	System model
	Problem statement

	Algorithm design for single-machine problem
	Problem without extra job utility
	Problem with only extra job utility
	Approximation algorithm for single-machine problem
	An improvement for the DP algorithm

	Algorithm design for multi-machine problem
	Problem without extra utility
	Problem with only extra utility
	Approximation algorithm for multi-machine problem

	Simulation result
	Conclusions
	Acknowledgements
	Authors' contributions
	Competing interests
	Publisher's Note
	Author details
	References

