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Abstract

In this paper, we investigate the problem of dynamic power allocation for a multiuser transmitter supplied by
hybrid energy sources in details. Specifically, we focus on the hybrid energy sources which include both the
traditional power grid and various renewable sources whereby there are a few issues in considerations: (1) The
energy harvested jointly from various renewable sources is time-varying and possibly unpredictable and is stored in
a limited capacity buffer with battery leakage. (2) At the meantime, the data arrives randomly to the transmitter and
queues according to the individual receivers to wait to be transmitted. (3) In addition, the wireless channels
fluctuate randomly due to fading. Taking into account the time variant and dynamic features of this system, we
develop a dynamic power allocation algorithm for the transmitter with the aim of minimizing the average amount
of energy consumption from the power grid over an infinite horizon, subject to all data in queues cannot exceed a
given deadline of receivers. The research question is formulated as a stochastic optimization problem, then we
utilize Lyapunov optimization to exploit an online algorithm with low complexity, and it does not require prior
statistical knowledge of the stochastic processes. Performance analysis of the proposed algorithm is carried out in
theory, which shows that the proposed algorithm performs arbitrarily close to the optimal objective value;
meanwhile, the algorithm ensures that the maximum delay of all data queues cannot exceed a given value. Finally,
performance comparison shows that our proposed algorithm provides not only better performance but also less
time delay than other two algorithms.
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1 Introduction
As the vast energy consumption of the devices in
wireless communication systems has recently raised
considerable environmental concerns, eco-friendly green
communication, aiming at maximizing energy efficiency
(bit-per-Joule), have drawn considerable research
interests [1–3]. A large number of green technologies/
methods for different wireless communication systems
have been reported in the literatures [4–6]. Most of
these works assume that the communication systems are
powered by a constant energy source (such as traditional
power grid, and diesel generator) or a rechargeable bat-
tery, such that the energy can be continuously used for
system operations whenever needed.

On the other hand, as an economical and environmental-
friendly supply of energy for communication nodes com-
pared to traditional sources of energy, energy harvesting
(EH) has recently attracted a large amount of attention of
researchers [7–9]. EH nodes can harvest energy from nat-
ural resources, such as solar, wind, vibration, electromag-
netic, and thermoelectric, thereby the harvested energy is
substantially free of cost and can be unlimitedly available.
As such, wireless networks composed of EH nodes can be
energy self-sustained and reduce the use of conventional
energy and accompanying carbon footprint. In addition,
EH devices do not require conventional recharging; it en-
ables untethered mobility and therefore can be deployed
in hard-to-reach places such as remote rural areas, even
within the human body [7, 10, 11]. However, the energy
that can be harvested from the environment is unstable
and varies over time, e.g., energy fluctuation caused by
time-dependent solar and wind patterns. Therefore, EH
brings new problems of intermittency and randomness of
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available energy. As a result, all wireless nodes powered by
renewable energy are subject to the EH constraints over
time, i.e., the total energy consumption up to any time
must be less than the energy harvested by that time.
Within the past few years, a large body of research works
on power management has been done [12–19] in EH
wireless communication systems including single-user set-
ting, broadcast channels, relay channels, interference
channels, and multiple access channels.
However, the above works with EH capability [12–19]

assume that EH is the only source of energy for the
transmitter, the proposed schemes just apply to the com-
munication system with low traffic demands. As a mat-
ter of fact, the productions of renewable energy, strongly
influenced by weather conditions, are intermittent and
cannot be forecasted accurately [6]. Therefore, a sole EH
source may not be able to maintain stable operation or
guarantee a certain quality of service (QoS) of the sys-
tem. To achieve both reliable and green communication,
the concept of hybrid energy sources, i.e., using different
energy sources in a complementary manner, has also
drawn interests from both industry and academia [20–23].
For instance, Huawei Pty Ltd. has already developed base
stations which draw energy from both solar panels and a
wind energy harvester [20], and power grid as a supple-
ment, as shown in Fig. 1.
With the hybrid energy sources [23–29], most of the

researches focus on two categories: (1) deterministic EH
model and (2) statistical EH model. The first category
refers to the model that the energy arrival times and the
amount of harvested energy are to be known as a priori
at the transmitter. And the second model is referred to
that the prior knowledge of the statistical distribution of
the EH process is known. Paper [24], based on the
deterministic EH model, developed an energy efficient
resource allocation scheme for timesharing multiuser
systems by Lagrange dual decomposition method. And
[25] focused on the joint energy-bandwidth allocation
problems in multiuser channels based on the first EH

model and proposed an iterative algorithm using the
Proximal Jacobian ADMM. For the deterministic EH
model, [26] proposed the optimal offline transmission
scheme for the point-to-point transmission to reduce
the grid energy consumption. Considering random en-
ergy and data arrivals, Gong et al. [27] explored the
structure of the optimal power allocation policy based
on the statistical EH model. At the same time, paper
[28] studied the energy-efficient resource allocation
problem in an interference-free network and proposed
the optimal offline and online algorithms based on the
two EH, respectively. Similarly, the authors in [29]
exploited an optimal resource allocation scheme to meet
outage probability constraint by using dynamic program-
ming (DP) approach.
All these works [24–29] based on both models pro-

vided many important references for our research. In
practice, it is difficult to know the energy profile a priori
at the transmitter [6]. Especially, it is more difficult to
obtain the statistical knowledge of the energy generated
jointly by both solar and wind energy sources, even
more renewable sources. Besides, both the time-varying
channel conditions and the dynamic mobile traffic have
the common features of randomness and unpredictability,
resulting in that their statistical properties are uncertain
or hard to obtain in a longtime. However, all works in
[24–26, 28] only consider full buffer networks without
taking into account the dynamics of the data queues.
Although Han and Ansari [27] took into account this
factor, just focused on the single-link scenario and their pro-
posed algorithms are not suitable for networks with mul-
tiple users. As such, the algorithms proposed in [24–29]
are hardly implemented in practice because they require
prior knowledge of the EH process, data arrival process
and the channel state process.
In this paper, we develop a dynamic power allocation

algorithm for the multiuser transmitter with hybrid
energy sources, which are independent of the prior
knowledge of any stochastic events, with the goal of
minimizing the time average energy drawn from the
power grid over an infinite horizon under certain delay
requirement. We consider hybrid energy sources in-
cluding both the traditional power grid and various re-
newable sources. The energy harvested from various
renewable sources is stored in a buffer (battery) with
limited capacity, and the harvested energy is time-
varying and possibly unpredictable. Moreover, the
battery is not perfect, such as storage loss and energy
leakage, which degrade the efficiency of the renewable
energy. The data arrives randomly to the transmitter and
queues according to the individual receivers, and the
wireless channel fluctuates randomly due to fading.
Taking into account the time variant and dynamic

features of this system, we formulate the problem as a
Fig. 1 A base station (BS) with hybrid energy sources
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stochastic network optimization problem and solved by
Lyapunov optimization approach initially developed in
[30, 31]. Researchers show in [30, 31] that the
optimization technique is well-suited for the queuing
model in the scheduling problem for renewable energy
supply and present a simple algorithm that does not re-
quire prior statistical information and is provably close
to optimal. The authors in [32, 33] applied the technique
in smart grid to solve the problems of power manage-
ment and energy trading respectively. Paper [34] studied
the issue of electric vehicles charging with renewable en-
ergy based on Lyapunov optimization.
The work in this paper is an extension of our earlier

work in [35] that only considered a single user in point-
to-point communication system. Note that our problem
formulation is different from that in [30–35]; we apply
the approach to the multiuser transmitter with hybrid
energy sources in fading channels, which have multiple
data queues to individual receivers. What is more,
different receivers have individual tolerable delay times.
As such, multiple queues will compete the limited re-
sources with each other in the case of limited energy
harvested by the transmitter, while at the same time sat-
isfying the maximal transmission power constraint and
the rate-power relationship constraint. The work in this
paper is not just only incremental with respect to our
earlier work in [35]. The research problem is now more
complicated and practical; a simple algorithm for power
allocation cannot resolve the problem anymore.
Our major contributions for this research are three-

fold: (1) No need to know the statistical information of
the EH process, data arrivals, and channel states; we de-
velop a dynamic power allocation algorithm for a multi-
user transmitter with the aim of minimizing the energy
consumption from the power grid, taking into account
the battery imperfection. (2) The proposed dynamic
algorithm can be easily implemented in practice, just
according to the current queue backlogs, channel states,
and EH condition. In addition, we reveal the tradeoff
between performance and delay by theoretical analysis.
(3) The solution of the optimization problem considered
in this paper provides a universal power allocation policy
for multiuser transmitter with hybrid energy sources
over an infinite horizon and facilitates the design of reli-
able green communication.
The remainder of this paper is organized as follows. In

Section 2, the model of a multiuser communication
system where the transmitter is powered by hybrid
energy sources is described. In Section 3, minimization
problem of the time average energy consumption from
the power grid is formulated and the dynamic power
allocation policy is elaborated. Simulation results are
presented in Section 4. In Section 5, some concluding
remarks are given.

2 System model
We consider a multiuser EH transmitter supplied by hy-
brid energy sources (composed of both power grid and
multiple renewable energy sources) in fading channels,
as shown in Fig. 2. The energy harvested from various
renewable sources is first stored in a limited capacity
buffer with imperfection before it can be used by the
transmitter. Without loss of generality, we assume that
the energy harvested is used only for transmission and
the energy consumed by circuit or for signal processing
is supplied by the power grid. The system operates in
slotted time t ∈ {0, 1, 2⋯} with fixed time slots, the
interval Δt is given at 1 s.
The transmitter has N receiver users; in every slot, the

new data randomly arrives at the transmitter and queues
according to individual receivers to await transmission
through individual wireless channels. Let a(t) = [a1(t),
a2(t),⋯, aN(t)] be the vector of new data arrivals on slot
t; here, an (t), n ∈ {1, 2,⋯, N}, is the rate of data in-
coming to the n-th data queue on slot t. We assume that
0 ≤ an(t) ≤ amax, ∀n, t, amax is the maximum arrival rate
for every data queue. Let μ(t) = [μ1(t), μ2(t),⋯, μN(t)]
denotes the vector of departure rate from data queues;
here, μn(t), n ∈ {1, 2,⋯, N}, in practice, is the transmis-
sion rate over corresponding wireless channel. Thus, the
data queue is updated by

Qn t þ 1ð Þ ¼ max Qn tð Þ−μn tð Þ; 0½ �
þ an tð Þ; ∀n; t ð1Þ

where Qn (t) expresses the backlog of n-th data queue.
We assume Qn (0) = 0 for all n, that is, each data queue
is empty before transmission.
For every slot, the transmission rate μ (t) depends on

transmission power allocated by the transmitter and
current channels condition. We assume that the wireless
channels fluctuate randomly due to fading and all chan-
nels are orthogonal. Let h(t) = [h1(t), h2(t), ⋯ , hN(t)]
be the vector of channels condition between the trans-
mitter and receivers, and hn (t) represents the attenu-
ation value and/or noise level of the n-th channel state
on slot t. Suppose that the channel state information
(CSI) at the beginning of every timeslot is known at the
transmitter via channel monitoring and feedback link, and
the overhead incurred by channel monitoring is neglected
for simplicity [15, 29]. The channel conditions remain
constant for the duration of each slot but may change at
slot boundaries. For any n and t, the value of hn (t) is de-
terministically bounded by constants, hmin ≤ hn(t) ≤ hmax.
The transmission rate μab over the wireless link (a, b)

depends on the channel state hab and transmission
power Pab; the rate-power curve is shown in Fig. 3.
Further, the relationship between the channel state,

transmission power, and rate on slot t can be described
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by the function g(pn(t), hn(t)) given by Shannon’s cap-
acity formula [28, 36].

μnðtÞ ¼ gðpnðtÞ; hnðtÞÞ ¼ 1
2
log2ð1þ pnðtÞ⋅hnðtÞÞ;∀n; t

ð2Þ

where n ∈ {1, 2, ⋯ , N}, the rate-power function g(⋅)
is assumed to be monotonically non-decreasing, deter-
mining the number of bits in data queue that can be
transferred over the wireless link. However, the data in
queues may be packets; we allow arbitrary fragmentation
of packets during transmission.
From the above discussion, in order to finite backlog

of all data queues (i.e., the data queues are all stable)
[30], the transmitter must make a decision of transmis-
sion power on each slot according both the backlog of
each data queue and current channels condition.
Assume that the transmission power vector on slot t is
denoted as p(t) = [p1(t), p2(t), ⋯ , pN(t)]. The total

transmission power on slot t is
PN

n¼1pn tð Þ, which is sup-
plied by both the EH sources and the power grid.

XN
n¼1

pn tð Þ ¼ Pp tð Þ þ Ph tð Þ; ∀t ð3Þ

where Pp (t) and Ph (t) are supplied by the power grid and
the energy queue buffered the energy harvested from EH
sources, respectively. Furthermore, the total power
consumed from the two types of energy sources is given
by ρ

PN
n¼1pnðtÞ. Here, ρ ≥ 1 is a constant, which accounts

for the inefficiency of the non-ideal transmitter [26].
We assume that b(t) Joules of energy is collected

jointly from various renewable sources at the end of the
t-th interval, the harvested energy is buffered in the bat-
tery before it can be used in the next time slot, b(t) ≤
Bmax, where Bmax represents the maximum capacity of
the buffer, i.e., the rechargeable battery can store at most
Bmax Joules of energy. Due to the battery defects, such
as energy leakage, supposing that a factor of 1 − β of the
stored harvested energy is leaked per time interval due
to the inefficiency of the battery [37], where 0 < β < 1
represents the efficiency of the battery per time slot. Let
B(t) be the amount of the available energy in the re-
chargeable battery (energy queue), thus we have the fol-
lowing update equation of energy queue:

Bðt þ 1Þ ¼ min
�
max ½βðBðtÞ−ρPhðtÞΔtÞ; 0� þ bðtÞ; Bmax

�
ð4Þ

We assume B(0) = 0, which denotes the available
energy before transmission.
The optimization goal is to minimize the time average

energy consumption from the power grid over a long
time, subject to the constraints of the stability of all data
queues. Due to the finite storage capacity and the pos-
sible leakage of the battery, it is beneficial to draw the
energy as quickly as possible from the battery so that

Fig. 2 Multiuser EH transmitter supplied by hybrid energy sources in fading channels

Fig. 3 Set of rate-power curassumed to be monotonicallyions
h1<h2<h3
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more harvested energy can be stored in the future, and
thus the amount of possibly wasted harvested energy is
minimized. Based the above discussion and the objective,
we expect to find a dynamic power allocation scheme in
the next section, which provides insight into how to effi-
ciently utilize the energy supplied by the EH source, sav-
ing the traditional energy.

3 Problem formulation and solution
Our objective is to minimize the energy consumption
from the power grid by making a decision of transmis-
sion power p(t) in every slot; the problem can be formu-
lated as a stochastic optimization problem as follows:

min : lim
t→∞

1
t

X
τ¼0

t−1

E

(
max

"
ρ
X
n¼1

N

pnðτÞ−BðτÞ; 0
#)

ð5Þ

s:t : Qn < ∞; ∀n ð6Þ

Tolerable delay for the n‐th user ≤Dmax
n ; ∀n ð7Þ

μnðtÞ ¼
1
2
log2ð1þ pnðtÞ⋅hnðtÞÞ; ∀n; t ð8Þ

0≤pn tð Þ≤pmax
n ð9Þ

where the optimization goal (5) shows that the time
average expected energy consumed by the transmitter
from the power grid is minimized over an infinite

horizon, therein max ½ρPN
n¼1pnðτÞ−BðτÞ; 0� represents

the energy consumption from the power grid on slot

τ, E{⋅} denotes statistical expectation. Constraint Eq. (6)

guarantees that all the queues are stable which de-

fined as: Qn≜ lim supt→∞
1
t

Pt−1
τ¼0E Qn τð Þf g < ∞ . Con-

straint Eq. (7) shows that the data queues have

individual delay requirements, namely, the data in each

queue waits for be transmitted to corresponding user, and

the waiting time cannot exceed a deadline of cor-

responding user. In constraint Eq. (9), pmax
n is the max-

imum transmission power allocated by the transmitter to

the n-th user. To ensure that the problem Eqs. (5)–(9) are

always feasible, we assume that the set of data arrivals

vector is in the feasible region of the problem. The authors

in [38, 39] defined the set of data arrivals vector that can

be transmitted reliably under some power-allocated algo-

rithm. In addition, the sum of the maximum allocation

power for each user is assumed no more than the

maximum transmission power of the transmitter Pmax, i.e.,PN
n¼1p

max
n ≤Pmax.

3.1 The delay-aware virtual queue
To ensure that the optimization objective satisfies the
delay constraints (7), we utilize virtual queues account-
ing for the constraints, which initially introduced in [30].
Let Zn(t), n ∈ {1, 2, ⋯ ,N} be the virtual queues. Fix
any parameter σn > 0, define Zn(0) = 0 for all n, and the
virtual queues update according to the following:

Zn t þ 1ð Þ ¼ max Zn tð Þ þ σn⋅1 Qn tð Þ>0f g−μn tð Þ; 0� � ð10Þ

where 1 Qn tð Þ>0f g is an indicator function that is 1 if
Qn(t) > 0 and 0 else. We can see from Eq. (9), the virtual
queue Zn(t) has an arrival process that add σn whenever
the backlog of the actual queue Qn(t) is non-empty. This
ensures that Zn(t) grows when there is unserved data in
the actual data queue Qn(t). The constant σn can adjust
the growth rate of the virtual queue Zn(t). If we can con-
trol the transmitter to guarantee that the queues Qn(t)
and Zn(t) have finite upper bounds, then we can ensure
that all bits in the n-th data queue are served within
maximum delay of Dmax

n slots, which is given in the fol-
lowing lemma.
Lemma 1 Suppose the system is controlled so that the

queue Qn(t) and Zn(t) have finite upper bounds, e.g.,
Zn tð Þ≤Zmax

n and Qn tð Þ≤Qmax
n for all t, then all bits in

data queue n are served with a maximum delay of
Dmax

n slots, which is defined as:

Dmax
n ¼ Qmax

n þ Zmax
n

σn
ð11Þ

The proof of Lemma 1 follows the approach of Lyapu-
nov optimization in [30].

3.2 Lyapunov optimization
Define Θ(t) ≜ (Q(t), Z(t)) as the concatenated vector of the
real and virtual queues, here Q(t) = [Q1(t), Q2(t), ⋯ ,
QN(t)], Z(t) = [Z1(t), Z2(t), ⋯ ,ZN(t)]. As a scalar meas-
ure of the congestion in all queues, we define the following
Lyapunov function:

L Θ tð Þð Þ≜ 1
2

PN
n¼1 Qn tð Þ2 þ Zn tð Þ2� �

. Define the condi-
tional 1-slot Lyapunov drift as follows:

ΔL Θ tð Þð Þ≜E L Θ t þ 1ð Þð Þ−L Θ tð Þð Þ Θ tð Þjf g ð12Þ
Making a decision p(t) to minimize ΔL(Θ(t)) alone

would push all queues towards lower backlog (i.e., delay)
[30] but which incur more energy consumption from
the power grid. Considering both the energy consump-
tion from the power grid (5) and queues backlog growth
(1) and (10), our objective is then to minimize the fol-
lowing function in each timeslot t:
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min: ΔLðΘðtÞÞ þ V ⋅E

(
max

"
ρ
X
n¼1

N

pnðtÞ−BðtÞ; 0

# �����ΘðtÞ
)

ð13Þ

Note that the left part of Eq. (13) is the growth of the
queues and the right part of Eq. (13) is the expected en-
ergy consumption from the power grid (be called pen-
alty), and Eq. (13) is called drift-plus-penalty expression
[30]. The parameter V > 0 is used to tune performance-
delay tradeoff between performance and queue backlog
(i.e., delay). So our approach minimizes a weighted sum
of drift and penalty, which can be proven bounded.
Lemma 2 The drift-plus-penalty expression for all

slots t satisfied:

ΔLðΘðtÞÞ þ V ⋅E

(
max

"
ρ
X
n¼1

N

pnðtÞ−BðtÞ; 0

# �����ΘðtÞ
)

≤C þ V ⋅E

(
max

"
ρ
X
n¼1

N

pnðtÞ−BðtÞ; 0

# �����ΘðtÞ
)

þ
X
n¼1

N

QnðtÞEfanðtÞ−μnðtÞ jΘðtÞg

þ
X
n¼1

N

ZnðtÞEfσn−μnðtÞ jΘðtÞg

ð14Þ

where the constant C is defined as:

C ¼
X

n¼1

N ½a2max þ μ2max�
2

þ
X

n¼1

N
max½σ2n; μ2max�

2

ð15Þ

The proof of Lemma 2 follows the approach of drift-
plus-penalty in [30] using the following inequality:

max b−c; 0ð Þ þ a½ �2≤b2 þ c2 þ a2 þ 2b a−cð Þ ð16Þ

which holds for a ≥ 0, b ≥ 0, and c ≥ 0, then we can yield
Eq. (14).

4 Real-time power allocation algorithm
By referring to Lyapunov optimization approach, we
transform the problem Eqs. (5)–(9) to minimize the
drift-plus-penalty expression in each slot, thus it is
equivalent to minimizing the right-hand-side of the
drift-plus-penalty bound Eq. (14) in each slot t,

min: V max

"
ρ
X
n¼1

N

pnðtÞ−BðtÞ; 0
#

þ
X
n¼1

N

QnðtÞ½anðtÞ−μnðtÞ� þ
X
n¼1

N

ZnðtÞ½σn−μnðtÞ�

ð17Þ
Simplifying Eq. (17) and removing the parts which

have nothing with our decision variable vector p(t), then
we obtain:

min: ρV
X
n¼1

N

pnðtÞ−
X
n¼1

N

½ZnðtÞ þ QnðtÞ� μðpnðtÞ; hnðtÞÞ

ð18Þ

4.1 Real-time optimization algorithm
Our online optimization algorithm is described as follows:
Step 1. Every slot t, observe Z(t), Q(t), h(t), a(t)

and b(t), then choose p(t) = [p1(t), p2(t), ⋯ , pN(t)]
to minimize Eq. (18), subjecting to the constraints
Eqs. (7)–(9);
Step 2. Update the real queues, virtual queues, and

energy queue according to Eq. (1), Eq. (10), and Eq. (4),
respectively.
The optimization solution of Eq. (18) can be solved by

examining each vertex formed by the solution space. We
denote the optimal power allocated to n-th data queue
in timeslot t as p�n tð Þ,

p�nðtÞ ¼ arg min ½ρVpnðtÞ

−
1
2
½ZnðtÞ þ QnðtÞ� log2ð1þ pnðtÞhnðtÞÞ� ∀n

To solve p�n tð Þ , substituting the rate-power function
Eq. (2) into Eq. (18), then differentiating with respect to
the transmit power pn(t) (decision variable), we will obtain:

p�n tð Þ ¼ Qn tð Þ þ Zn tð Þ
2 ln2⋅pV

−
1

hn tð Þ∀n; t ð19Þ

However, subjected to the constraints 0≤pn tð Þ≤pmax
n

for any n, t, the actual transmit power allocation pn(t) to
n-th user in slot t can be obtained according to:

pn tð Þ ¼ min pmax
n ; max 0; p�n tð Þ� �� � ð20Þ

If p
PN

n¼1pn tð Þ≤B tð Þ holds, the transmitter does not
need to draw additional energy from the power grid in
slot t; otherwise, the transmitter needs to draw the

amount of p
PN

n¼1pn tð Þ−B tð Þ additional energy in slot t.

4.2 Performance analysis
Theorem 1 Suppose g pmax

n ; hmin
� �

≥amax
n , ∀n ∈ {1, 2, ⋯ ,

N}. If Qn(0) = Zn(0) = 0, then for any fixed parameter
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σn, 0≤σn≤amax
n and V > 0 for all t, the proposed algo-

rithm has the following properties for each queue n:

1. In all slots, for all queues, Qn(t) and Zn(t) are upper
bounded by Qmax

n and Zmax
n respectively, where:

Qmax
n ¼ 2ln2⋅ρV

1
hmin

þ pmax
n

	 

þ amax

#
ð21Þ

Zmax
n ¼ 2ln2⋅ρV

1
hmin

þ pmax
n

	 

þ σn ð22Þ

2. The maximum delay of the data queue n can be
calculated according to (11) given by:

Dmax
n ¼

4ln2 ⋅ Vρ 1
hmin

þ pmax
n

� �
þ amax þ σn

σn
ð23Þ

3. Given that σn ≤ E{an}, the time average expected
additional energy drawn from the power grid using
the proposed algorithm is upper bounded with C/V
of the optimal value Topt, i.e.,

lim
t→∞

1
t

X
τ¼0

t−1

E

(
max

"
ρ
X
n¼1

N

pnðτÞ−BðτÞ; 0
#)

≤Topt þ C
V

ð24Þ
where Topt is the optimal value of minimizing average
energy drawn from the constant source, and C is given
in Eq. (15).
The proof further conducts the performance analysis

of the Lyapunov optimization as described in [30], and
the proof of Theorem 1 is given in the Appendix of
this paper.
The performance analysis shows that the congestions

of the queues grow linearly with V, while our goal de-
creases with increased V value, which is a tuning param-
eter to balance performance and delay. The performance
can be pushed arbitrarily close to the optimum by tun-
ing V, but the queues backlog may be longer. Thus, we
should choose appropriate V value. To reduce Dmax

n

value, we should use σn as large as possible while still
meet σn ≤ E{an}. We can choose σn = E{an} if this expect-
ation is given.

4.3 Comparison between the proposed algorithm and DP
The optimization problems considered in related works
[26, 28] are based on dynamic programming (DP); the
obtained algorithms can achieve the optimal objective
value. While the power allocation algorithm based on
Lyapunov optimization in this paper performs asymptot-
ically close to the optimal objective value by tuning the
value of V, as shown in Eq. (23). However, DP requires
more stringent system modeling assumptions, i.e., re-
quiring the prior knowledge of the probabilistic charac-
teristics of the EH process, data arrivals, and channel
states. In contrast, the Lyapunov optimization technique
does not need the prior knowledge of these stochastic
events. If the prior knowledge of energy harvesting, data
arrivals and channel state values (a(t), b(t), h(t)) were
known in advance, one could in principle make p(t) de-
cisions that minimize average energy consumption from
the power grid. One of the contributions of this paper is
to provide an efficient algorithm without knowing the
prior knowledge of any stochastic events. So our pro-
posed algorithm is suitable for broader applications.
Besides, our proposed algorithm just needs the obser-

vations of the current system states firstly, i.e., Z(t);Q(t);
h(t); a(t), and b(t), then make p(t) decisions according to
Eq. (18). So the proposed algorithm is simple to imple-
ment, the complexity is linear with the number of
queues. In contrast, the algorithms in [26–28] based on
DP showed that the complexity increase exponentially
with the number of time intervals. DP approach involves
computation of value function that can be difficult when
the state space of the system is large and suffers from a
curse of dimensionality when being applied to large-
dimensional systems (such as systems with many queues)
[31]. Therefore, as aforementioned, our proposed algo-

rithm has better scalability and easy to use.

5 Simulation results
To evaluate the performance of the proposed dynamic
power allocation algorithm, we assume that there are
three users and the energy is harvested from both solar
and wind energy, the energy output characteristic
follows an i.i.d. Poisson process. We evaluate the per-
formance of the proposed algorithm on daily data set,
i.e., in 3600 timeslots (the time interval is fixed as 1 s).
Note that we adopt the distribution just for exposition
purpose; the analysis in the previous section does not
depend on the distributions. The related simulation set-
tings are summarized in Table 1.
To better evaluate the performance of our proposed al-

gorithm, three strategies are considered in the simulations.
The first strategy uses Lyapunov optimization algorithm.
The latter two strategies (second and third strategies) use
simple greedy algorithm. The second strategy deploys
“absorb-upon-arrival” policy, which describes such
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scenario: when the energy in rechargeable battery cannot
meet the need of the transmitter, the transmitter immedi-
ately draws energy from the power grid for sending data,
which results in the least data delay time, but possibly
more energy consumption from the power grid. The third
strategy deploys the policy “absorb-at-deadline,” which
means that the transmitter uses only renewable energy be-
fore deadline, and does not draw energy from the power

grid even if the EH source cannot meet the need of the
transmitter until any data delay exceed the maximum,
where the deadline is set to 25 slots.
The performance comparison of three strategies is

shown in Fig. 4. Among the figures, Fig. 4a shows the
energy drawn by the transmitter from power grid in
every timeslot, and Fig. 4b shows the accumulated
amount of energy drawn from the power grid over a day
(i.e., 3600 timeslots). From Fig. 4, we can see that
Lyapunov optimization algorithm (our proposed algo-
rithm) achieves the best performance (the minimum
amount of energy consumption from the power grid)
among the three strategies, that is, more traditional en-
ergy is saved using our proposed algorithm. Under this
condition of parameter setting, about 2337 J of trad-
itional energy can be saved using the proposed algorithm
in comparison with using the strategy of absorb-upon-
arrival only over a day (3600 timeslots), and about
1225 J of traditional energy can be saved in comparison
with using the strategy of absorb-at-deadline over a day.
Here,V is set to 80 by trail and error.
Figure 5 shows the accumulated amount of the energy

consumption from power grid in different cases of aver-
age amount of energy harvested bav (bav1 ≤ bav2 ≤ bav3).
From Fig. 5, we can see that no matter under which
case, Lyapunov optimization algorithm can achieve the
best performance among the three strategies, and
absorb-upon-arrival policy provides the worst per-
formance. The reason is that Lyapunov optimization

Table 1 Simulation setting

Parameters Value

Number of users 3

Timeslot length 1 s

EH sources Solar and wind energy

Harvest process i.i.d. Poisson process

Data arrival process Uniform distribution

Inefficiency factor ρ 1.2

Energy leaked factor β 0.9

Bandwidth B 1 M/Hz

Channel Fading Gaussian

Average SNR 10 dB

Max transmit power Pmax 6 W

pmax
n For every user 2 W

σn, n = 1, 2, 3 3
4 E a1f g; 4

5 E a2f g; 3
4 E a3f g

amax
n n = 1,2,3 4.4, 2.9, 3.9 bit/slot

a

b

Fig. 4 Performance comparison of three strategies. a Energy consumption from the power grid in every timeslots. b Accumulated amount of
energy consumption from power grid over a day
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algorithm enables the transmitter to send more data
when channel state is better, while absorb-upon-arrival
policy can provide the least data delay time, which
resulting in the worst performance. However, no matter
which strategy is adopted among three strategies, the
smaller the amount of energy harvested by the trans-
mitter from the renewable energy sources is, the
more energy from the power grid is supplied for the
transmitter. Here, V is set to 80.
To have a better insight of the delay time reduction,

two strategies (Lyapunov optimization algorithm and
absorb-at-deadline policy) has been compared. Simula-
tion results on the fraction of waiting data of three
queues are shown in Fig. 6. Seen from Fig. 6, using

Lyapunov optimization algorithm results in much
smaller delay than the deadline. Most of the arrival data
wait about 5 slots used our proposed algorithm, while
the strategy absorb-at-deadline wait mostly 24 slots.
Based on Lyapunov optimization algorithm, the max-
imum delay Dmax

n (time-slots) computed by formula (11)
and the actual average delay Dactu

n of 3 data queues by

simulate, and the average delay Ddead
n based on absorb-

at-deadline strategy of 3 data queues are shown in
Table 2.
In order to study the impact of parameter V on the

additional energy cost from the power grid and average
delay of the data in the data queues, we have plotted
Fig. 7 showing the relationship between the energy cost
and the value of V and the relationship between the
average delay time and the value V. We can see that as
we expected, the average delay increases non-linearly
with the value of V while the energy cost decreases with
V. The energy cost and average delay reach saturation
when V is larger than a certain value (V = 80, seen from
Fig. 7), which illustrates that when V is large enough,
the average delay will reach its maximum and the energy
cost is close the optimal value (Topt).

6 Conclusions
In this paper, we develop a dynamic power allocation
algorithm for a multiuser transmitter powered by hybrid
energy sources (including the traditional power grid and
EH sources). The proposed algorithm provides insight
into how to efficiently utilize the energy supplied by the
EH sources, namely how to minimize the time average
energy consumption from the power grid at the same
time ensure the QoS of communication. Firstly, we

Fig. 6 Histogram of delay of data waiting in three data queues

Fig. 5 Comparison of accumulated amount of energy consumption
from power grid using three strategies (average amount of energy
harvested bav: bav1 ≤ bav2 ≤ bav3)
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model this kind transmitter in fading channels. The data
arrivals and energy harvested from surrounding both
randomly arrived at the transmitter, in addition the wire-
less channels fluctuate randomly, without knowing their
statistical probabilities. Secondly the issue is formulated
as a stochastic optimization problem, and a real-time
power allocation algorithm is exploited with low com-
plexity. The theoretical performance analysis shows that
the proposed algorithm outperforms the state-of-the-art
algorithms in terms of achieving a near optimal value by
tuning the parameter V, while ensure the time delay of
data queues would not exceed the maximum delay Dmax

n .
A further comparison of the proposed algorithm with
other two greedy algorithms demonstrates the proposed
algorithm can consume much less energy from the
power grid. Moreover, the algorithm of the optimization
problem in this paper does not require the knowledge of
statistical probabilities of the random processes; thereby, it
provides a universal power allocation policy for multiuser
transmitter with hybrid energy sources and facilitates the
design of reliable green communication paradigm.

7 Appendix
7.1 Proof of Theorem 1

1. We use induction method to show that:

Qmax
n ¼ 2ln2⋅ρV

1
hmin

þ pmax
n

	 

þ amax; ∀n; t

It holds clearly for t = 0 (because Qn (0) = 0). Next
we assume

QnðtÞ≤2ln2⋅ρV
1

hmin
þ pmax

n

	 

þ amax; ∀n; t

what we can do is to prove it also true for slot t + 1. If

QnðtÞ≤2ln2⋅ρV
1

hmin
þ pmax

n

	 


the maximum queue backlog growth is amax, then

QnðtÞ≤2ln2⋅ρV
1

hmin
þ pmax

n

	 

þ amax

If QnðtÞ≥2ln2⋅ρV 1
hmin

þ pmax
n

� �
, since Zn(t) ≥ 0, we have:

QnðtÞ þ ZnðtÞ≥2ln2⋅ρV 1
hmin þ pmax

n

	 


≥2ln2⋅ρV
1

hnðtÞ þ pmax
n

	 


In this case, according to the algorithm proposed
above we will have p�n tð Þ > pmax

n by formula (19). Then
we will choose pn tð Þ ¼ pmax

n on slot t according to (20),
thus the data queue is served by at least amax, because

g pmax
n ; hmin

� �
≥max amax; σn½ �

Hence the data queue backlog cannot grow on the
next slot, i.e.,

Table 2 Simulation results of two algorithms

Algorithms Queue 1 Queue 2 Queue 3

Lyapunov Dmax
n 31.7638 20.7181 23.8009

Lyapunov Dactu
n 4.6008 4.5276 4.8873

absorb-at-deadline Ddead
n 14.5031 12.7796 15.6809

Fig. 7 Energy from power grid and average delay for different V values using our proposed algorithm
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Qnðt þ 1Þ≤QnðtÞ≤2ln2⋅ρV
1

hmin
þ pmax

n

	 

þ amax

Therefore, we have

QnðtÞ≤2ln2⋅ρV
1

hmin
þ pmax

n

	 

þ amax

for all slot t.

The proof that ZnðtÞ≤2ln2⋅ρV 1
hmin

þ Pmax
n

� �
þ σn is

similar above.

2. It is very easy to prove according to Lemma 1 and
the conclusion of Theorem 1.

3. Since the proposed algorithm will always try to
minimize the right-hand-side part of the inequality
(14) among all feasible solutions, even the optimal
solution, assume the solution given by the proposed
algorithm and optimal solution are pn,pro(t) and pn,
opt(t) respectively, and the optimal result for
minimizing average energy drawn from the constant
source is Topt, then by plugging the solution into the
inequality (14), we can have the following:

ΔLðΘðtÞÞ þ VE

(
max

"
ρ
X
n¼1

N

pn;proðtÞ−BðtÞ; 0
# �����ΘðtÞ

)

≤C þ VE

(
max

"
ρ
X
n¼1

N

pn;optðtÞ−BðtÞ; 0
# �����ΘðtÞ

)

þ
X
n¼1

N

QnðtÞEfanðtÞ−μnðpn;optðtÞ; hnðtÞÞ jΘðtÞg

þ
X
n¼1

N

ZnðtÞEfσn−μnðpn;optðtÞ; hnðtÞÞ jΘðtÞg

≤C þ VTopt

ð25Þ

The result of (25) is based on the facts that

lim
T→∞

1
T

XT−1
t¼0

E an tð Þ−μn pn;opt tð Þ; hn tð Þ
� � ���Θ tð Þ

n o
≤0

lim
T→∞

1
T

XT−1
t¼0

E σn−μn pn;opt tð Þ; hn tð Þ
� � ���Θ tð Þ

n o
≤0

Summing inequality (25) over slots t ∈ {0, ⋯ , T}, we
can have:

LðΘðTÞÞ−LðΘð0ÞÞ

þ VE

(
max

"
ρ
X
n¼1

N

pn;proðtÞ−BðtÞ; 0

#)

≤CT þ VT ⋅Topt

ð26Þ
Using the fact that L(Θ(T)) ≥ 0 and L(Θ(0)) = 0, dividing

both sides of (26) by VT and letting T→∞ results in:

lim
T→∞

1
T

X
t¼0

T−1

E

(
max

"
ρ
X
n¼1

N

pn;proðtÞ−BðtÞ; 0
# )

≤Topt þ C
V
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