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Abstract

One of the main challenges for a massive multi-input multi-output (MIMO) system is to obtain accurate channel state
information despite the increasing number of antennas at the base station. The Bayesian learning channel estimation
methods have been developed to reconstruct the sparse channel. However, these existing methods depend heavily
on the channel distribution. In this paper, based on sparse Bayesian method, an expectation maximization-based
parameter iterative approach is proposed to estimate the massive MIMO channel with unknown channel distribution.
Using the approximate sparse feature, the massive MIMO channel is modeled as a non-zero Gaussian mixture and the
sparse Bayesian channel estimation is introduced. The channel marginal probability density function is expressed by

passing

using the general approximate message-passing algorithm. All of the required channel parameters are iteratively
estimated by the EM method. Simulation results show that the proposed scheme enables evident performance in
channel estimation accuracy with a lower complexity when channel distribution is unknown.
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1 Introduction

Massive multi-input multi-output (MIMO) [1], which
equipping a large number antennas at the base station
(BS) to simultaneously serve tens of users in the same
time-frequency channel, is widely considered as one of
the key techniques for future communication network.
Such systems can greatly improve the system capac-
ity and energy efficiency by exploiting the increased
degree of spatial freedom. Accurate downlink channel
state information (CSI) is essential for massive MIMO
systems to realize high-speed communication, and it is
also vital for signal detection, beam forming, and other
operations. However, it is difficult for the BS to obtain
accurate downlink CSI due to the prohibitively high over-
head used for the downlink channel estimation as the
number of antennas increases in massive MIMO sys-
tems. Most of the researches exploit the time division
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duplex(TDD) protocol to overcome this challenge. In
TDD, the downlink CSI could be achieved through the
uplink channel estimation by using the channel reci-
procity property. The CSI in the uplink is more easily
acquired at the BS due to the limited number of users.
However, the CSI acquired in the uplink is not always
accurate for the downlink. In addition, current wireless
networks are mainly dominated by the frequency division
duplex (FDD) protocol. Thus, it is of great importance
to explore the downlink CSI. Compressed sensing (CS),
which can reconstruct the sparse channel through few
pilots, is viewed as a promising method to solve this
problem.

Experimental results in [2, 3] show that the massive
MIMO channel is approximate sparse due to the limited
scatters at the BS. By exploiting the temporal correlation
and the sparsity of massive MIMO channels in time-
domain, [4] applied a sparse channel estimation scheme
and sharply reduced the pilot overhead. But the sparsity in
time domain maybe disappear with the increasing num-
ber of scatters at the user side [5]. Gao et al. [6] exploited
the spatial correlation of massive MIMO channels and

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the

Creative Commons license, and indicate if changes were made.


http://crossmark.crossref.org/dialog/?doi=10.1186/s13638-017-0967-3&domain=pdf
mailto: yfang@staff.shu.edu.cn
http://creativecommons.org/licenses/by/4.0/

Mei and Fang EURASIP Journal on Wireless Communications and Networking (2017) 2017:185

estimated massive MIMO channels through CS. In [7],
both spatial and temporal correlation were considered,
and a structured compressive sensing (SCS)-based spatio-
temporal joint channel estimation scheme is proposed
to further reduce the pilot overhead and improve the
estimation accuracy. These schemes estimate channels
mostly based on greedy algorithms, such as the orthog-
onal matching pursuit (OMP) algorithm, the subspace
pursuit (SP) algorithm, etc. The sparse Bayesian learn-
ing [8] has been developed to estimate the sparse channel
recently. It takes channel distribution into consideration,
resulting in a high accuracy of estimator. However, the
parameters of channel distribution are hard to obtain in
practice.

In this paper, an expectation maximization (EM)-based
parameter iterative approach is proposed to estimate
the massive MIMO channel based on sparse Bayesian
method. With a large antenna array, the massive MIMO
channel matrix is approximate sparse in the beam domain.
We model the channel non-zero distribution as Gaussian
mixture (GM) and introduce expectation maximization
(EM) algorithm to learn all the required channel param-
eters. And all of the parameters needed for EM update
are computed by the general approximate message pass-
ing (GAMP) [9, 10] algorithm, which provides a huge
gain in reducing the computational complexity. Hence,
our approach does not require any channel parameters,
which can adaptively adjust channel parameters by using
EM algorithm. Numerical results show that the proposed
scheme can accurately estimate the massive MIMO chan-
nel with a much reduced complexity while channel distri-
bution is unknown. Compared with the OMP algorithm,
the proposed EM-GAMP algorithm has a much better
performance. Moreover, the accuracy of the EM-GAMP
algorithm is not affected by the number of antennas at
the BS.

The rest of this paper is organized as follows. In
Section 2, we describe the system model and introduce
the sparse Bayesian channel estimation. In Section 3,
we propose an EM-based parameter iterative approach
to estimate the massive MIMO channel based on
sparse Bayesian method. The performance evaluation is
described in Section 4. Finally, we conclude the paper in
Section 5.

Notations. We use boldface capital letters like A to
denote matrices. For any matrix A € CNxM A, denotes
the (1, m)th element of A. AT and A" are the transpose
and the conjugate transpose of A, respectively. I,, denotes
the identity matrix of size n x n. For a Gaussian ran-
dom vector x with mean u and variance €2, we denote
the pdf by N(x; 1, Q). In addition, we use Ng(x; i, )
to denote its circular complex Gaussian counterpart. E{-}
and &(-) denote the expectation operator and Dirac delta,
respectively.
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2 Sparse Bayesian channel estimation

2.1 Sparse channel model

Consider a multi-user massive MIMO system with one
cell. There is one BS and K users in the network, where
the BS is equipped with M antennas and each user has
a single antenna. During the downlink training phase,
the BS simultaneously transmits a sequence of N training
pilot symbols to all users. Denote the pilot sequences as a
matrix S € CN*M, The channel matrix between the users
and the BS is denoted by G £ [g1,82---,8K] € CMxK
where gy is the channel vector from the k-th users to the
BS. The received signal Y at the user side can be expressed
as

Y2SG+W, (1)

where W e CN*K is the white Gaussian noise.

Accurate CSI is the basic of resource allocation, pre-
coding, and other operations in massive MIMO systems.
The common channel estimation algorithms, such as least
square (LS) and minimum mean square error (MMSE)
methods, usually exploit the pilot sequence S and the
received signal Y to reconstruct the channel. However,
due to massive antennas at the BS, traditional methods
cannot be applied to massive MIMO channel estimation
directly. Because the pilot overhead, which is propor-
tional to the number of antennas at the BS, will be pro-
hibitively high. Current researches show that the massive
MIMO channels exhibit the sparsity in the beam domain.
Wen et al. [9] points out that the channel vector g can be
written as

1
Ta Tp2
g = iR}, (2)
where Ry is the channel covariance matrix and vy ~

Nc(vi; 0,1x). After taking the discrete Fourier transform
(DFT) [11] of g, we have

1
h = gF = viR(F, ®)

where h; is the channel representation of gl in beam
domain and F is the DFT matrix. The channel matrix in
beam domain is proved to be approximate sparse [12].
With the number of antennas at the BS increasing, the
channel covariance matrix Ry can be represented by

R; 2 FALF", (4)

where A is a diagonal matrix whose diagonal elements
are the eigenvalues of Rg.

Plugging (4) into (3) and simplifying, we can obtain the
sparse channel matrix

1 1
h; = iR?F = v;FA?. (5)

We can get the received signal in the beam domain by
taking the DFT of (1) both side: Y2 2 SH + W5, where
Y? = YF, H = GF, W8 = WF. Simulation results
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in [12] point out that over 99% of the channel power is
located only within 16% of the beam indices, so we can
conclude that H is approximately sparse. The CS tech-
niques can reconstruct the sparse signal from a small set
of linear measurements; thus, it is feasible for massive
MIMO channel estimation.

2.2 Sparse Bayesian channel estimation
The received signal vector at the kth user can be expressed
as

y; = Shy + w?. (6)

Each element of sparse vector hy is a Gaussian ran-
dom variable with different variances, so we assume the
elements of h; follow Gaussian-mixture distributions:

Pry (Miens ks P O1r 0 1) Z(1 — 110)8 (hj)
L
+ Ak Z PiN (Mies Okt 011
=1

(7)

where Ay is the sparsity rate and L is the number of
mixture components; pr  =[ px1, k2 - 0x)’s Ok =
[6k1, 652> - - -»0i])" and 6% £ [0%1,0k2, - .., 0%]" are the
weight, mean and variance matrix of the k-th GM compo-
nent, respectively. In addition, Zlel o = 1. We assume
that the noise wf is independent to the channel hy and
is independent and identically distributed (i.i.d.) Gaussian
with mean zero and variance ¢, so we have

Py, (Wi ) = N (wi; 0, 1. ®)

And, the channel hy also contains i.i.d. components, so
we have
M
Po (s @) = [ | Pry i 1), )

m=1

where qi £ [ Ax, P, 0% 0k, ¢x]. By exploiting the sparse
Bayesian learning method to estimate the channel hy, we
can get

hiom = /hka(hkm)dhkm, (10)
where Q(hy,) = fPhlekB (hk|YE; (Ik) ni#m dhy; is the
marginal probability density function (PDF) of /.

As we can see in (10), the Bayesian algorithm is compu-
tationally intractable and it requires to know the channel
statistical properties in advance. However, it is difficult
to obtain in massive MIMO systems. So, new methods
should be developed to solve these problems. In this paper,
we propose an EM-based parameter iterative approach
to estimate sparse channel by employing the GAMP to
reduce the computational complexity and the EM algo-
rithm to learn all the required channel knowledge.
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3 EM-based parameter iterative approach for
sparse Bayesian channel estimation

In massive MIMO systems, the channel statistical prop-

erty is getting harder to obtain with the increasing number

of antennas at the BS. Unlike traditional Bayesian method,

this paper proposes an EM-based parameter iterative

approach to learn all the required channel knowledge.

3.1 EM-GAMP algorithm

We introduce the EM algorithm to learn the channel
parameters qx. The EM algorithm constantly updates
qix by increasing the lower bound on the likelihood
lnphklyf (hk|y',§; qk) at each iteration [13]. The updating
rules are given as:

é\lllf:rl = arg mqi{)(E {lnPhiwf (h]t(|Y]§J el/i)} ’ (11)

where ¢ represents the iteration index and In Phi iy
(h|y?;qt) can be calculated by the GAMP algorithm.
Denote z; = Sh!, z{ = s h!, where s is the nth row of
S. The GAMP algorithm models the relationship between
y,fn and z by the conditional PDF. The true marginal pos-
terior can be estimated by the whole probability formula

Lot £ .5t Dt

nylzi (ﬁn'zkn’qk>N (zkn’pkn’p“kn>
£t t.at Dt

fzi nylzi (ﬁn'zk’qk)'/\/ (zk’pkn"ukn>
(12)

t cal) —
sz{lyf (anwf’ qk) -

. t .
where p,tm and uin are the mean and variance of zf(,
respectively. The noise vector wi = y? — zl is
assumed to be additive white Gaussian, so we can get

£t bt s s
Pys iyt (2 |2 ;i) = N (y2 ;2% ., ¢t). Pluggingit into (12),
we can obtain
bt t st Dt
N (yfn’zkn’ wk) N (an’pkn’ ’U“kn>
A t.pt Dt
fz‘kN (yllfn’zk’¢k)N (zk’pkn’p“kn>
pit At t pt ¢t
N Fandion T PPk Fin Pk
- kn’ pt ¢ bt ]
Pin T % P T %%

t LAl
sz<|y,§ (anlylé’qk) =

(13)

The posterior PDF of h,t(m could be approximated by the
GAMP algorithm

t ..t t st 1t
Y (hkm’qk)N (hkm’ km’ukm)
t. ot t.at rt\’
fh/t( Pyt (hk’qk) N (hk’ Tk’ ”km)

(14)

t ot rto t\ _
th(|y;(g (hkm Ylé’ Tk Yiem qk) -

. it .
where 7/~ and u) are the mean and variance of hf,
respectively.
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Taking the prior information (7) into (14), we have

Ph,t(\yl,f (h2m|yllj’ ;’lim’ er<,rtn’ qlt<) = (1 - ﬂ;im) 8 (hlim)
+T[l§m 2:lL=l Blim,l'/\/' (hlim; 7/ktm,l’ Ulim,l)’ (15)

where
¢ £t £, at £
_— [h Py (b a) NV (7,0, (16a)
k
t t t ~t t Wt t
Bimi = 2PN Pl O Uiy + 011) » (16b)
2 ﬂlﬁml
ﬂ/i = T (16¢)
" Ef:iﬁlim,i
-1
EL ‘ﬁt ) -1
t =i km,i
T = |1+ & ,(16d)
”” ((1 — AN (057,
~t rt t t
i Tiom! Miom + Ot/ (16¢)
ot 1/up, +1/0,
1
Uit = =5 (16f)

ot ¢t
1/uy, +1/oy,
Py s (Ht 1y%;q;) obeys a GM distribution according

to (15). Plugging (15) into Q (h,im) and estimating by the
GAMP algorithm, we find that Q (/7 ) could be viewed as
a Gaussian distribution. So it can be written as Q (/4 , ) =
N (W, ;a,, var, ), where ai and var,  are the mean
and variance, respectively. And then plugging it into (10),
the posterior estimate of /}  can be obtained as af,, .

Plugging (15) into (11) and following similar steps
of manipulation in [13], we have the update for the
parameters

1
t+1 _ M _t
Ay —Mzmzlnkm' (17a)
M t At
1 Zm=1TkProm,
z:m=17-[km
M t pt t
t+1 z:m=17Tl<m'Bkm,lykm,l
le - M t At ’ (17¢)
=1k Prom,1
M t At t t 2 t
. m=1TkmPlom,1 (|9k1_Vkm,l| +Ukm,l)
Om = M ot gt , (17d)
=1k Brom,1
1 A
o = LN (B, — 2P ) 17e)

N

where 7f , Elim,l’ Vi Vi, are calculated by (16) and
it - t

Wy, is the variance of PZinf (<t 1¥?%;qt), namely, uf! =

M’,:’Vfgolt(/ (/ﬁ]z; + (p,i) As we can see from (17), accurate

channel parameters could be achieved after several itera-
tions.

Statistical properties of the adjacent sub-channels
change slowly in beam domain because of the limited
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scatters. So, we can use the learned parameters to ini-
tial the next sub-channel parameters, namely, 6[2 = q.
The proposed EM-GAMP algorithm is summarized in
Algorithm 1.

Algorithm 1 Proposed EM-GAMP Algorithm.

Input: qu (), S = {Smn}1 YB> Sgamp; L, Eem-
Initialization: Set @0 =19, 9,609,609, 9.

fork=1:Kdo
t=1;
repeat

E-Step: Compute lAllt( from
t Lat ot ot Bod i
Philyf (hy,,, |y€, e Wi Q) 8 described in (15)
by exploiting the GAMP algorithm
M-Step: Update G, using (17)
t=t+1 R R
u(1)1til Z’,‘,ft:l Ihi —hi 12 < eon
Qi1 = 9k
end for
Output: H

3.2 Performance analysis

The GAMP algorithm transforms a multiple integral non-
linear problem into a linear problem, so the computational
complexity in each iteration mainly depends on the sim-
ple matrix multiplication and addition operations in for-
mula (10)—(16). In E-step, the computational complexity
is dominated by formula (15), namely, ¥ (LNM). Similarly,
the computation of the M-step is ¥ (4M + N). Therefore,
the proposed EM-GAMP algorithm has the computa-
tional complexity on the order of ¥ (T(LNM + 4M + N)),
where T and L represent the iteration times and the
number of Gaussian-mixture components, respectively.

The complexity of classic LS and OMP algorithm is
¥ (M3) and ¥ (NM?), respectively. In massive MIMO sys-
tems, the number of antennas at the BS is much larger
than the length of pilot sequences, namely, N <« M. Sim-
ulation results show that the MSE tends to be stable after
five to six iterations, namely, T <« N. In this paper, L
is fixed to 3, which contributes to better performance.
Thus, the complexity of the EM-GAMP algorithm can be
simplified as ¥ (TNM). It is obvious that the EM-GAMP
algorithm proposed in this paper can greatly reduce the
computational complexity.

Classic CS algorithms, such as OMP and SP, can
also accurately reconstruct the channel. However, these
schemes need to know channel statistical properties in
advance, which is unachievable in practice. In contrast to
the OMP and SP, our approach exploits the EM algorithm
to update all the required channel parameters as a part of
the estimation procedure.
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4 Simulation results

We consider a single cell massive MIMO system includ-
ing a BS equipped with M = 200 antennas and K = 40
users. The BS uses N = AM pilot symbols for channel
estimation. We denote A = 0.2 in this paper because over
99% of the channel power is located only within 16% of
the beam indices, which is mentioned in Section 2.1. It
is essential for the EM algorithm to initial the unknown
parameters ¢ properly. We initialize the parameters as

IvgI?
Py = 305 = 0,69 =[0.01,0.1,1], ) = gz, Where
SNR is the signal to noise ratio. We define the mean square

error (MSE) as

K M

1 .
MSEy = — Hign — M|
k KM};;I km — M|

(18)

Figure 1 compares the MSE performance of the pro-
posed algorithm and the traditional algorithms as func-
tions of SNR. As can be seen from the picture, the MSE
of all algorithms decrease with SNR increasing. Clearly,
the proposed EM-GAMP has much better performance
than the LS and OMP and it approaches the perfect CSI
bound when SNR > 15dB. In addition, we also compare
the MSE performance with different GM components.
The MSE would reduce when the number of GM compo-
nents increases. This is because the channel model could
be more accurate with more GM components.

Figure 2 compares the MSE performance of the EM-
GAMP algorithm as functions of the number of iterations.
From the picture, we can see that the MSE tends to be sta-
ble after five to six iterations. And the convergence rate
is inversely proportional to L, the number of GM com-
ponents. However, the MSE performance degrades with
small L. Therefore, it is necessary to choose appropriate L
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Fig. 2 MSE performance of EM-GAMP algorithm as functions of the
iterations

to improve the operation rate as much as possible within
the margin of error.

Figure 3 compares the MSE performance of the EM-
GAMP, the LS, and the OMP as functions of M with
SNR = 15dB, L = 3, & = 0.2. From Fig. 3, it is clearly that
performance of the LS and OMP degrades with M increas-
ing. By contrast, the proposed EM-GAMP algorithm is
not affected by the number of antennas at the BS. The esti-
mation error keeps stable no matter how large M is. This
is because that we exploit the EM algorithm to learn and
update the channel parameters adaptively, which makes
our algorithm adapt to different environments.

Figure 4 compares the MSE performance of different
channels and M as functions of % with SNR = 15dB,
A = 0.2 and L = 3. From the results in Fig. 4, when

L
7]
=
3
102F Ai'
—¥— perfect CSI
—%—LS
OMP
—<— EM-GM-GAMP L=3
—P— EM-GM-GAMP L=5
10.3 1 1 1 1 1
0 5 10 15 20 25 30
SNR(dB)

Fig. 1 MSE performance comparison of different algorithms as
functions of SNR

107
L
7]
=
PP S S S S S m———— |
—¥— perfect CSI
—7—Ls
OMP
—<— EM-GM-GAMP
T

108 L L L L L T T
100 150 200 250 300 350 400 450 500 550

M

Fig. 3 MSE performance comparison of different algorithms as
functions of M with SNR = 15dB, L = 3, 5 = 0.2
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Fig. 4 MSE performance comparison of different channels and M as
functions of 45 with SNR = 15dB, L = 3, » = 0.2

increasing 11:[—,[, it is observed that the MSE decreases and
tends to be stable when N > AM as excepted. Differ-
ent channel models, including Rayleigh channel model
and Gaussian mixture channel model, are considered. The
proposed approach achieves much better performance in
all cases illustrating a substantial improvement over the
LS estimator.

Figure 5 compares the MSE performance of different
algorithms as functions of sparsity rate with M = 400,
SNR = 15dB, L = 3. The performance of all of the three
algorithms increases with the sparsity rate getting larger.
However, the EM-GAMP algorithm approaches the per-
fect CSI when the sparsity rate A < 0.2, and it always
achieves a much better performance than others.

wwW ]

L
)]
= a3
102
<
—¥— perfect CSI
—%—LSs
1 —<— OmP
7 EM-GAMP
1073 . . . . I N
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Sparsity Rate

Fig. 5 MSE performance comparison of different algorithms as
functions of sparsity rate with M = 400, SNR = 15dB,L =3
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5 Conclusions

To obtain an accurate CSI of massive MIMO system, we
propose an EM-based parameter iterative approach based
on sparse Bayesian method. Channel statistical properties
are essential for sparse Bayesian methods to obtain accu-
rate CSI; however, it is barely accessible in massive MIMO
systems due to the larger number of antennas at the BS.
In this paper, we model the channel non-zero distribution
as a Gaussian mixture and employ the EM algorithm to
learn all the required channel parameters. Besides, all of
the parameters needed for EM update are computed by
the GAMP algorithm. Simulation results show that our
approach provides a huge gain in inducing complexity and
has a much better performance compared to the LS and
OMP algorithms with channel parameters unknown. In
addition, the proposed EM-GAMP algorithm is robust to
the number of antennas at the BS.

Pilot contamination exists when the same orthogonal
pilot sequences used in all cells for multi-cell massive
MIMO systems. We have designed a kind of non-
orthogonal pilot sequences [14], which can efficiently
reduce the impact of pilot contamination. Thus, the pro-
posed method can be extended to multi-cell massive
MIMO systems and still have a good performance and
complexity reducing.
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