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Abstract

Hydrometeor classification for dual polarization Doppler weather radar echo is a procedure that identifies
hydrometeor types based on the scattering properties of precipitation particles to polarized electromagnetic waves.
The difference in shape, size, or spatial orientation among different types of hydrometeor will produce different
scattering characteristics for the electromagnetic waves in a certain polarization state. Moreover, the polarimetric
measurements, which are calculated from the radar data and closely associated with these characteristics, are also
different. The comprehensive utilization of these polarimetric measurements can effectively improve the
identification accuracy of the phase of various hydrometeors. In this paper, a new identification method of the
hydrometeor type based on deep learning (DL) and fuzzy logic algorithm is proposed: firstly, the feature extraction
method based on deep learning is used for training the correlation among multiple parameters and extracting the
relatively independent features. Secondly, the Softmax classifier is applied to classify the precipitation patterns,
including rain, snow, and hail, and it is based on the features extracted by deep learning algorithm. Finally, the
fuzzy logic algorithm is adopted to identify the hydrometeor types in various precipitation patterns. In order to test
the accuracy of the classification results, the hydrometeor classifier has been applied to a stratiform cloud
precipitation process, and it is found that the classification results agree well with the other polarimetric products.
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1 Introduction
The dual linear polarization radar can transmit horizon-
tal and vertical polarization waves alternately or simul-
taneously, and it can also use different signal processing
methods to deal with the echo signals from two
polarization directions. Moreover, it is easy to obtain the
horizontal reflectivity (ZH), differential reflectivity (ZDR),
co-polar correlation coefficient (ρHV), differential propa-
gation phase constant (KDP), and other polarization pa-
rameters. The difference in shape, size, or spatial
orientation between different types of hydrometeor will
produce different polarization parameters, and it can
promote the development of hydrological meteorological
classification by these polarization parameters.

Compared with the conventional Doppler weather radar
system, its ability to estimate the precipitation and
recognize the hydrometeor phase has been improved
significantly. What is more, it is an important tool in the
fields of artificial influence on weather, aviation warning,
and disaster monitoring [1–5].
Liu et al. [6] established a hydrometeor classification

system based on fuzzy logic and neural network. In the
system, the horizontal reflectivity, differential reflectivity,
differential propagation phase shift, correlation coeffi-
cient, linear depolarization ratio, and the corresponding
height are used as the inputs, and the neural network
learning algorithm is applied to adjust the parameters.
Finally, the inputs and parameters of the system are cal-
culated to determine the type of hydrometeors [6–8].
Chandrasekar et al. [9] summarized the researches on

echo classification and the identification of hydrological
fluid, which are based on dual polarization radar in re-
cent years. The classification principle of various types
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was described, and the characteristics of hydrometeor
classification were analyzed. It promoted the study in
the hydrometeor classification of the dual polarization
radar greatly [9, 10].
Besic et al. [11] used a semi-supervised approach to

realize the classification of hydrometeors. In this study,
the K-medoids (KM) approach is used to cluster the
sample data and the clustering results are evaluated by
the Kolmogorov-Smirnov (KS) test method. Finally, the
fuzzy logic algorithm is applied to realize the highly pre-
cise classification of hydrometeors based on the cluster-
ing results [11].
Hinton et al. [12] published an article in Science,

which opened a gate for deep learning in the field of
machine learning. Deep learning, as a kind of emerging
learning algorithm of multi-layer neural network, has
solved the local minimum defect in the traditional
training algorithm. Moreover, it has been widely used
in machine learning and computer vision and has
aroused widespread concern in various fields [12–15].
Tao et al. [16] used the deep learning approach to
realize the precipitation identification with bispectral
satellite information. In this study, the effectiveness of
the deep learning (DL) approaches to extract useful
features from bispectral satellite information, infrared
(IR), and water vapor (WV) channels and to produce
rain/no-rain (R/NR) detection is explored [16].
Based on the data detected by WSR-98D/XD dual

polarization Doppler weather radar, which has been
upgraded, we designs a hydrometeor identification sys-
tem based on deep learning and fuzzy logic methods.
In this paper, there is a matrix of polarimetric mea-
surements corresponding to each range bin, and it is
composed of the data of the range bin and adjacent
range bin, which covers approximately 1 km2. There-
fore, the matrix of 21 × 21 ×4 can reflect the precipita-
tion information of the current range bin. The system
used the deep learning algorithm to extract the fea-
tures from the matrix of polarimetric measurements,
and the results are sent into the Softmax classifier to
identify the precipitation pattern. Then, the fuzzy logic
method is applied to judge the type of precipitation
particles based on the precipitation pattern which was
known. Finally, the optimal identification results of
hydrometeor type can be obtained. The deep learning
method is used for initial clustering, and then, the
fuzzy logic method is used for accurate clustering; the
result shows that it can improve the hydrometeor clas-
sification accuracy significantly.
The structure of this article is as follows. In Section

2, the dual polarization radar measurements used for
various classifications, the deep learning method, and
the fuzzy logic algorithm are briefly described. The
process of experimental design is described in Section

3. In Section 4, the performance of the identification
system of hydrometeor types is evaluated by the as-
sessment data collected by the experiment center of at-
mospheric exploration in China.

2 Methods
2.1 Dual linear polarization Doppler weather radar
Polarization refers to the direction of vibration of the
electric field when the electromagnetic wave propa-
gates, and when the electric field vibrates in the hori-
zontal direction, it is named the horizontal polarized
wave. Otherwise, if in the vertical direction, it is named
the vertical polarized wave. The dual linear
polarization Doppler weather radar mainly alternately
or simultaneously transmits horizontal and vertical
polarization waves. Moreover, the distribution of the
propagation medium in the space is not uniform, so
the different polarization signal attenuation and phase
shift will be different. As a result, it is possible to ob-
tain the attenuation difference and the phase shift of
the two polarization waves. When the frequency of the
radar is higher, the impact of the propagation will be
more serious. Through the corresponding processing
and calculation, a series of polarimetric measurements
such as horizontal reflectivity, vertical reflectivity, dif-
ferential reflectivity factor, differential propagation
phase change, differential propagation phase constant,
and co-polar correlation coefficient can be obtained.
For the above parameters, the detailed introduction is
as follows.

2.1.1 Horizontal reflectivity factor ZH and vertical reflectivity
factor ZV
When transmitting horizontal polarization, the expres-
sion of the horizontal reflectivity factor is

ZH ¼
ZDmax

0

N Dð Þ•DH
6dD ð1Þ

where DH is the size of the particle detected by the radar
in the horizontal direction and N(D) is the drop distribu-
tion of the precipitation particles. The expression of the
vertical reflectivity factor is

ZV ¼
ZDmax

0

N Dð Þ:DV
6dD ð2Þ

In the expression, N(D) is the size of the particle
detected by radar in the vertical direction.
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2.1.2 The differential reflectivity factor ZDR
The differential reflectivity factor ZDR is mainly calcu-
lated by the horizontal reflectivity ZH and vertical
reflectivity factor ZV:

ZDR ¼ 10� log ZH

ZV

� �
ð3Þ

In the expression, ZDR is corresponding to the size and
axial ratio of the precipitation particles, and the axis ra-
tio is defined as a/b, in which a and b are respectively
the horizontal and vertical axis radius of the particle.

2.1.3 The differential propagation phase change ΦDP and
differential propagation phase constant KDP
The dual linear differential propagation phase change is
defined as

ΦDP ¼ ΦHH−ΦVV ð4Þ

where ΦHH and ΦVV are respectively the two-way phase
angle at a certain distance from the arrival of the an-
tenna when the radar signal is in the horizontal and ver-
tical polarization. What is more, the differential
propagation phase constant KDP can be defined as

KDP ¼ ΦDP r2ð Þ−ΦDP r1ð Þ
2 r2−r1ð Þ ð5Þ

In the expression, KDP is the propagation constant dif-
ference of the horizontal and vertical polarization wave,
and it contains the difference of the isotropic and aniso-
tropic particles. Since the isotropic particles have similar
phase shifts for the horizontal and vertical polarized
waves, the difference of KDP is mainly due to the differ-
ence in the composition of the anisotropic particles. In
general, KDP increases with the increase of the dielectric
constant and ellipticity. Compared with the reflectivity
factor, KDP is not sensitive to the change of particle dis-
tribution. Moreover, its measurement is not affected by
partial beam blocking and isotropic particles; however, it
depends on the density of particles.

2.1.4 The co-polar correlation coefficient ρHV
The co-polar correlation coefficient is defined as the
magnitude of the zero-lag correlation coefficient be-
tween the horizontal and the vertical polarization echo
signal. What is more, it reflects the correlation of the
backscatter characteristics between the horizontal and
vertical polarized waves. As can be seen from the char-
acteristics of ρHV, the particle shape, the spatial orienta-
tion, and the number of precipitation particles are the
main factors that affect its value.
Besides, the dual polarization Doppler radar also con-

tains other polarimetric measurements such as linear

depolarization ratio (LDR), covariance coefficient (CC),
velocity (V), and spectral width (W).

2.2 The deep learning method for fuzzy logic classification
Deep learning aims at building a deep neural network
model by simulating the learning process of brain. Com-
bined with a lot of training data, the relationship among
variables is to be obtained. Moreover, common network
models include auto encoding network, deep belief, and
convolution network. The model used in this paper is a
convolutional neural network model [17], and it is a su-
pervised multi-layer neural network, which is mainly
composed of the convolution and the subsampling parts.

2.2.1 The selection of sample data
The data used in this study are ZH, ZDR, KDP, and ρHV

from the WSR-98D/XD dual polarization weather radar,
which is located in Chengdu, Sichuan, China (30° 34′ N,
103° 55′ E), and its performance indicators are presented
in Table 1.
In most products of the dual polarization radar, the

length of each range bin is 50 m, and the beam width is
1°. For the PPI scan mode, a volume scan consists of 14
elevation angles, and each elevation contains 350 to 370
radial directions; moreover, each radial direction in-
cludes 6000 range bin, while the valid data locate in the
former 2000 range bins.
In this study, the data on each range bin is treated as a

basic unit, so each basic unit should contains four
polarization parameters, and they are ZH, ZDR, KDP, and
ρHV. Considering the high correlation of data between
the range bin and its adjacent range bin, we choose to
use a matrix of polarimetric measurements to reflect the
type of precipitation particles corresponding to each
range bin, and the matrix composed of the data of the
range bin and adjacent range bin, which is near the
range bin within 0.5 km. The implementation steps for
obtaining the matrix are as follows.

Table 1 The main technical indicators of the WSR-98D/XD dual
polarized weather radar

Number Project Value

1 Transmitter wave type X (9420 Mhz)

2 Transmitter peak power 75 kW

3 Antenna type Parabolic antenna

4 Antenna diameter 2.4 m

5 Antenna gain 43 dB

6 Dynamic range 95 dB

7 Signal processing mode PPP/FFT

8 Beam width 1°

9 Pulse resolution 1–2μs

10 Operation mode Double transceiver
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Firstly, a sample data extraction window is established,
and it is composed of 21 × 21 cells. Moreover, the length
of each cell is 50 m, and it is equal to the length of a
range bin.
Secondly, the data extraction window is used to obtain

the matrix of polarimetric measurements corresponding
to a range bin, and its center coincides with the range
bin. For each cell of the data extraction window, when
the range bin falls into it, the data from the range bin is
used as the data of the cell.
Finally, through the above steps, we can obtain a sam-

ple of 21 × 21 × 4. In order to obtain the sample label,
we adopt the voting principle, where the precipitation
particle type with the most votes in the sample data is
used as the label of the range bin.
In summary, for each range bin, a sample data matrix

of 21 × 21 × 4 and a sample label data can be obtained.

2.2.2 The convolutional neural network
Convolutional neural network (CNN) is a multi-layer
sensor, and it is inspired by the biological visual neural
mechanism. It consists of multiple convolution and
subsampling layers, with the ability to automatically
extract the sample features. In the convolution layer,
the neurons of each network layer are connected to
the neurons of the upper layer only in a small neigh-
borhood. Moreover, it can extract the features from in-
put and keep the spatial structure of the original
signal. Therefore, the image can be used for the input
of the neural network, avoiding the complex process of
data reconstruction and feature extraction in the trad-
itional recognition algorithm. In the subsampling layer,
the original data is compressed by sampling, which re-
duces the computational complexity and establishes
the invariance of the spatial structure. In addition,
CNN is more similar to the biological neural network
by using the weight-sharing network structure, and it
has achieved the best performance in pattern recogni-
tion. Nowadays, CNN has become an important re-
search tool in many fields such as the image
recognition and the automatic speech recognition.
CNN, a typical supervised learning algorithm, relies on

a large number of labeled samples to train, and the back
propagation (BP) algorithm is adopted in the training
process. Once the original data is transmitted via the
network, the corresponding output is obtained. If the ac-
tual output does not match the label data, the error is
propagated backwards through the hidden layer to the
input layer. It will be assigned to all the cells of each
layer so as to obtain the error of signals in each unit,
which are applied to correct the weights of the each
unit. Therefore, the learning process can be summarized
as the process of adjusting the weights by error back
propagation, and it will continue to reduce the error

until the error is less than the acceptable level or ex-
ceeds the number of iterations that has been set in
advance.

2.3 The fuzzy classifier
The fuzzy logic method was first proposed by Zadeh in
1965. The traditional fuzzy logic method mainly includes
four steps: fuzzification, inference, aggregation, and
defuzzification. Considering the difference of the per-
formance characteristics of precipitation particles among
different precipitation patterns, different fuzzy logic clas-
sifiers are designed for the three precipitation patterns
about rain, snow, and hail. These fuzzy logic classifiers
of this paper use ZH,ZDR, KDP, and ρHV as input and then
processed by fuzzification, inference, aggregation, and
defuzzification. In the end, the results are transformed
into a single precipitation particle type. The design
process of the fuzzy logic method corresponding to the
rainfall pattern is described in detail as follows, and its
final output is 1 (drizzle), 2 (rain), and 3 (heavy rain). Its
structure is presented in Fig. 1.

2.3.1 Fuzzification and selection of membership function
The fuzzy logic algorithm for hydrometeor-type identifi-
cation needs four input variables, which will be proc-
essed fuzzily firstly and be transformed into a fuzzy basis
using the membership function. The certain input data
can belong to different fuzzy basis, and it has different
degree of membership in different fuzzy basis [9]. It is
obvious that the selection of membership function is the
most important part. By conducting a large number of
comparative experiments, it is found that the beta mem-
bership function is best for the identification of hydro-
meteor type, and its expression is

β x; a; b;mð Þ ¼ 1

1þ x−m
a

�� ��2b ð6Þ

In the expression, the input variable is x, while the width
of the function is a. Moreover, the slope of the function is
b, and the range of output value is between 0 and 1.

2.3.2 Inference
After the previous analysis, the core of the classifier
based on fuzzy logic mainly lies in the construction of
membership function and rules. The IF-THEN rules for
this hydrometeor-type classification can be described as
follows:
IF (X1 is MBF1j and X2 is MBF2j and X3 is MBF3j and

X4 is MBF4j),
THEN hydrometeor is j.
where j = 1, 2, 3 corresponds to the three types of pre-

cipitation particles about drizzle, rain, and heavy rain
and MBFij represents the degree of membership function
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corresponding to the four input parameters. Moreover,
the intensity Rjof the j-type precipitation particles can be
expressed by the following expression:

Rj ¼
X
i¼1

4
Wij �MBfij Xið Þ� � ð7Þ

In the expression, Wij is the contribution of the ith par-
ameter to the j-type precipitation particles and MBFij(Xi)
indicates the membership value of the characteristic
parameter Xi that corresponds to the jth-type particle.

2.3.3 Aggregation
The results obtained from the inference of individual rules
are aggregated by the maximum aggregation method, and
the maximum aggregation method regards the result of
the maximum truth value as the final result. Moreover,
the formula can be expressed as C ¼ maxj Rj

� �
.

2.3.4 Defuzzification
The purpose of the fuzzy process is to find the index
value which is corresponding to the maximum rule
strength, and then, it will be outputted as the result.

3 Experimental design
The overview of the experimental design is presented in
Fig. 2. In this study, two important modules are built to
realize the hydrometeor-type identification system. The

module of precipitation pattern classification system
based on deep learning is applied to identify the precipi-
tation pattern corresponding to a range bin, and the
other module of precipitation particle identification sys-
tem based on fuzzy logic is utilized to judge the
hydrometeor-type corresponding to a range bin. For the
above modules, the detailed introductions are as follows.

3.1 The precipitation pattern classification system based
on deep learning
In the system, the input is a matrix of 21 × 21 × 4 that
reflects the precipitation pattern of a range bin, and the
convolution neural network is applied to extract the fea-
tures from the input. Moreover, the Softmax classifier is
applied to classify the precipitation pattern such as rain,
snow, and hail based on the features extracted by the
convolution neural network algorithm. The structure
diagram of this system is presented in Fig. 3.
As shown in Fig. 3, the system is composed of two

convolution-subsampling layers and a Softmax classifier,
and its workflow is mainly divided into the training
process and the testing process. The detailed descrip-
tions are as follows.

3.1.1 The training process
In the training process, the BP algorithm is used to ad-
just the parameters of the system based on a large num-
ber of labeled sample data, so that these parameters can

Fig. 1 The structure of the fuzzy logic classifier corresponding to the rainfall pattern

Fig. 2 Overview of the hydrometeor-type identification system
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meet the requirements of accurate classification. Its im-
plementation steps are described as follows.
Firstly, the input data is convolution with the convolu-

tion layer, and the results are sampled by the subsamp-
ling layer. Repeat the above steps once; 40 features can
be extracted from the input.
Secondly, the Softmax classifier is applied to identify

the precipitation pattern based on the 40 features from
step 1. The output including 1 (rain), 2 (snow), or 3
(hail) can be obtained.
Finally, if the actual output does not match the label

data, the BP algorithm is applied to correct the weights
of the each neuron in the system.
The training process can be summarized as the

process of adjusting the weights by the BP algorithm,
and it will continue to reduce the error until the error
reaches to the acceptable level or exceeds the number of
iterations that has been set in advance.

3.1.2 The testing process
The testing process uses some labeled samples to evalu-
ate the accuracy of the system by comparing the output
of the system with the label. In this study, we use many
useful sample data detected in some special weather
such as rain, snow, and hail to test the system; it is
found that the system has a high accuracy with 81.17%.

3.2 The precipitation particle identification system based
on fuzzy logic
The precipitation pattern corresponding to a range bin
has been obtained in Section 3.1. Considering the differ-
ent precipitation pattern including different precipitation

particles, we need to build three different fuzzy logic
classifiers corresponding to the three different precipita-
tion patterns such as rain, snow, and hail. The relation-
ship between the precipitation pattern and the
hydrometeor type is presented in the Table 2.
As shown in Fig. 2, the system uses the ZH, ZDR, KDP,

and ρHV of the current range bin as input, and then, the
input is processed by fuzzification, inference, aggrega-
tion, and defuzzification. In the end, the results are
transformed into a single precipitation particle type.

4 Performance evaluation of the system
The assessment data is from a stratiform precipitation
process detected at 1508 UTC 27 March 2017, and the

Fig. 3 The structure of the precipitation pattern identification system

Table 2 The relationship between the precipitation pattern and
the hydrometeor type

Precipitation pattern Hydrometeor type Output

Rain Drizzle (LR) 2

Rain (RN) 3

Heavy rain (HR) 4

Snow Wet snow (WS) 5

Dry snow (DS) 6

Crystals (CR) 1

Ice crystals (IC) 7

Hail Graupel (GR) 8

Ice hail (IH) 9

Rain_ hail (RH) 10

Crystals (CR) 1

Ice crystals (IC) 7
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main PPI products including the horizontal reflectivity
(ZH), differential reflectivity (ZDR), co-polar correlation
coefficient (ρHV), and differential propagation phase con-
stant (KDP) are displayed in Fig. 4, which the corre-
sponding detection elevation is 1.4°.
The classification result of precipitation pattern corre-

sponding to the assessment data is presented in Fig. 5.
As represented in Fig. 5, Fig. 5a shows the classifica-

tion results from the radar product, while Fig. 5b shows
the classification results from the precipitation pattern
classification system. By comparing and analyzing the
two images, it can be seen that their distribution is simi-
lar, and the difference is that Fig. 5b is more smoother
than Fig. 5a. Some clutter interference has been re-
moved, making the classification result better. It is

mainly because that the system has used the feature
matrix as the input, and the feature matrix consists of all
the data of near the range bin within the scope of 1 km2

rather than a feature vector only from the range bin.
Although this method will increase the complexity of
data processing, it can remove the interference of clutter
and noise. Moreover, the influence of measurement
error in radar system on classification accuracy can be
reduced effectively, so that the identification accuracy of
the system can improve significantly.
As described in Section 3, the hydrometeor-type

identification system has realized the identification of
precipitation particles about crystals (CR), drizzle (LR),
rain (RN), heavy rain (HR), wet snow (WS), dry snow
(DS), ice crystals (IC), graupel (GR), ice hail (IH), and

Fig. 4 The radar measurements corresponding to the case of 27 March 2017. a ZH. b ZDR. c KDP. d ρHV
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rain hail (RH), and the identification results
corresponding to the assessment data are presented in
Fig. 6.
The identification system in this paper mainly identi-

fies the hydrometeor type within 100 km, and the
distance between the range rings is 30 km. As presented
in Fig. 6, rain is the main hydrometeor type in the region

within 70 km from the radar station. Comparing to the
Fig. 4, the intensity of the echo is ranging from 10 to
25 dBz, and the value of ZDR is mostly from − 1.5 to
1.5 dB. The value of KDP is ranging from − 1 to 1°/km,
and the value of ρHV is ranging from 0.95 to 1. From the
distribution of these polarization parameters, it can be
inferred that the precipitation particles in this region

Fig. 5 The classification result of precipitation pattern corresponding to the case of 27 March 2017. a PPI of the classification result of precipitation
pattern from the product of dual polarization weather radar. b PPI of the classification results of precipitation pattern from the classification system

Fig. 6 The identification result of hydrometeor type corresponding to the case of 27 March 2017
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should be raindrops, and it is consistent with the classifi-
cation results of the system.
As shown in these purple regions of the Fig. 6, its

hydrometeor type mainly consists of ice crystals, graupel,
and ice hail. The distance from the radar station is
70 km, and the height is about 1.7 km. Moreover, above
these regions, its hydrometeor type is hail, and rain is
the main hydrometeor type under these regions. It can
be inferred that the freezing level is located in these re-
gions. As presented in Fig. 4, the value of ZH is ranging
from 25 to 40 dB, and the value of ZDR is mostly from 1
to 2.5 dB. Moreover, the value of ρHV is ranging from
0.92 to 0.95. From the distribution of these polarization
parameters, it can be inferred that these regions belong
to the freezing level; and it is consistent with the identi-
fication results of the system.

5 Conclusions
An intelligent hydrometeor-type identification system for
dual polarization Doppler weather radar data has been de-
veloped. It combines the main advantages of both deep
learning and fuzzy logic algorithms, and it keeps the po-
tential operational implementation reasonably simple. The
hydrometeor-type identification system mainly consists of
two modules. The first module, referred to as the precipi-
tation pattern classification system based on deep learning
in this paper, applies deep learning techniques to automat-
ically extract useful features from the matrix of polarimet-
ric measurements. Moreover, the Softmax classifier is
used to classify the precipitation type based on the fea-
tures extracted by the deep learning algorithm. The sec-
ond module, referred to as the particle identification
system based on fuzzy logic in this paper, applies the fuzzy
logic methods to judge the hydrometeor type based on the
ZH, ZDR, KDP, ρHV, and the precipitation pattern which
was classified by module 1.
In the system, because of the use of convolutional neural

network algorithm for initial clustering, the interference of
clutter and noise have been removed; meanwhile, the in-
fluence caused by the measurement error of polarization
parameters can be reduced effectively. In addition, the
fuzzy logic method is used for accurate clustering. The
final classification result depends on the membership only
rather than the specific values, so it won’t be affected by
the inaccurate values of some parameters. From the
March 27, 2017, case, we can see that the identification
result agrees well with other polarized products.
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