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Abstract

A novel algorithm is presented based on sparse multiple measurement vector (MMV) model for direction of arrival
(DOA) estimation of far-field narrowband sources. The algorithm exploits singular value decomposition denoising
to enhance the reconstruction process. The proposed multiple nature of MMV model enables the simultaneous
processing of several data snapshots to obtain greater accuracy in the DOA estimation. The DOA problem is
addressed in both uniform linear array (ULA) and nonuniform linear array (NLA) scenarios. Superior performance
is demonstrated in terms of root mean square error and running time of the proposed method when compared
with conventional compressed sensing methods such as simultaneous orthogonal matching pursuit (S-OMP), l2,1
minimization, and root-MUISC.
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1 Introduction
Compressed sensing (CS) is a novel paradigm shift in
sampling and signal acquisition which has attracted
considerable attention for application in wireless com-
munications, signal processing, and array processing
[1–3]. This technique relies on the fact that many signals
can be represented using only a few nonzero coefficients.
The associated problem with CS concerns the recovery
of a sparse signal by solving an under-determined system
of equations. Indeed, CS theory takes advantage of
sparsity constraint on solution vector to recover a high-
dimensional signal from a small set of measurements.
The conventional CS setup is about recovery of a sparse
vector while many applications involve acquisition of
multiple signals. In this case, all signals are sparse and
exhibit the same indices for their nonzero coefficients.
This setting leads to the recovery of a row sparse matrix
which has only a few nonzero rows. This problem is well

known in sparse approximation and has been termed
the multiple measurement vector problem [2, 3] or
simultaneous sparse approximation (SSA) problem [4].
In fact, it can be considered as an extension of single-
measurement vector (SMV) problem that represents the
conventional form of CS problem.
Direction of arrival estimation is a classic problem in

array processing field. It finds various applications in
radar, sonar, acoustics, and communication systems [5].
To date, several methods have been developed to solve
DOA problem such as MUSIC, ESPRIT, and Capon [5, 6].
In recent years, some new approaches have been intro-
duced that exploit the spatial sparsity of source signals
to obtain DOA estimations [7, 8]. These methods are
based on defining a sampling grid on the angular solu-
tion space and solving the conventional single measure-
ment CS problem.
In this paper, DOA estimation for narrowband far-field

signals is resolved using multiple measurement vector
approach. A new algorithm is proposed that is based on
singular value decomposition (SVD) to solve the sparse
multiple measurement vector (MMV) problem. The per-
formance of proposed method has been compared with
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other conventional techniques, in particular, simultan-
eous orthogonal matching pursuit (S-OMP) [4], l2,1
minimization [2], and Root-MUSIC [9]. Numerical simu-
lations indicate that the proposed method outperforms
aforementioned algorithms in terms of root mean square
error (RMSE) and recovery rate. The proposed approach
is applicable to both uniform linear arrays and nonuni-
form linear arrays. In addition, numerical simulations
show the superiority of proposed method in both uni-
form linear array (ULA) and nonuniform linear array
(NLA) scenarios.
The rest of the paper is organized as follows. An

overview of CS is presented in Section 2. The system
model for DOA estimation is presented in Section 3.
MMV recovery algorithms are discussed in Section 4,
including the proposed algorithm. Numerical simula-
tions are provided in Section 5, and finally, the work is
concluded in Section 6.

2 Compressed sensing
The goal of CS is to recover the unknown K-sparse
vector x ∈ ℂN having K nonzero elements from linear
measurements y ∈ ℂM, such that y =Φx (M≪N). Matrix
Φ called sensing matrix performs an acquisition process
on sparse vector and delivers the measurement vector.
The problem associated with compressed sensing is an
under determined system of equations. Under some con-
ditions, the solution vector can be recovered accurately
from the measurement vector y [10]. The recovery of a
single vector is often called single measurement vector
(SMV) problem. The extension of SMV model to a finite
set of jointly sparse vectors that share the same locations
for the nonzero elements is known as MMV problem
[2]. MMV problem is an appropriate model for a couple
of applications in medical imaging [11], array processing
[7], and equalization of sparse communication channels
[12]. The MMV model is the result of concatenating a
finite number of SMV problems that share common
sparse support. Mathematical representation of MMV
model is

Y ¼ ΦX ð1Þ
where Y ∈ℂM × L is the matrix of measurements, Φ repre-
sents the sensing matrix, and X ∈ℂN × L is the row-sparse
matrix which has only K nonzero rows. The row support
of matrix X is defined as [4]:

Ω ¼ supp Xð Þ ¼ i j xij≠0 for some j
� � ð2Þ

where Ω denotes the index set that includes the indices
corresponding to the nonzero rows. In the MMV setting,
the goal is to jointly recover the set of vectors that share
a common sparse support. The MMV recovery algo-
rithms will be discussed later in Section 4. Theorem in

[2] provides the necessary and sufficient uniqueness
condition for MMV recovery problem. It states that a
necessary and sufficient condition for the measurements
Y =ΦX to uniquely determine the row sparse matrix X
is given by:

supp Xð Þj j < spark Φð Þ−1þ rank Xð Þ
2

ð3Þ

where |.| stands for cardinality of a set, and spark(.) is
the smallest number of linearly dependent columns of a
matrix [2].

3 System model
Described first is the general form of ULA; then, the
NLA will be defined based on a ULA with missing sen-
sors. Consider a ULA which is made up of M identical
and omnidirectional sensors. The elements of array have
λ/2 spacing between them, where λ is the wavelength of
impinging signals on the array. There are K independent,
far-field narrowband-arriving signals from sources (targets)
that impinge on the ULA at distinct angles θi (i = 1,…,K).
Then the array output can be represented as follows [5, 6]:

y tð Þ ¼ A θð Þs tð Þ þ w tð Þ; t ¼ 1; 2;…:L ð4Þ
where A ¼ a θ1ð Þ; a θ2ð Þ;…;a θKð Þ½ �∈CM�K is the matrix

consisting of steering vectors and a θið Þ ¼
1;…; e−jπ M−1ð Þ sin θið Þ� �T

∈CM�1 . Each steering vector de-
notes a distinctive angle θi from arriving signals. The re-

ceived signal is denoted by s tð Þ ¼ u1 tð Þ;…; uK tð Þ½ �T∈CK�1

—ui(t) being the signal coming from i-th source at time
instance t. In addition, the received signal will be cor-
rupted with white Gaussian noise w(t). The number of
time snapshots is equated to L. The superscript “T” repre-
sents matrix transpose operation. The purpose is to esti-
mate θi (i = 1,..,K) based on received signal y(t). In the
specific case of an NLA, some sensors of ULA are omit-
ted. NLA case will be explained in detail in Section 5.2.
Matrix A(θ ) is not known in Eq. (4) because it depends
on unknown DOAs (θ = [θ1,…, θK]). We can represent Eq.
(4) in matrix form as:

Y ¼ A θð ÞS þW ð5Þ
where Y ∈ ℂM × L is the array output matrix compris-

ing all output vectors, S ¼ s1;…; sK½ �T∈CK�L is the
matrix of source signals si = [ui(1),…, ui(L)] (1 ≤ i ≤ K),
and W ¼ w 1ð Þ;…;w Lð Þ½ �∈CM�L is the noise matrix.
Eq. (5) is derived by concatenating the vectors in Eq.
(4), where Eq. (5) is not a typical form of CS prob-
lem. Therefore, it is necessary to reformulate a par-
ameter estimation problem as a sparse representation
problem. To transform Eq. (5) into a sparse represen-
tation problem, it is necessary to consider all possible
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angles of arrival as Θ ¼ ~θ1; ~θ2;…; ~θN

n o
, where N repre-

sents the number of potential solutions and must be much
greater than M and K. In fact, Θ is a sampling grid of all
possible DOAs. The elements of Θ cover the range be-
tween −90° and +90° with a desired step size. By using this
assumption, we discretize the angular space uniformly
into a grid. In addition, we assume that the DOAs of
sources (targets) would lie on the sampling grid Θ. We

define Φ ¼ a ~θ1

� �
;…; a ~θN

� �h i
∈ℂM�N as the steering

matrix composed of steering vectors corresponding to
the angles in sampling grid Θ. Unlike A(θ), matrix Φ
is known and does not depend on the locations of
targets. Hence, we can rewrite Eq. (5) as a sparse
MMV model [6]:

Y ¼ ΦX þW ð6Þ

where X ∈ ℂN × L is a row-sparse matrix that has only K
nonzero rows. Each nonzero row of X corresponded to a
signal from a specific source. Matrix W represents the
noise matrix, and Φ is considered as the sensing matrix.
This new formulation conforms to MMV model. The
support of sparse matrix X can be denoted by supp(X)
=Ω. From Section 2, we know each column of row
sparse matrix shares the same locations for nonzero
entries in MMV model. In this formulation, the DOAs
correspond to the elements of support set Ω. In other
words, the indices of nonzero rows in X determine the
columns of Φ (steering vectors) that have participated in
constructing the output matrix Y. Eq. (6) is the sparse
MMV representation for DOA estimation, and it can be
considered as the noisy version of Eq. (1). In Eq. (6), Φ
is a known matrix with Vandermonde structure; thus,
spark(Φ) =M + 1. When rank(X) = K, according to the-
orem explained in Section 2, we have M > K + 1; hence,
the problem will have unique solution. The same rela-
tion is deducible from estimation theory based on
which we know that the number of sensors must be
greater than the number of targets. Regarding Eq. (6),
one can find the DOAs by recovering the support of
row sparse matrix X. If L = 1, the problem reduces to
SMV. Now, we can apply sparse recovery algorithms
to Eq. (6) and find support set Ω to determine the

angles of arrival. In the next Section, we will discuss
recovery algorithms.

4 Recovery algorithms for MMV model
4.1 Recovery via l2,1 minimization
The l2,1 minimization is an extension of the well-known
l1 minimization approach used especially for the recov-
ery of row-sparse matrices. This approach is based on
lp,q norm which is formulated by [2]:

Xk kp;q ¼
X
i

xi
�� ��q

p

 !1=q

ð7Þ

where xi denotes the ith row of matrix X. By using Eq.
(7), optimization-based algorithm is able to recover the
row-sparse matrix from the problem defined by:

X̂ ¼ min
X∈ℝN�L

Xk k2;1 s:t: Y−ΦXk k22 < � ð8Þ

In the preceding equation, Y and Φ are given, and ϵ
bounds the amount of noise in recovered data. This method
needs to solve an optimization problem and consequently is
very time consuming. In this paper, we exploit SPGL1 tool-
box [13] to solve Eq. (8), which is an alternative expression
for basis pursuit denoising (BPDN). The l2,1 minimization
method described below will be referred to as BPDN.

4.2 S-OMP algorithm
S-OMP algorithm is an extension of well-known OMP
method reported in [14] which has been developed by
Tropp [4] to solve sparse MMV problem. If L = 1, the
algorithm is reduced to OMP method. Generally, in each
of the iterations, the S-OMP algorithm tries to find an
index of a column which accounts for the greatest correl-
ation with the measurements matrix.

4.3 Proposed algorithm
The proposed algorithm is presented in Table 1. In this
work, we exploit the idea of using SVD decomposition
to compute signal subspace and eliminate additive noise.
This approach has been combined with an iterative
approach to reconstruct row sparse matrix [15]. For
simplicity, we first consider the noiseless case described
in Eq. (1), i.e., Y =ΦX, where X is a row-sparse matrix

Table 1 Proposed algorithm

Input : Y ∈ℂM × L, Φ ∈ℂM × N, K
initialize :Ω← ϕ, D = [IK, 0K × (L − K)] '
[u, L, V] = svd(Y)
Yred = YVD
U = orth(Yred)

Ω ¼ j j c ¼ argmaxj
ΦH

j Uk k2

Φjk k2

	 
� �
; select K column indices jð Þ that maximize c

X ¼ Φ†
ΩY

output : X, Ω
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with K nonzero and independent rows. In the above
equation, the rank of matrix X is equal to the rank of
measurement matrix Y, i.e., rank(Y) = rank(X) = K. In-
deed, the measurement matrix Y is a linear composition
of the rows of matrix X. Matrix ΦΩ is obtained by set-
ting the columns of Φ indexed by Ω. Then we can write
range(Y) = range(ΦΩ). In other words, the columns cor-
responding to support set Ω create the range of Y due
to row sparsity of matrix X. In order to eliminate scaling,
the orthonormal basis is computed, U = orth(Y). After
computing U, we can find the elements of support set Ω
which indicate the position of nonzero rows in matrix Φ
by checking the condition below:

ΦH
j U

��� ���
2

Φj

�� ��
2

¼ 1 if f j∈Ω ð9Þ

After finding Ω, the nonzero rows of row-sparse
matrix can be calculated with ease by using matrix
pseudo inverse. The aforementioned method however
will not work in noisy environment described in Eq. (6).
In the presence of uncorrelated noise, the matrix Y will
be full rank, and we have rank(Y) ≠ K. Hence, the noise
needs to be removed and the rank of matrix Y reduced
to K. The SVD decomposition tool [7] has been used to
remove the additive noise from the measurement matrix.
First, [u, L,V] = svd(Y) needs to be calculated to obtain
dimensionality reduced version of Yred = YVD. In order
to select K singular values corresponding to K targets,
matrix D = [IK, 0K × (L − K)] ′ is defined. Matrix Yred is a
noiseless version of Y which spans the target signals sub-
space, and its rank is equal to K. Next, the algorithm
tries to find the columns of matrix Φ which have the
greatest correlation with U = orth(Yred). The columns of

sensing matrix that maximize ΦH
j U

��� ���
2
= Φj

�� ��
2 deter-

mine the elements of support set Ω. Finally, signal X is

recovered by using pseudo inverse operation. If L < K,
the rank of Y is equal to L and the performance of algo-
rithm degrades. In this paper, we assume that the num-
ber of snapshots is greater than the number of targets,
i.e., L > K.

5 Simulations
We considered the problem of DOA estimation in both
uniform linear array and nonuniform linear array scenar-
ios. Numerical simulations are used to compare the pro-
posed method with other well-known techniques.
Simulation results for ULA are presented in Section 5.1
and NLA investigation in Section 5.2.

5.1 Uniform linear array
In this part, several scenarios have been devised to com-
pare the performance of DOA estimation method pro-
posed with others using uniform linear array with M =
30 sensors. We consider three independent narrowband
and far-field sources (K = 3) located at three distinct ran-
dom angles. The angles of sources are uniformly selected
from the range−90° to 90°. In each realization, new ran-
dom angles are selected. The possible range is discretizes
with a step size of 1°; subsequently, N = 181. The signals
of the sources are determined from Gaussian distribu-
tion with zero mean and unit variance. Criterion used to
assess the performance of algorithms is based on the
empirical recovery rate, which is the probability of suc-
cessful recovery of sources. It is assumed that Nr realiza-
tions are achieved and in each realization K targets are
found; therefore, estimation is determined for K ×Nr

DOAs. The total number of successful recovered targets
is represented by Nsuccess during the whole Nr realiza-
tions, and ERR =Nsuccess/(K ×Nr).
Figure 1 shows the effect of the number of snapshots

of the proposed algorithm, S-OMP, and BPDN. It is
evident that more snapshots significantly improve the

Fig. 1 Effect of number of snapshots on the recovery rate for SNR = 30 dB, M = 30, and K = 3
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probability of source recovery using the proposed
method. The reason is that SVD, which is used in the
proposed algorithm, works better with more snapshots
because the singular values are estimated more accur-
ately. Increase of the number of snapshots marginally
improves the performance of S-OMP and BPDN.
Figure 2 depicts ERR versus the number of sources

using L = 70 and SNR = 30 dB for the proposed algo-
rithm, S-OMP, and BPDN. It demonstrates that for K
between 2 and 17, the proposed method achieves better
recovery rate than S-OMP and BPDN. Failure rate of the
proposed algorithm is comparable with the other two
techniques for K ≥ 17K ≥ 17. In other words, by corrupt-
ing the sparsity (i.e., having more targets to estimate),
the proposed algorithm fails to reconstruct sparse solu-
tion vector like the other compressed sensing methods.
In Fig. 3, a different scenario is assumed. Here, M =

30, L = 70, and three sources impinge on the array at

10°, 70°, and 71°. To verify the superiority of the pro-
posed algorithm over S-OMP, l2,1 minimization, and
Root-MUSIC, RMSE indicator is utilized which is
defined by:

RMSE ¼ 1
K

XK
k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Nr

XNr

j¼1

θ̂kj−θk
� �2vuut ð10Þ

where Nr is the number of independent Monte Carlo
realizations, K is the number of sources, θk is the true
DOA, and θ̂kj is the j-th estimation value for θk.
Figure 3 demonstrates the efficiency of the proposed

method in resolving adjacent angles in low SNRs. The
proposed method outperforms the other algorithms and
converges to the actual DOA values over a wider range
of SNR values. The main advantage of proposed method
is that it combines both SVD denoising and MMV

Fig. 2 Effect of increasing the number of sources (K) on ERR for SNR = 30 dB, L = 70, and M = 30

Fig. 3 Performance comparison of RMSE for DOAs at angles 10°, 70°, and 71°
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approach to achieve better sparse signal recovery. In
contrast, S-OMP is not able to discern adjacent targets
even at an SNR = 30 dB where its root mean square
error remains fixed at 3.54°. The high coherency of
matrix Φ causes this method to be inaccurate in scenar-
ios with closely spaced targets. Root-MUSIC and BPDN
both are efficient for SNRs higher than 15 dB.
Running time investigation of the proposed algorithm,

S-OMP, and BPDN are shown in Figs. 4 and 5 for M =
30, L = 70, and SNR = 30 dB. One can observe that, in
contrast to S-OMP, the running time of the proposed al-
gorithm increases negligibly with increase in K. More-
over, despite being insensitive for K > 5, l2,1 minimization

(BPDN) is a significantly slower algorithm, requiring 3
orders of magnitude longer times to resolve the targets.
Figure 5 shows the running time against the number of
snapshots. The results show once again that BPDN
performed the worst requiring thousand-fold more time
in comparison to the other two methods. The results
also show the proposed method consumes less time to
calculate SVD values than S-OMP because it deals with
a reduced matrix size of Yred ∈ ℂ

M ×K while S-OMP has
to work with a larger matrix of Y ∈ ℂM × L .
The last simulation of this part is dedicated to the case

of two closely spaced sources with varying angular
separation. Here, the ULA employs 20 sensors, and

Fig. 4 Running time of the proposed and other algorithms versus the number of targets
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the number of snapshots L = 100 and SNR = 5 dB.
The angle between two sources varies from 1° to 30°.
The result for proposed algorithm, S-OMP, and root-
MUSIC is shown in Fig. 6.

5.2 Nonuniform linear array
In this section, DOA estimation is investigated in
NLA scenarios where low-angle tracking is required
to discern targets that are close to each other. By
using NLA configurations, the accuracy of angle mea-
surements can be improved in comparison to uniform
linear array setup with the same number of sensors.
In other words, NLA configurations have a narrower
beamwidth by using a wider aperture and therefore
achieve a better DOA resolution.
If one or more sensors in a ULA malfunction, then the

array can be considered an NLA. As popular and effi-
cient methods such as root-MUSIC cannot be used in
NLAs, we have applied the CS approach to various
configurations of NLA problem. An NLA with aperture
M′ and M sensors has been denoted by NLAM

0
;M . For

example, NLA30,20 denotes 20 sensor linear arrays with
an aperture length 30 × λ/2. In Fig. 7, the sensors of a

NLA5,3 are located at positions corresponding to the
vector p = [0,2,5].
The steering vector associated with the array in Fig. 7

can be written as a μið Þ ¼ ej2μi ej5μi½ � where μi ¼ − 2π
λ Δsin

θið Þ and Δ represents the distance between sensors.
Regarding this nonuniform structure, the distance
between the elements of vector increases; consequently,
the coherency of vector decreases, and the process of
recovery become more efficient. To evaluate the per-
formance of recovery algorithms, some simulation
tests have been carried out considering the scenario
in Fig. 3 with NLA60,30. The results in Fig. 8 show
that for this case, the aperture has doubled in length
while the number of sensors remains the same. The
figure shows that the overall performance of all
CS-based methods has improved in comparison to
results in Fig. 3 where the ULA with 30 sensors using
S-OMP method attains an error of 3.54° at SNR =
30 dB, while with NLA60,30, an error limit is 1.44° at
the same SNR. The improvement is because when the
linear array has a nonuniform arrangement, the lower
mutual coherency between array manifold columns
helps reconstruction method pick up correct DOAs
from sampling grid. NLA could be considered as a

Fig. 6 Bias of localizing two sources as a function of separation for SNR = 5 dB

Fig. 7 The dark circles denote the active sensors and the white circles the omitted sensors
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sampling machine taking random spatial samples
from arriving signals. Increasing randomness in [10]
is reported to tighten RIP property. Furthermore,
owing to the doubled aperture length in Fig. 8, the
ability of the array to discern closely located DOAs
has been enhanced.
The second experiment concerns the effect of aperture

length on DOA estimation in NLA scenario. We
compare ULA15 to four NLAs with the same number of
active sensors. The experiment has been carried as a
Monte Carlo simulation with three randomly chosen
angles in each of the iterations. Figure 9 shows that by
increasing the aperture, while the number of sensors
remains the same, the array’s ability to resolve DOAs
improves significantly. This is because the longer
aperture size provides narrow beamwidth. From the CS
perspective, a longer aperture in the NLA arrangement
decreases the matrix mutual coherency since the sensors
can be located far from each other.

The last experiment investigates the performance of
the array with fixed aperture and variable number of
sensors. The results are summarized in Fig. 10. While
NLA60,5 with only 5 sensors fail to achieve a satisfac-
tory result for SNR < 20 dB, the other two alternatives
with 10 and 15 sensors exhibit desirable performance.
Indeed, the more sensors we exploit, the more mea-
surements we get; consequently, the sparse signal will
be recovered more accurately even at low SNRs.

6 Conclusions
The proposed algorithm, which is based on row-sparse
matrix recovery for DOA estimation problem, not only
handles multiple measurements but also converges sig-
nificantly faster in comparison to other conventional
compressed sensing algorithms. By using SVD decom-
position, the proposed algorithm is able to achieve better
results in terms of RMSE and ERR in low SNR situa-
tions. It consumes less time than its rivals because it

Fig. 8 Performance comparison of RMSE in LNA scenario for NLA60,30

Fig. 9 The role of aperture length in DOA estimation with NLAs using proposed method
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works on a matrix with lower dimensions due to SVD
denoising. Impact of aperture length and sensor number
on the performance of proposed method was also inves-
tigated. The results show that for a fixed number of
sensors, the array with longer aperture outperforms
arrays with shorter aperture. When the aperture size is
fixed, the array with more sensors exhibits better per-
formance as more sensors acquire more measurements,
which helps sparse signal recovery.
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Fig. 10 Effect of number of sensors when the aperture size is fixed for the proposed method
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