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Abstract

improved by using power control.

Power control

Full-duplex relaying can increase the spectral efficiency by allowing the relay to transmit and receive at the same time
and over the same frequency. To overcome the challenge that the destination treats the source-destination link as
interference, we employ large-scale antenna array at the destination. By using the fact that the source-destination
channel vector and relay-destination channel vector become pairwise orthogonal, the source-destination link can be
converted to useful signal. We first derive the achievable rates and outage probabilities for direct transmission,
half-duplex relaying, and full-duplex relaying, respectively. Two relaying protocols, i.e., amplify-and-forward (AF) and
decode-and-forward (DF), are considered. Then, based on the channel state information (CSI) availability, the optimal
transmit power of the full-duplex relay node is obtained by maximizing the achievable rates or minimizing the outage
probabilities of full-duplex relaying. Numerical results show that the full-duplex relaying performs better than
half-duplex relaying when the residual self-interference is small, and the performance of full-duplex relaying can be
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1 Introduction

In recent years, the fourth-generation (4G) mobile com-
munication system has been deployed and used world-
wide. However, with an explosion of wireless devices and
services, there is growing demand for data traffic that
cannot be accommodated by 4G. Therefore, the fifth-
generation (5G) mobile communication system, which
is expected to be commercially available by 2020, has
become a hot research topic in both academia and indus-
try [1, 2].

As one of the most promising technique for the 5G
mobile communication system, large-scale antenna array
or massive multiple-input multiple-output (MIMO) has
drawn significant research interests [3—6]. The concept
of massive MIMO was first proposed by Marzetta [7],

*Correspondence: hanliang_tjnu@163.com

'Tianjin Key Laboratory of Wireless Mobile Communications and Power
Transmission, Tianjin Normal University, Tianjin 300387, China

2College of Electronic and Communication Engineering, Tianjin Normal
University, Tianjin 300387, China

Full list of author information is available at the end of the article

@ Springer Open

showing that by employing unlimited number of anten-
nas at a base station (BS), the effect of thermal noise
and small-scale fading can be averaged out, the channel
vectors between the users and the BS become pairwise
orthogonal, and the inter-user interference can be elimi-
nated. In [8], the authors compared two linear precoding
schemes, i.e., conjugate beamforming and zero forcing
(ZF), with respect to spectral efficiency and energy effi-
ciency in a single-cell downlink scenario, and showed that
for high spectral efficiency and low energy efficiency, ZF
outperforms conjugate beamforming, while at low spec-
tral efficiency and high energy efficiency, the opposite
holds. In [9], the transmit power scaling laws and lower
capacity bounds for maximum ratio combining (MRC),
ZF, and minimum mean-square error (MMSE) detection
were derived. It was shown that when the number of BS
antennas M grows without bound, the transmitted power
of each user could be reduced proportionally to M if the
BS has perfect channel state information (CSI) and 1/M
if CSI is estimated from uplink pilots. In [10], the authors
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investigated how massive MIMO performs in real prop-
agation environments and showed that the performance
is close to that in independent and identically distributed
(iid) Rayleigh channels, so the theoretical advantages of
massive MIMO can be obtained in real channels.

On the other hand, encouraged by the advance in self-
interference cancelation (SIC) algorithms [11, 12], full-
duplex relaying, which can transmit and receive at the
same time and over the same frequency, has also attracted
great research interests. In [13], the authors proposed a
full-duplex relay system which shares the time resource
as well as the antennas at the relay node and elimi-
nates the underlying interferences using precoding. In
[14], the exact outage probability of full-duplex decode-
and-forward (DF) relay systems was derived by consid-
ering the self-interference as a Rayleigh fading channel.
It was shown that the full-duplex relaying is superior to
half-duplex relaying in terms of the outage probability
as the signal-to-interference ratios (SIRs) are higher and
the signal-to-noise ratio (SNR) is lower. Riihonen et al.
derived an optimal gain control scheme for full-duplex
amplify-and-forward (AF) relaying which considered the
effect of residual loop interference in [15], investigated
three spatial domain SIC solutions for full-duplex MIMO
relay systems in [16], and proposed a hybrid relaying
which could switch between full-duplex and half-duplex
mode in [17]. Reference [18] derived the outage perfor-
mance of multi-hop full-duplex relaying by considering all
the inter-relay interference and echo-interference. Refer-
ence [19] investigated the power and location optimiza-
tion for full-duplex DF relay systems. From the above
references, it is clear that there are two main challenges
facing the use of full-duplex relaying. The first challenge
is how to mitigate or cancel the self-interference at the
relay due to signal leakage between the relay transmit and
receive antenna [12-19], and the second challenge is how
to deal with the signal from the source since the destina-
tion always treats the direct link from the source to the
destination as interference [14, 17-19].

Since low complexity linear signal processing would
achieve near optimal performance in massive MIMO sys-
tems, some researchers have introduced massive anten-
nas into full-duplex relay systems. In [20], the authors
investigated a multi-pair full-duplex relay system, where
the relay is equipped with massive arrays and uses ZF
and MRC/MRT to process the signals, and showed that
the large number of spatial dimensions available can be
effectively used to suppress the loop interference in the
spatial domain. In [21], the authors studied the hardware
impairments aware transceiver design for massive MIMO
full-duplex relaying, where multiple source-destination
pairs communicate simultaneously with the help of a full-
duplex relay equipped with very large antenna arrays.
Note that these works assume the relay is equipped with
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massive arrays, and there is no work considering the desti-
nation is equipped with massive arrays in full-duplex relay
systems.

In this paper, we investigate the performance of full-
duplex AF and DF relaying with large-scale antenna array
at the destination. Since the source-destination chan-
nel vector and relay-destination channel vector become
pairwise orthogonal, the destination can treat the source-
destination link as useful signal and therefore the perfor-
mance can be improved. Furthermore, we optimize the
transmit power of the full-duplex relay node by max-
imizing the achievable rates or minimizing the outage
probabilities.

2 System model

We consider a three-node relay channel, where a single-
antenna source communicates with an N-antenna desti-
nation through a full-duplex relay, as depicted in Fig. 1. We
assume the relay is equipped with two antennas, one for
receiving and the other for transmitting. In cellular net-
works, the source can be a user and the destination can be
a BS.

Denote the channel of the source-relay, source-
destination, and relay-destination links as /g, hgg € CN*1,
and h,g € CN*1, respectively, which are modeled to be
frequency flat and quasi static. All the channel elements
are assumed to be zero-mean complex Gaussian random
variables (Rayleigh fading), and the variance for kg, each
element of hgg, and each element of h,q are given as
Nsr> Nsd, and 7,4, respectively. Since the self-interference
cannot be completely canceled, we denote the residual
self-interference channel as /., which is also assumed to
be zero-mean complex Gaussian random variables with
variance 7yy.

The transmit signals from the source and the relay in
time slot ¢ are denoted as xs (¢£) and x; (¢), respectively.
We assume the transmit power of the source and the relay
are Ps and Py, respectively, ie., E[|xs (t)lz] = P and
E[lx: (%] = Pr.

2.1 Direct transmission

For the direct transmission, the source transmit the sig-
nal directly to the destination. In time slot ¢, the received
signal at the destination is given as

Yd (8) = hgaxs (£) +ng (8), (1)

where nq (£) denotes the complex additive white Gaus-
sian noise (AWGN) at the destination with zero-mean and
covariance matrix E [nd () nd(t)H ] = aglN.

2.2 Half-duplex relaying
For the half-duplex relaying, the transmission is carried
out in two time slots. In the time slot ¢ (assumed to be
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Fig. 1 System model for full-duplex relaying with large-scale antenna array at the destination

odd), the source transmits a signal to the relay and the des-
tination. The received signal at the destination is the same
as (1), and the received signal at the relay is given as

yr (£) = hgrxs (8) + np (t) , (2)

where 7, (t) denotes the AWGN at the relay with zero-
mean and covariance o2. In the time slot ¢ + 1, the relay
transmit a signal to the destination, and the received signal
at the destination is given as

Yd(t+1)=hrdxr(t+ D+ng(t+1). 3)

When the AF protocol is used, the relay amplifies the
received signal y, by a scaling factor B, so the trans-
mit signal at the relay is x, (£ + 1) = By, (¢t). To satisfy
the instantaneous transmit power at the relay, the scaling
factor is chosen as

P,
B=|—7——- (4)
Ps|hsr|2 + Urz

When the DF protocol is used, the relay decodes its
received signal and checks if it is correct. If the relay can
decode the received signal successfully, the transmit signal

attherelayisx, (t + 1) = \/gj:xs ).

2.3 Full-duplex relaying
For the full-duplex relaying, the received signal at the relay
and the destination in time slot ¢ are given by

instantaneous received power at the relay is £ [‘ ¥y (£) ‘2] =

Pylhg|? + Pyolh)® + O’rz, the scaling factor is chosen as

f= Pf )
ps|l’lsr|2 +Pr|hrr|2 + (71«2‘

Assume the processing delay at the relay is t time slot,
then the transmit signal at the relay is x; (£) = By, (¢t — 7).
When the DF protocol is used, the processing at the
relay is also similar to that in the half-duplex mode except
there is processing delay 7. If the relay can decode the
received signal successfully, then the transmit signal at the

relay is x; (£) = \/llzj:xs (t—1).

3 Performance analysis

In this section, we analyze the performance of the direct
transmission, half-duplex relaying, and full-duplex relay-
ing, respectively. We assume matched filter (MF) process-
ing is used at the destination, i.e., the destination processes
the signal vector by multiplying the conjugate-transpose
of the channel [4]. For large N, the channel vectors hgq and
h,q are asymptotically orthogonal, so we have h’;’lhsd —
Nnsa, hfihig — Nnyg, hiheg — 0and hfihyg — 0.

3.1 Direct transmission
When MF is used at the destination, we have

hyq (t) = hihgaxs (6) + hfing ()

~ Njsaas (¢) +higng (1) 8)
Yr (t) = hgxs (t) + heexye (8) + 1c (2) (5)
and Therefore, the achievable rate is given by
d (8) = hgaxs () + heaxe () +n4q (2, (6) NP,
Y s e Ror = log, [1+ ;;75"1 = log, (1 +N7sq),  (9)
respectively. d

When the AF protocol is used, the processing at the
relay is similar to that in the half-duplex mode. As the

where Y54 = Psns d / JC%.
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Outage probability is defined as the probability that the
achievable rate falls below a target transmission rate Ry, so
the outage probability can be given by

0, if Rpr > R
out ’ DT = IR0,
PpT = { 1, if Rpr < Ro. (10)
3.2 Half-duplex relaying

In the odd time slot ¢, the processing at the destination is
the same as in (8). In the even time slot ¢ + 1, by using MF,
we have

hya (¢ +1) = Wiha (¢ + 1) + hing (¢ + 1)

~ Nnaxe 64+ 1) +hling ¢ +1).  (11)

We assume the maximum ratio combining (MRC) is
applied at the destination, then the end-to-end instanta-
neous SNR for the AF protocol is given as

NystVed

D —— 12
Vsr+NVrd+1 ( )

YHD,AF = NYsd +

where ;4 = Piira/of and yy = Pslhgl* /o?. The
achievable rate for the AF protocol is given as

1
Ryp AF = ilogz (14 yHD,AE) » (13)

where the factor 1/2 is due to the use of two time slots.
The outage probability for the AF protocol is given as

1
Piibae = Pr <2log2 (1+ vHpAF) < Ro)

= Pr (yHp,AF < SHD) , (14)

where Syp = 22k —1, If Nysq > SHp, we havepol_[%,AF =0
if Nysqd + Nyird < Sup, we have p]?[D AF =1 otherwise, we
have

(N7rd + 1) (BHp — N?sd))
N¥rd + NYsd — 0Hp
NVed +1) (8Hp — N)7sd)>
17sr (N?sd + N77rd — SHD)

PHD Ap = Pr (Vsr <

:1—exp(—

where 7 = Pong /o2,
Similarly, the end-to-end instantaneous SNR and
achievable rate for the DF protocol are given as

(15)

YHD,DF = min {max {ysr, NVsd}, Nysd + NVed} (16)

and
1
Rup,pr = Elogg (14 yHD,DE) » (17)

respectively. The outage probability for the DF protocol is
given as

1
Piibpr = Pr (210g2 (14 yHp,DE) < Ro)

= Pr (yup,oF < 8HD) - (18)
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IfNysa > S, W
we have pOHD pe = L; otherwise, we have

we have p]‘f[‘]‘;,AF = 0; if Ny +NVid < SHD»

Piboe =1 —Pr(vs > 81p)

(-53)
=1—exp .
Vsr

3.3 Full-duplex relaying
At the relay, the signal-to-interference-plus-noise ratio
(SINR) can be written as

(19)

Pg|hg |
Ve = % (20)
Pl | + oy

At the destination, by using MF to (6), we can obtain

hyq (t) = hfihgaxs () + W heax, (8) + hing (0)

~ Nnsaxs () + hiing (8), (21)
Yd (t) = h hsdxs (t) + h hrdxr (t) + h 41d (t)
~ Nngaxr () +hing 2). (22)

When the AF protocol is used, (22) can be further
written as

hya (t) ~NnwaBy: (¢ — 7) + hling (1)
=Nnrdp [hs,rxs & — 1)+ hppxe (8 — 1)

+n, (t — )] + hfing (1) (23)

The destination can delay (21) by t time slots and
combine it with (23), then the end-to-end instantaneous
equivalent SNR and achievable rate are given as

- Nyrdwr
=Nysq + ———, 24
YED,AF 5 Nt et 1 (24)
and
Rep,ae = log, (14 yep,AF) » (25)
respectively. The outage probability is given as
Pepar = Pr (logy (1 + yrp,aF) < Ro)
=Pr (yep,AF < D), (26)

where 8pp = 2% — 1. If Nysq > 8pp, we have pif . = 0;

if Nysq + Nyid < 8gp, we have p?;%t’ Ap = L; otherwise, we

have

i e (e < T D0 =)
’ Nvsd +NVrd_8FD
1 - exp (N5 £ 0= )
Ysr NVsd + N¥id — 6FD)
1

X .
1+ NYrd+1DGpp—=NVsd) Vir
Nysd+NVid—SeD  Ver

(27)

where yir = Py /crr .



Han et al. EURASIP Journal on Wireless Communications and Networking (2017) 2017:41

Similarly, the end-to-end instantaneous equivalent SNR
and achievable rate for the DF protocol are given as

yep,0F = min {max {yr, Nysa}, NVsa + Nyra},  (28)

and

Rep,pr = log, (1 + yep,E) » (29)

respectively. The outage probability for the DF protocol is
given as

Pebpe = Pr (log, (1+ vep,pr) < Ro)

= Pr (yep,pF < 8D) - (30)

If Nsq > 8pp, we have poi [ )r = 0; if Nysq + N¥rd < 8eD,
we have pgg’DF = 1; otherwise, we have

Peppr = 1 = Pr (% = 8ep)
( SED ) Ver
=1—-exp|—= —
Vst /) Vst + SEDVir
3.4 Condition for the superiority of full-duplex relaying
over half-duplex relaying
In this subsection, we derive the condition that full-duplex

relaying outperforms half-duplex relaying based on the
outage probability. Five cases are considered.

31)

e Case 1: Nysq > dup. In this case, we have
PYbAF = Piib.pe = PEDar = PEppr = 0, which
means that full-duplex relaying and half-duplex
relaying will obtain the same outage performance.

e Case 2: Nysq + Nyid < Opp. In this case, we have
PiibAF = PYibpF = PED AF = PED,pF = 1, Which
means that full-duplex relaying and half-duplex
relaying will obtain the same outage performance.

e Case 3:8pp < Nysq < up. In this case, we have

out — jout _ out _ j,out
Pep A = Peppr = 0 andPHD,AF = Prip,pe > 0,50

full-duplex relaying outperforms half-duplex relaying.

e Case 4: 8pp < Nysd + Nyid < Sup. In this case, we
have pYii; ar = Prip,pr = 1 and pR5 ap = PRppe < 1
so full-duplex relaying outperforms half-duplex
relaying.

e Case 5: Nysq + Nyid = Sup and Nygq < dgp. In this
case, full-duplex relaying outperforms half-duplex
relaying when p , r < piis Ar for AF protocol and
P pr < P pr for DF protocol. Using the results
(15) and (27), the average residual self-interference
for AF protocol should satisfy

T < Ysr NVsd + Nyrd — OeD)
" T (NTa + D Brp — Nsa)
{ [ Nyrd Nyrd + 1)
X exp — — —
Ysr (N)/sd + NVrd - (SHD)
(8HD — 8FD) :| 3 1}
(NVsd + N¥id — 8eD)

(32)
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Using the results (19) and (31), the average residual
self-interference for DF protocol should satisfy

V. SHpD — &
G < T [exp (HDFD) _ 1]
SED Vsr

4 Power control

In this section, we propose power control to improve the
system performance. We assume independent power con-
straint at both the source and the relay, ie, Py < Py
and P, < P, For half-duplex relaying, it is obvious that
the system performance is optimized when the source and
the relay use the maximum allowed transmit power, so we
focus on power control for full-duplex relaying.

For full-duplex relaying, the source should also use the
maximum transmit power because as Ps increases, the
achievable rates (25) and (29) increase and the outage
probabilities (27) and (31) decrease. As such, we concen-
trate on power control for the relay. Two scenarios are
considered based on the CSI availability.

(33)

4.1 Instantaneous CSI of kg, and ki,
In this scenario, we assume the relay has the instanta-
neous CSI of &g and /,,, and the statistical CSI of hgq and
h,q, then the power control is to maximize the achievable
rates.

For the AF protocol, the power control can be formu-
lated as an optimization problem

.. Nyrayr
maximize ———
Py Ny +wn+1

subject to 0 < P, < P (34)

By taking the first derivative of object function with
respect to Py and setting the first derivative equal to zero,
we obtain the only one positive root

pF — Uf Ps|hsr|2+0r2
' Nnrd |hrr|2

Therefore, the optimal transmit power of the relay is
P = min (P, PM).

For the DF protocol, the power control can also be
formulated as an optimization problem

(35)

maximize min {y;, Nysq + Nyid}
subject to 0 < P, < P (36)
The optimal solution should satisfy
Pilhs|” _ NPsnsa | NP 37)
Pl + 02 ol ol
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By solving this equation, we can obtain the only one
positive root

o \/(Psnsd o )2 | Pdhsi’od
T
2ned 2|hrr|2 Nlhrr|27]rd
Psnsq Ur2
2 20 9
Mrd |72pe]

Similarly, the optimal transmit power of the relay for DF
protocol is PP = min (P¥, PM2X).

4.2 Statistical CSI of &g and /i

In this scenario, we assume the relay only has the statisti-
cal CSI of hy, hyr, hgg, and hyg, then the power control is to
minimize the outage probabilities. Note that power con-
trol does not help if Nysq > 8pp or Nysq + Nyid < SeDs
so we only need to consider the case that Nysq < &pp and
Nysd + Nyrd = Spp-

For the AF protocol, minimizing the outage probabil-
ity (27) is equivalent to minimizing — In (1 - p%‘]‘)t, AF), )
the power control can be formulated as an optimization
problem

. Ny + 1) Yer NVed + 1)
minimize ———— +In(14+ —-FF—7—=
Py Yer (¢Vrd — 1) Yor (€Vrd — 1)
Sepo’ P,
subject to oD% Z5Tsd P, < p¥ (39)
NrdN Nrd

where ¢ = N / (8gp — Nsd) - By taking the first deriva-
tive with respect to P, and setting the first derivative equal
to zero, we can obtain P}. However, it is difficult to find

(2017) 2017:41

Page 6 of 9

the closed form solution, so we need to use iterative root-
finding algorithms such as the bisection method or the
Newton’s method to find the numerical solution.

For the DF protocol, to ensure Nysq + Nyyq > Spp, we
should set the transmit power at the relay as high as pos-
sible. However, after Nysq + Nyrq > Spp is satisfied, the
outage probability increases as P, increases. Therefore,
the optimal transmit power of the relay is

51:])0'2 P,
P;k _ d snsd.

(40)
nedN Nrd

5 Numerical results

In this section, we present some numerical results to val-
idate our analysis. For simplicity, we assume N = 100,
pmax — 1, pmax — 1 pg = 1077, na = 2 x 1076,
03 =02 =10"%and Ry = 5 bps/Hz.

In Fig. 2, we plot the achievable rates as a function of
ysr for direct transmission, half-duplex relaying, and full-
duplex relaying, where |/;|> = 4 x 107°. From Fig. 2, we
can see that (1) the achievable rates of both half-duplex
relaying and full-duplex relaying increase as yg, increases;
(2) the full-duplex AF relaying perform better than full-
duplex DF in the low SNR regime, but perform worse than
full-duplex DF in the high SNR regime; and (3) the achiev-
able rates of full-duplex relaying can be improved by using
power control.

In Fig. 3, we plot the achievable rates as a function of
|hrr|2 for direct transmission, half-duplex relaying, and
full-duplex relaying, where y5, = 30 dB. It is observed
from Fig. 3 that as Ih,rrl2 increases, the achievable rates of

—&— FD, AF, no power control
---&x-- FD, DF, no power control
6 | —©— FD, AF, power control
---©-- FD, DF, power control

Achievable Rate (bps/Hz)

Lo

Yy (dB)

Fig. 2 Achievable rates versus ys, for direct transmission, half-duplex relaying, and full-duplex relaying, with |hy|? = 4 x 1076

20 22 24 26 28 30
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-+=:=DT
—b— HD, AF
-=“%-- HD, DF

—&— FD, AF, no power control 1
---4x-- FD, DF, no power control
—&— FD, AF, power control

---©-- FD, DF, power control

2
-60 -55 -50 -45 -40

[l (aB)

Fig. 3 Achievable rates versus || for direct transmission, half-duplex relaying, and full-duplex relaying, with y, = 30 dB

-35 -30 -25 -20 -15 -10

full-duplex relaying decrease significantly. When [/1,|? is
high enough, the achievable rates of half-duplex relaying
will outperform that of full-duplex relaying. Moreover, we
can also see that power control can improve the achievable
rates of full-duplex relaying.

Figure 4 shows the outage probabilities versus ys, for
full-duplex relaying with E (|hrr|2) = 4 x 107, while

Fig. 5 shows the outage probabilities versus E (Ihrr|2)
for full-duplex relaying with y5, = 40 dB. Note that
NPI*™neq /aj + NP neq /ag < éup, so the outage
probabilities for half-duplex relaying equal to 1. From
Figs. 4 and 5, we can see that (1) the outage probabilities of
full-duplex relaying decrease as y; increases and increase
as E (|hrr|2) increases; (2) the full-duplex DF relaying with

AF, no power control, simulation
o e AF, no power control, analysis
10+ O  AF, power control, simulation

Outage Probability

— — AF, power control, analysis
A DF, no power control, simulation
=== DF, no power control, analysis
O  DF, power control, simulation
DF, power control, analysis

10° ! ! ! ! ! ! !
20 22 24 26 28 30 32 34 36

¥ (dB)
Fig. 4 Outage probability versus y, for full-duplex relaying, with £ (\hr,|2) =4x107°

38 40
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E(\h"
Fig. 5 Outage probability versus £ (|hy|?) for full-duplex relaying, with y; = 40 dB

*)(aB)

power control will obtain the best performance and the
full-duplex DF relaying without power control will obtain
the worst performance; and (3) the outage probabilities
of full-duplex relaying can be improved by using power
control.

6 Conclusions

In traditional full-duplex relaying, the destination always
treats the source-destination link as interference, which
degrades the system performance. In this paper, we inves-
tigated the system performance of full-duplex relaying
by considering large-scale antenna array at the destina-
tion. Using the property that the source-destination chan-
nel vector and relay-destination channel vector become
pairwise orthogonal, we converted the source-destination
link to useful signal. We derived the achievable rates
and outage probabilities for direct transmission, half-
duplex relaying, and full-duplex relaying, respectively.
By maximizing the achievable rates or minimizing the
outage probabilities based on the CSI availability, we
obtained the optimal transmit power of the full-duplex
relay node. Numerical results showed that the perfor-
mance of full-duplex relaying is determined by the resid-
ual self-interference, and power control can improve the
performance of full-duplex relaying.
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