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Abstract

This paper is concerned with distributed estimation of a scalar parameter using a wireless sensor network (WSN) that
employs a large number of sensors operating under limited bandwidth resource. A semi-orthogonalmultiple-access
(MA) scheme is proposed to transmit observations from K sensors to a fusion center (FC) via N orthogonal channels,
where K ≥ N. The K sensors are divided into N groups, where the sensors in each group simultaneously transmit on
one orthogonal channel (and hence the transmitted signals are directly superimposed at the FC as opposed to be
coherently combined). Under such a semi-orthogonal multiple access channel (MAC), performance of the linear
minimummean squared error (LMMSE) estimation is analyzed in terms of two indicators: the channel noise
suppression capability and the observation noise suppression capability. The analysis is performed for two versions of
the proposed semi-orthogonal MA scheme: fixed sensor grouping and adaptive sensor grouping. In particular, the
semi-orthogonal MAC with fixed sensor grouping is shown to have the same channel noise suppression capability
and two times the observation noise suppression capability when compared to the orthogonal MAC under the same
bandwidth resource. For the semi-orthogonal MAC with adaptive sensor grouping, it is determined that N = 4 is the
most favorable number of orthogonal channels when taking into account both performance and feedback
requirement. In particular, the semi-orthogonal MAC with adaptive sensor grouping is shown to perform very close to
that of the hybrid MAC, while requiring only log2 N = 2 bits of information feedback instead of the exact channel
phase for each sensor.

Keywords: Wireless sensor networks, Distributed estimation, Multiple access channel, Multiple access scheme

1 Introduction
Wireless sensor networks (WSNs) have found applica-
tions in diverse areas such as environmental data gather-
ing [1], industrial monitoring [2] and monitoring of smart
electricity grids [3], and mobile robots and autonomous
vehicles [4]. Such widespread applications of WSNs are
made possible by advances in wireless communications
and high-speed low-power electronics, which makes
WSNs inexpensive, compact and versatile [5]. All these
applications of WSNs are based on the same fundamen-
tal task of sampling (i.e., observing) some signal parameter
using sensors geographically distributed over a field and
estimating the parameter of interest using a central pro-
cessing unit (fusion center). Such a signal processing task
is generally known as distributed estimation.
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To perform distributed estimation using a WSN, each
sensor makes an observation of the quantity of interest,
generates a local signal, and then sends it to a fusion center
(FC) via a wireless fading channel. Based on the data col-
lected from the sensors, the FC produces a final estimate
of the desired quantity according to some fusion rule. An
important design consideration for a WSN is the trans-
mission method from the sensors to the fusion center,
which can be analog or digital. With analog transmis-
sion, each sensor amplifies and forwards its observation to
the FC. On the other hand, for digital transmission, each
sensor performs source and channel coding before trans-
mitting the encoded information over the fading channel
(see [6] and references therein). According to the studies
in [7–17], analog transmission generally outperforms digi-
tal transmission. This is because the fidelity of the source’s
parameter is always compromised in the source coding
(quantization) process required for digital transmission,
while it is preserved with analog transmission. As such,
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this paper also focuses on distributed estimation inWSNs
based on analog transmission.
There are many factors that affect the performance of

distributed estimation. These include the accuracy of sen-
sors’ observations (which is usually modeled as observa-
tion noise), the available bandwidth and power resources,
the fading characteristics of the wireless channels between
sensors and the FC, the fusion rule used by the FC, and the
type of multiple access channel (MAC)1 used to commu-
nicate the sensors’ observations to the FC. To date, there
are three types of MAC commonly considered for dis-
tributed estimation: coherent, orthogonal, and hybrid. For
these MACs, it is required that the responses of all wire-
less channels connecting the sensors to FC be estimated
at the FC (typically via the use of training signals) and
used in the distributed estimation algorithm. Such chan-
nel estimation at the FC is assumed to be perfect for all
the MACs considered in this paper. On the other hand,
whether the sensors require any channel state information
(CSI) depends on the type of MAC.
For the coherent MAC studied in [8], the sensors’ obser-

vations are coherently combined and transmitted to the
FC on one channel. Although the coherent MAC appears
to be very bandwidth efficient, it requires that each sensor
needs to know the wireless channel response from it to the
FC so that synchronization among sensors can be estab-
lished. This requirement presents a serious challenge in a
practical implementation of the coherent MAC since the
channel responses need to be measured at the FC and fed
back to the sensors. Such a feedback overhead can be very
significant for a large WSN. The impact of imperfect syn-
chronization corresponding to phase errors is investigated
in [18], where a master-slave architecture is also pro-
posed to reduce the synchronization overhead. It should
also be pointed out that phase modulation is investigated
in [19] for coherent transmission of sensor observations
to the FC, but without the important consideration of
fading.
In contrast to the coherent MAC, for the orthogonal

MAC examined in [7], all K sensors in the network
transmit their observations to the FC via K orthog-
onal channels, which can be realized with orthog-
onal frequency-division or time-division multiplexing.
The orthogonal MAC does not require synchronization
among sensors, and hence is more favorable for imple-
mentation. The major disadvantage of the orthogonal
MAC is that it requires larger transmission bandwidth
or latency to accommodate K orthogonal channels. More
recently, a hybrid MAC is investigated in [17], where all
sensors are divided into groups and the coherent MAC is
used for sensors within each group, whereas the orthog-
onal MAC is used across different groups. A flexible
trade-off between the coherent and orthogonal MACs can
therefore be obtained by changing the number of groups

and the number of sensors in each group. However,
in such a hybrid MAC, synchronization among sensors
within the same group is still required and the amount of
channel information feedback from the FC to the sensors
is the same as that of the coherent MAC.
This paper proposes and investigates the use of another

type of MAC, referred to as a semi-orthogonal MAC
for distributed estimation. The proposed semi-orthogonal
multiple access (MA) scheme aims to improve the per-
formance of distributed estimation under a limited band-
width constraint. Specifically, considered is a scenario
where N orthogonal channels are shared by K sensors
to transmit the their observations to the FC, where the
N is much smaller than K due to bandwidth constraint.
While the semi-orthogonal MA scheme is designed based
on the similar idea of sensor grouping in [17], the key dif-
ference is that, in the proposed MA scheme, the sensors
in one group transmit simultaneously without the expen-
sive phase synchronization operation. This means that the
signals from sensors within one group are directly super-
imposed instead of coherently combined as in the hybrid
MAC.
The proposed semi-orthogonal MA scheme can be

implemented with either fixed or adaptive sensor group-
ing. In fixed sensor grouping, each sensor transmits on
fixed orthogonal channels. In general, more than one
orthogonal channel can be allocated to one sensor. How-
ever, it shall be shown that such channel allocation causes
correlation among the equivalent channel responses2 and
degrades the estimation performance. As such, fixed sen-
sor grouping should be done in such a way that the
groups are disjoint. For adaptive sensor grouping, sen-
sors are grouped according to the ranges (i.e., sub-regions)
that their channel phases fall into. The extra cost for
implementing adaptive sensor grouping is only log2N
bits of feedback information from the FC to each sensor
to indicate channel allocation. This amount of feedback
overhead is significantly smaller than the phase values
(real numbers) of the channel responses required in the
coherent and hybrid MA schemes. It will be shown that,
compared to fixed sensor grouping, the estimation per-
formance achieved with adaptive grouping is improved
by a large margin. In fact, the performance of the semi-
orthogonal MA scheme with adaptive grouping is very
close to the performance of the hybrid MA scheme under
the same bandwidth and power constraints and the same
number of sensors.
There has been extensive study of distributed estimation

using a WSN. To put the novelty and contributions of the
current work in context, key papers on distributed estima-
tion that are related to the study in the present paper are
discussed next. The seminal work in [20] analyzes the fun-
damental tradeoffs between the number of sensors, their
total transmit power, the number of degree of freedom
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of the source, the spatio-temporal communication band-
width, and the end-to-end distortion under a coherent
MAC. An important result established in [20] is that, for
typical situations, the distortion goes down at best like
1/K , where K is the number of sensors. For the case
of a simple “Gaussian” sensor network, where a single
memoryless Gaussian source is observed by many sensors
subject to independent Gaussian observation noises and
the sensors are linked to a fusion center via a coherent
GaussianMAC, it is shown in [10] that uncoded transmis-
sion is strictly optimal, rather than only in the scaling law
sense of 1/K . The system model of distributed estimation
considered in the present paper is similar to the simple
Gaussian sensor network in [10], albeit the novel semi-
orthogonal MAC is used instead of the coherent MAC.
In fact, it is shown in ([21] Chapter 5) that the semi-
orthogonal MAC with adaptive sensor grouping achieves
the optimal scaling law.
It should be pointed out that designing optimal transmit

power/energy allocation strategies for WSNs has been an
active area of research in recent years. For example, refer-
ence [7] considers a WSN with the orthogonal MAC and
derives the optimal power allocation policies in a way that
the total distortion is minimized subject to a sum power
constraint at the sensors. The work in [22] considers the
same orthogonal MAC as [7] but instead of minimizing
the total distortion, total transmission power is minimized
under distortion constraints. Wu and Wang [23] studies
power allocation taking into account sensing noise uncer-
tainty, whereas the optimal power allocation for linear
estimation over coherent MAC has been considered in
[8]. All the studies on power allocation in [7, 8, 22, 23]
focus on sensors equipped with conventional batteries
with fixed energy storages. More recently, reference [5]
addresses the problem of optimal power allocation to effi-
ciently estimate a random source using distributed wire-
less sensors equipped with energy harvesting technology.
Since this paper focuses on the impact of different MACs,
the simple equal power allocation shall be considered
throughout.3
Before closing this section, it is important to stress that

in a truly distributed estimation framework, the objective
is to coordinate all the sensors so that without com-
municating with one another, they collectively maximize
the quality of estimation at the FC [24]. In contrast to
such truly distributed estimation, collaborative estima-
tion is considered in [25], where the network is divided
into a set of sensor clusters, with collaboration allowed
among sensors within the same cluster, but not across
clusters. It is shown in [25] that when the channels to the
FC are orthogonal and cost-free collaboration is possible
within each cluster, the optimum collaboration strategy
is to perform the inference in each cluster and use the
best available channel to transmit the estimated parameter

(local message) to the FC. The optimum power alloca-
tion among the clusters is also found in [25] and shown
to operate in a water-filling manner. Kar and Varshney
[24] considers a similar sensor collaboration paradigm
as in [25] but using a coherent MAC for communi-
cations from sensors to FC. The authors obtained the
optimum cumulative power-distortion tradeoff when a
fixed but otherwise cost-free collaboration topology is
used and addressed the design of collaborative topologies
where finite costs are involved in collaboration. Instead
of having all the sensors collaboratively observe an (sin-
gle) underlying scalar parameter, reference [26] derives
an optimum power allocation scheme among collabora-
tive sensors for the case that the sensors observe indi-
vidual signals that are spatially correlated. While it is
intuitively expected that sensor collaboration helps to
reduce the distortion of the estimated parameter(s) at
the FC, it comes at significant costs of providing reliable
communication links among the collaborative sensors as
well as extra signal processing (linear combination of
shared observations) for each sensor cluster. As such,
sensor collaboration is not considered in the present
paper.
The remaining of this paper is organized as follows.

Section 2 describes the system model of distributed esti-
mation under the coherent, orthogonal, hybrid, and semi-
orthogonal MACs. Section 3 proposes two sensor group-
ing approaches for the semi-orthogonal MAC. Section 4
analyzes and compare the estimation performance under
the various MACs. Section 5 presents numerical results
and discussion. Section 6 concludes the paper.

2 Systemmodel
Figure 1 shows a system model of distributed estimation
using a WSN. Here, a scalar Gaussian random variable
s is observed in a memoryless fashion by K sensors and
each observation is subject to white Gaussian noise. The
observation of the ith sensor can be expressed as

xi = s + vi, 1 ≤ i ≤ K , (1)

where the source signal s and observation noise vi are
treated as random variables with zero mean and variances
σ 2
s and σ 2

v , respectively. The observation signal-to-noise
ratio (SNR) is defined as γo = σ 2

s
σ 2
v
.

Using analog modulation, the ith sensor simply ampli-
fies xi with a gain ai and transmits the result to the
FC. The total transmit power in this WSN is Ptot =∑K

i=1 a2i
(
σ 2
s + σ 2

v
)
. The communication channels from

sensors to the FC are considered to be wireless fading
channels. Let hi = riejϕi , i = 1, . . . ,K , represent the
channel response from sensor i to the FC. These channel
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s

Fig. 1 System model for distributed estimation using a WSN

responses are modeled as independent and identically dis-
tributed (i.i.d.) complex Gaussian random variables with
zero mean and unit variance, denoted as CN (0, 1). This
also means that the magnitude ri and phase ϕi are inde-
pendent random variables with Rayleigh and uniform
distributions, respectively. On each wireless fading chan-
nel, the transmitted signal is disturbed by additive white
Gaussian noise (AWGN). The AWGN sample, denoted as
ω, is modeled as a complex Gaussian random variable with
zero mean and variance σ 2

ω. The channel SNR is defined
as γc = Ptot

σ 2
ω
.

The received signal at the FC is generally denoted by
y = [

y1, y2, . . . , yN
]
. The dimension N and expression

of y in terms of ai, xi, hi and ω depend on the type of
multiple access channel (MAC) realized from the sensors
to the FC. This is elaborated in the below subsections.
Regardless of the type of MAC, the task of the FC is
to estimate the underlying source signal based on the
received signal y. Using the linear minimum mean square
error (LMMSE) estimator [27] and assuming that all the
channel responses are available at the FC, the estima-
tion of s is š = CsyC−1

yy y, where Csy is the covariance
between s and y and Cyy is the covariance of y. The cor-
responding MSE is ε = σ 2

s − CsyC−1
yy Cys, which depends

on the specific realizations of channel responses hi’s.
The long-term performance of a WSN is evaluated using
the average MSE (AMSE), defined as AMSE = E {ε},
where the expectation is taken over channel response
realizations.

2.1 Coherent MAC
With the coherent MAC [8], after the phases of chan-
nel responses are compensated at sensors, signals from
all sensors are essentially transmitted on one (equivalent)
channel. Thus, the dimension of y is N = 1, i.e., the
received signal at FC is a scalar. To realize phase compen-
sation at the transmitters, the phase values of the wireless
channel responses need to be sent from the FC to all sen-
sors, which represents a large amount of feedback. After
phase compensation, the transmitted signal at the ith sen-
sor is xi = ai (s + vi) e−jϕi . Under timing synchronization
among the sensors, all the useful information resides in

the real part of the received signal at the FC, which can be
expressed as4

y =
K∑

i=1
ai (s + vi) ri + R {ω} . (2)

The LMMSE estimator and the corresponding MSE are
given as

šcoh =
⎡

⎢
⎣

(∑K
i=1 airi

)
σ 2
s

(∑K
i=1 airi

)2
σ 2
s +

(∑K
i=1 a2i r

2
i

)
σ 2
v + σ 2

ω

2

⎤

⎥
⎦ y,

(3)

εcoh =
⎡

⎢
⎣σ−2

s +
(∑K

i=1 airi
)2

(∑K
i=1 a2i r

2
i

)
σ 2
v + σ 2

ω

2

⎤

⎥
⎦

−1

. (4)

2.2 Orthogonal MAC
With the orthogonal MAC [7], K sensors transmit their
observations to the FC via K orthogonal channels. The
orthogonal MAC does not require feedback of channel
responses from the FC to the sensors, and hence is more
favorable for implementation. However, the key disadvan-
tage of the orthogonal MAC is that it requires a larger
transmission bandwidth or longer latency to realize mul-
tiple orthogonal channels. At the FC, the channel phase
on each wireless channel is compensated first. After such
phase compensation, all the useful information is found in
the real parts of the processed signals. On the ith wireless
channel, by taking the real part of the complex baseband
signal, one has

yi = ai (s + vi) ri + R
{
ωe−jϕi}

= airis + aiviri + R
{
ωe−jϕi} = r̄is + v̄i + ω̄i,

(5)

where r̄i = airi, v̄i = aiviri and ω̄i = R
{
ωe−jϕi

}
.

Let y = [
y1, y2, . . . , yK

]�, r̄ = [r̄1, r̄2, . . . , r̄K ]�, v̄ =
[v̄1, v̄2, . . . , v̄K ]� and ω̄ = [ω̄1, ω̄2, . . . , ω̄K ]�. Then Eq. (5)
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turns to y = r̄s + v̄ + ω̄. It then follows that the LMMSE
estimator of s based on y is

šorth = σ 2
s r̄�

(
σ 2
s r̄r̄� + �v̄ + �ω̄

)−1
y, (6)

where

�v̄ = E
{
v̄v̄�} = diag

(
a21r

2
1σ

2
v , a22r22σ 2

v , . . . , a2Kr
2
Kσ 2

v
)
,

(7)

�ω̄ = E
{
ω̄ω̄�} = diag

(
σ 2

ω

2
,
σ 2

ω

2
, . . . ,

σ 2
ω

2

)

. (8)

The corresponding MSE distortion is

εorth =
[
σ−2
s + r̄� (�v̄ + �ω̄)−1 r̄

]−1

=
(

σ−2
s +

K∑

i=1

a2i r
2
i

a2i r
2
i σ

2
v + σ 2

ω

2

)−1

.
(9)

2.3 Hybrid MAC
With the hybrid MAC considered in [17], all sensors are
divided into groups and the coherentMAC is used for sen-
sors within each group, whereas the orthogonal MAC is
used across different groups. This MAC provides a solu-
tion for scenarios where there are N (a small number
due to bandwidth constraint) orthogonal channels that are
shared by K sensors, where K ≥ N . In this hybrid MAC,
to obtain coherent combination in each group, channel
phase information feedback from the FC to the sensors is
still required and the amount of feedback is the same as
that of the coherent MAC. In addition, the required trans-
mission bandwidth in this MAC depends on the number
of sensor groups.
After phase compensation, the transmitted signal at the

ith sensor is xi = ai (s + vi) e−jϕi . Under timing synchro-
nization among the sensors in the same group, on the
nth equivalent channel, all the useful information is in the
real part of the received signal at the FC, which can be
expressed as

yn =
∑

i∈�n
ai (s + vi) ri + R {ωn} , n =1, 2, . . . ,N ,

=
(∑

i∈�n
airi
)
s +
(∑

i∈�n
aiviri

)
+ R {ωn}

= r̄ns + v̄n + ω̄n,
(10)

where �n is the index set of sensors in the nth group,
r̄n = ∑

i∈�n airi, v̄n = ∑
i∈�n aiviri and ω̄n = R {ωn}.

Let y = [
y1, y2, . . . , yN

]�, r̄ = [r̄1, r̄2, . . . , r̄N ]�, v̄ =
[v̄1, v̄2, . . . , v̄N ]� and ω̄ = [ω̄1, ω̄2, . . . , ω̄N ]�, then similar

to the orthogonal MAC, the LMMSE estimator of s based
on y is

šhyb = σ 2
s r̄�

(
σ 2
s r̄r̄� + �v̄ + �ω̄

)−1
y, (11)

where

�v̄ = E
{
v̄v̄�} = diag

(∑

i∈�1
a2i r

2
i σ

2
v ,

∑

i∈�2
a2i r

2
i σ

2
v , . . . ,

∑

i∈�N
a2i r

2
i σ

2
v

) (12)

and �ω̄ is still the same as (8). The corresponding MSE
distortion is

εhyb =
[
σ−2
s + r̄� (�v̄ + �ω̄)−1 r̄

]−1

=
⎡

⎣σ−2
s +

N∑

n=1

(∑
i∈�n airi

)2

(∑
i∈�n a

2
i r

2
i
)
σ 2
v + σ 2

ω

2

⎤

⎦

−1

.
(13)

2.4 Semi-orthogonal MAC
The semi-orthogonal MAC can be considered as a direct
competitor of the hybrid MAC in the sense that they are
both suitable for the scenarios where there are N orthog-
onal channels that are shared by K sensors, where K ≥ N .
The key novelty in realizing the semi-orthogonal MAC
is that the ith sensor transmits to the FC according to a
length-N vector g(i) =

[
g(i)
1 , g(i)

2 , . . . , g(i)
N

]
, whose element

is either 0 or 1. The set of g(i)’s gives an allocation of N
orthogonal channels to K sensors. For the ith sensor, if
the nth element of g(i) is 1, then the ith sensor transmits
on the nth orthogonal channel.5 Under timing synchro-
nization among the sensors, the received signal on the nth
orthogonal channel at the FC is

yn =
[ K∑

i=1
ai (s + vi) g(i)

n hi

]

+ ωn, n = 1, 2, . . . ,N ,

(14)

where ωn’s are the i.i.d. (over n) complex AWGN compo-
nents with zero mean and variance σ 2

ω.
Equation (14) can be rewritten as

yn =
( K∑

i=1
aig(i)

n hi

)

s+
( K∑

i=1
aivig(i)

n hi

)

+ωn = ĥns+v̂n+ωn,

(15)

where ĥn =
K∑

i=1
aig(i)

n hi and v̂n =
K∑

i=1
aivig(i)

n hi are

defined as the equivalent channel response and equiv-
alent observation noise of the nth orthogonal channel,
respectively. Since yn is complex, while s is real, the phase
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of the equivalent channel response ĥn is compensated to
obtain

ȳn = R

⎧
⎨

⎩

ĥ∗
n∣

∣
∣ĥn
∣
∣
∣
yn

⎫
⎬

⎭
=
∣
∣
∣
∣
∣

K∑

i=1
aig(i)

n hi

∣
∣
∣
∣
∣

︸ ︷︷ ︸
h̄n

s

+R

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
K∑

i=1
aig(i)

n h∗
i

)(
K∑

i=1
aivig(i)

n hi

)

∣
∣
∣
∣
∣

K∑

i=1
aig(i)

n hi

∣
∣
∣
∣
∣

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

︸ ︷︷ ︸
v̄n

+R

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
K∑

i=1
aig(i)

n h∗
i

)

ωn

∣
∣
∣
∣
∣

K∑

i=1
aig(i)

n hi

∣
∣
∣
∣
∣

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

︸ ︷︷ ︸
ω̄n

= h̄ns + v̄n + ω̄n. (16)

The above phase compensation discards halves of obser-
vation noise and channel noise. It is pointed out that the
phase compensation of the equivalent channel response
is performed at the FC. Therefore, no phase information
is needed at the sensors and feedback of channel phase
information is not required.
Let ȳ = [

ȳ1, ȳ2, . . . , ȳN
]�, h̄ =

[
h̄1, h̄2, . . . , h̄N

]�
, v̄ =

[v̄1, v̄2, . . . , v̄N ]� and ω̄ = [ω̄1, ω̄2, . . . , ω̄N ]�. Then one has
ȳ = h̄s+ v̄+ ω̄. The LMMSE estimation of s based on ȳ is6

šsemi = σ 2
s h̄� (σ 2

s h̄h̄� + �v̄ + �ω̄

)−1
ȳ, (17)

where

�v̄ = E
{
v̄v̄�}

=
{

θn,l = σ 2
v

K∑

i=1
a2i g(i)

n g(i)
l tnitli; n, l = 1, 2, . . . ,N

}

,

(18)

tni = R {hi}
R
{
ĥn
}

∣
∣
∣ĥn
∣
∣
∣

+ I {hi}
I
{
ĥn
}

∣
∣
∣ĥn
∣
∣
∣

, (19)

and �ω̄ is still the same as (8). The corresponding MSE
distortion is

εsemi =
[
σ−2
s + h̄� (�v̄ + �ω̄)−1 h̄

]−1
. (20)

The above expression clearly shows that the estima-
tion performance under a semi-orthogonal MAC strongly
depends on how N orthogonal channels are shared by K
sensors, i.e., how the sensors are grouped. The two sensor

grouping strategies proposed in the next section are based
on the two performance indicators established as follows.
First, setting σ 2

v = 0 gives �v̄ = 0 and the MSE distortion
becomes

εsemi−α =
[
σ−2
s + h̄� (�ω̄)−1 h̄

]−1 = σ 2
s (1 + 2αγc)

−1 ,

(21)

where

α =
N∑

n=1

∣
∣
∣
∣
∣

∑K
i=1 g

(i)
n hi√

NK1

∣
∣
∣
∣
∣

2

. (22)

The parameter α indicates the impact of channel noise
on the MSE performance. The larger α is, the lesser the
impact is.
On the other hand, setting σ 2

ω = 0 gives �ω̄ = 0 and the
MSE distortion is

εsemi−β =
[
σ−2
s + h̄� (�v̄)

−1 h̄
]−1 = σ 2

s (1 + βγo)
−1 ,

(23)

where

β = σ 2
v h̄� (�v̄)

−1 h̄. (24)

In this case, the parameter β indicates the impact of obser-
vation noise on the MSE performance. The larger β is, the
lesser the impact is.

3 Sensor groupingmethods for semi-orthogonal
MAC

3.1 Fixed sensor grouping
Fixed sensor grouping means that the assignment of
orthogonal channels, once decided, does not change dur-
ing the communication phase. When assigning N orthog-
onal channels to K sensors, where K ≥ N , an obvious
question arises: Should more than one orthogonal channel
be assigned to a single sensor and will this improve theMSE
performance of distributed estimation?
To answer the above question, let us first examine a

simple scenario where there are two orthogonal channels
(N = 2) with K1 sensors transmitting on each of them.
Under equal power allocation, the gain factor is ai = ā =√

Ptot
2K1

(
σ 2
s +σ 2

v
) . Note that there are M = max(2K1 − K , 0)

sensors that transmit on both orthogonal channels. Treat-

ing the equivalent channel responses ĥ1 = ā
K∑

i=1
g(i)
1 hi and

ĥ2 = ā
K∑

i=1
g(i)
2 hi as random variables, the correlation coef-

ficient between ĥ1 and ĥ2 is easily found to be ρ = M
K1
. If

there is no sensor transmitting on both orthogonal chan-
nels, M = 0 and the above correlation coefficient will
be zero. However, such scenario requires that K = 2K1
and all K sensors are equally divided into two disjoint
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groups with sensors in each group transmitting on one
orthogonal channel.
Next, define h̃1 = 1√

2K1

∑K
i=1 g

(i)
1 hi and h̃2 =

1√
2K1

∑K
i=1 g

(i)
2 hi, which are basically the scaled versions

of h̄1 and h̄2 defined in (16). Then, the parameter α is
α = |h̃1|2 + |h̃2|2. Since each of h̃1 and h̃2 is a 1/

√
2K1

times the sum of K1 i.i.d. complex Gaussian random vari-
ables, each with zero mean and unit variance, it is a
complex Gaussian random variable with zero mean and
variance 1/2. It follows immediately that the expected
value of α is E{α} = 1. To find the expression for β ,
express h̃1 and h̃2 as h̃1 = m1√

2e
jφ1 and h̃2 = m2√

2e
jφ2 . Then,

Appendix A shows that, when K approaches infinity, β =
2
[
m2

1−2ρ cos(φ1−φ2)m1m2+m2
2
]

1−ρ2 cos2(φ1−φ2)
. The expectation of β is more

tedious to obtain, and it is given in (61) of Appendix A.
Table 1 tabulates the values of E{β} versus ρ, obtained

by theory and simulation. The theoretical and simulation
results match very well. As can be seen, while E {α} is a
constant 1, E {β} is a monotonically-decreasing function
of ρ. This means that, while the correlation among the
equivalent channel responses does not affect the chan-
nel noise suppression capability, it reduces the observa-
tion noise suppression capability. Overall, the correlation
among the equivalent channel responses degrades the
estimation performance, and hence should be avoided.
This can be done by not assigning more than one orthog-
onal channel to each sensor.
ForN > 2, it is not easy to determine channel allocation

among sensors and perform the corresponding correla-
tion analysis among the equivalent channel responses of
the orthogonal channels. Instead, the following example
of ad hoc channel allocation scheme shall be investigated.
Assume thatK is an integer multiple ofN. If (n−1)K

N +K1 ≤
K , then the nth orthogonal channel is shared by sensors
with indices in the set of

{
(n−1)K

N + 1, . . . , (n−1)K
N + K1

}
.

If (n−1)K
N + K1 > K , then the set of sensor indices

is
{
1, . . . , (n−1)K

N + K1 − K
}

∪
{

(n−1)K
N + 1, . . . ,K

}
. With

such a channel assignment, as long as K1 > K
N , some

sensors will transmit on more than one orthogonal chan-
nel and the correlation among the equivalent channel
responses of orthogonal channels is not zero. As K1
increases from K

N to K, more and more sensors transmit
on more than one orthogonal channel and the correlation
among the equivalent channel responses increases from 0

to 1. Therefore, K1 can be adjusted for different levels of
correlation among the equivalent channel responses.
With the above channel allocation scheme, the param-

eter α defined in (22) can be expressed as α =
1
N
∑N

n=1 |h̃n|2, where h̃n is 1√
K1

of the sum of K1 i.i.d. zero-
mean unit-variance complex Gaussian random variables.
It then follows that the expected value of α also equals to
1 in this case. Since the analytical expression of E {β} is
not available, simulation results are obtained and shown in
Fig. 2 for three settings of (N = 2, K = 16), (N = 4, K =
32) and (N = 8, K = 64). In obtaining these simulation
results, the power allocation is performed such that each
sensor transmission on one orthogonal channel consumes
the same power of Ptot/(NK1). It is observed from Fig. 2
that as K1 increases, E {β} generally decreases, although
not monotonically. The non-monotonic decrease of E {β}
versus increasing K1 is due to the ad hoc channel assign-
ment and power allocation described above. In particular,
the adopted power allocation is quite “non-uniform” in
the sense that the total power allocated to a given sen-
sor is proportional to the number of orthogonal channels
assigned to it. Depending on K1, this number ranges from
1 to N for each sensor, whereas a larger K1 reduces the
power level Ptot/(NK1) allocated for each sensor transmis-
sion. The most important observation of this figure is that
E {β} takes on the largest value when K1 = K

N as expected.
From the above theoretical derivations and simulation

results, it can be concluded that only one orthogonal
channel should be assigned to each sensor. In other words,
all sensors are divided into disjoint groups and those sen-
sors in the same group transmit on one orthogonal channel.
Moreover, the fixed sensor grouping proposed here is such
that all sensors are equally divided into groups, i.e., the nth
group is �n =

{
(n−1)K

N + 1, . . . , nKN
]
.

3.2 Adaptive sensor grouping
With the fixed sensor grouping described in the previous
subsection, the parameter α can be written as

α =
N∑

n=1

∣
∣
∣
∣

∑
i∈�n hi√
K

∣
∣
∣
∣

2

︸ ︷︷ ︸
αn

=
N∑

n=1
αn, (25)

where each αn is affected only by the channel responses
of sensors transmitting on the nth orthogonal channel.
Therefore αn can be interpreted as an indicator of the

Table 1 Values of E{β} with N = 2

ρ 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

Theory 3.984 3.969 3.909 3.812 3.680 3.518 3.333 3.133 2.930 2.741 2.655

Simulation 3.998 3.987 3.923 3.816 3.689 3.528 3.356 3.150 2.948 2.789 2.703
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Fig. 2 Plot of E {β} versus K1

channel noise suppression capability of the nth orthogonal
channel. Similarly, the parameter β can be expressed as

β =
N∑

n=1

∣
∣
∑

i∈�n aihi
∣
∣2

∑
i∈�n a

2
i

(

R {hi}
R
{
ĥn
}

∣
∣
∣ĥn
∣
∣
∣

+ I {hi}
I
{
ĥn
}

∣
∣
∣ĥn
∣
∣
∣

)2

︸ ︷︷ ︸
βn

=
N∑

n=1
βn,

(26)

where βn is also affected only by the channel responses
of sensors transmitting on the nth orthogonal channel,
and it can be interpreted as the indicator of the obser-
vation noise suppression capability of the nth orthogonal
channel.
The above simple observation suggests that if all sen-

sors can be properly grouped according to their channel
responses, larger αn and βn can be obtained for each
orthogonal channel and thus the overall channel noise
suppression and observation noise suppression capabili-
ties of the semi-orthogonal MAC will be improved.
Intuitively, sensors with channel responses of similar

phases should be grouped together to get better channel
noise suppression and observation noise suppression.Will
this “similar phase” grouping strategy work and how to
define “similar phase”? To answer this question, examine
a scenario that one sensor with channel response of mag-
nitude 1 and phase 0 transmits on an orthogonal channel.
Both the indicators of the channel noise suppression and
observation noise suppression of this orthogonal channel
are 1. Next, add another sensor with channel response
of magnitude r (r < 1) and phase ϑ (0 ≤ ϑ ≤ π ) to

form a group7. Then the two indicators of this orthogonal
channel change to:

αn = (r cosϑ + 1)2 + (r sinϑ)2 = r2 + 2r cosϑ + 1,
(27)

βn = r2 + 2r cosϑ + 1
(cosφ)2 + (r cosϑ cosφ + r sinϑ sinφ)2

, (28)

where φ is the phase of the equivalent channel response
and tanφ = r sinϑ

r cosϑ+1 .
If αn > 1, the added sensor is said to be constructive

for channel noise suppression and if βn > 1, the added
sensor is constructive for observation noise suppression.
Note that if the added sensor transmits on an orthogo-
nal channel alone, then αn = r2 and βn = 1. This means
that if the added sensor is constructive, sensor grouping
improves performance of individual sensors (i.e., without
being grouped).
To determine if the added sensor is constructive for

channel noise suppression and/or observation noise sup-
pression, it is straightforward to show from (27) and (28)
that
{

αn > 1, if 0 ≤ ϑ < arccos
(− r

2
)

αn ≤ 1, if arccos
(− r

2
) ≤ ϑ ≤ π

(29)

{
βn > 1, if 0 ≤ ϑ < arccos (−r)
βn ≤ 1, if arccos (−r) ≤ ϑ ≤ π

(30)

The above analysis leads to the following three regions
of ϑ :

• If ϑ is in region A, i.e., 0 ≤ ϑ < arccos
(− r

2
)
, the

added sensor is constructive for both channel noise
suppression and observation noise suppression. Note
that region A includes

[
0, π

2
]
, regardless of the value

of r.
• If ϑ is in region B, i.e.,

arccos
(− r

2
) ≤ ϑ < arccos (−r), the added sensor is

destructive for channel noise suppression, but
constructive for observation noise suppression.

• If ϑ is in region C, i.e., arccos (−r) ≤ ϑ < π , the
added sensor is destructive for both channel noise
suppression and observation noise suppression.

At this point, the question raised at the beginning of
this section has been answered for grouping two sensors.
In summary, if the phase difference between the channel
responses of the two sensors is in the region of

[
0, π

2
]
, sen-

sor grouping is beneficial. However, if the phase difference
is larger than π

2 , grouping sensors on the same orthogonal
channel may be destructive for either channel noise sup-
pression or observation noise suppression, or for both of
them, and sensor grouping may give worse performance.
Therefore, if the semi-orthogonal MAC is employed with
N = 2 or N = 3 and if the whole phase region of 2π
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is partitioned into N = 2 or N = 3 equal sub-regions
(each of length π or 2π/3), then grouping the sensors with
channel phases in the same sub-region to transmit on the
same orthogonal channel might not always be beneficial.
However, if the semi-orthogonal MAC is used with N ≥ 4
and the whole phase region is partitioned into N equal
sub-regions (each of length 2π

N ), then grouping the sen-
sors with channel phases in the same sub-region always
picks constructive sensors in one group and therefore
performance improvement is guaranteed8.
In summary, for N ≥ 4, adaptive sensor grouping

is always beneficial and is done such that all sensors
whose channel phases fall into the same nth region[
2π(n−1)

N , 2πnN
]
transmit on the nth orthogonal channel.

This adaptive sensor grouping is analyzed in more detail
in the next section.

4 Performance analysis
In general, with the same number of sensors, different
MACs yield different values of E (α) and E (β), imply-
ing different capabilities of channel noise suppression and
observation noise suppression. This section analyzes in
detail the estimation performance of the semi-orthogonal
MAC under fixed and adaptive sensor grouping and
also compare with the coherent MAC, orthogonal MAC
and hybrid MAC. The analysis and comparison are car-
ried out for equal power allocation, i.e., ai = ā =√
Ptot/K

(
σ 2
s + σ 2

v
)
.

4.1 Orthogonal, coherent, and hybrid MACs
Under equal power allocation, the MMSE distortions
obtained with the LMMSE estimator for the orthogonal,
coherent, and hybrid MACs can be shown to be:

εorth =
[

σ−2
s +

K∑

i=1

ā2 |hi|2
ā2 |hi|2 σ 2

v + σ 2
ω

2

]−1

, (31)

εcoh =
⎡

⎢
⎣σ−2

s +
(∑K

i=1 ā |hi|
)2

(∑K
i=1 ā2 |hi|2

)
σ 2
v + σ 2

ω

2

⎤

⎥
⎦

−1

, (32)

and

εhyb =
⎡

⎣σ−2
s +

N∑

n=1

(∑
i∈�n ā |hi|

)2

(∑
i∈�n ā

2 |hi|2
)
σ 2
v + σ 2

ω

2

⎤

⎦

−1

.

(33)

For the orthogonal MAC, it is easily seen that
Eorth (α) = E

(∑K
i=1

|hi|2
K

)
= 1 and Eorth (β) = K .

For the coherent MAC, Ecoh (α) = E
[(∑K

i=1
|hi|√
K

)2
]

and Ecoh (β) = E
[ (∑K

i=1
|hi|√
K

)2

1
K

(∑K
i=1|hi|2

)

]

. As K → ∞, accord-

ing to the central limit theorem,
∑K

i=1
|hi|√
K

is a Gaussian
random variable with mean

√
KE (|hi|) and variation

D (|hi|). Since |hi| is a Rayleigh distributed random vari-
able with pdf f|hi| (|hi|) = 2 |hi| exp

(− |hi|2
)
, it follows that

E (|hi|) =
√

π
4 andD (|hi|) = 1 − π

4 . Thus

Ecoh (α) = Kπ

4
+ 1 − π

4
≈ 0.78K , (34)

Ecoh (β) =
E
[(∑K

i=1
|hi|√
K

)2
]

E
(|hi|2

) = Kπ

4
+1−π

4
≈ 0.78K .

(35)

Similarly, it can be shown for the hybrid MAC that

Ehyb (α) = E

⎡

⎢
⎣

N∑

n=1

1
N

⎛

⎝
∑

i∈�n

|hi|√
K/N

⎞

⎠

2
⎤

⎥
⎦

= Kπ

4N
+ 1 − π

4
≈ 0.78

K
N
,

Ehyb (β) = E

⎡

⎢
⎣

N∑

n=1

(∑
i∈�n

|hi|√
K/N

)2

N
K
(∑

i∈�n
|hi|2

)

⎤

⎥
⎦

= Kπ

4
+ N

(
1 − π

4

)
≈ 0.78K .

4.2 Semi-orthogonal MAC with fixed sensor grouping
For the parameter α, one has Esemi−F {α} =
E
{
∑N

n=1

∣
∣
∣

∑
i∈�n hi√
K

∣
∣
∣
2} = 1, which is the same as for the

case of the orthogonal MAC.
The expected value of β is difficult to obtain for arbi-

trary values of K and N. To gain some insight, the pdf of
β is obtained by simulation and plotted in Fig. 3 for vari-
ous values of K

N . The corresponding values of Esemi−F{β}
are shown in Table 2. Figure 3 clearly shows that, as long
as K

N > 1, there is a high probability that the value of β is
larger than N = 4. Furthermore, the larger the ratio K

N is,
the more likely β takes on a larger value.
When K → ∞, it is shown in Appendix B that that

β follows a Gamma distribution with parameters a = N
and b = 2. As a consequence, Esemi−F {β} = 2N . This
result means that, for a WSN with a large number of sen-
sors, the semi-orthogonal MAC is two times better than
the orthogonal MAC in the observation noise suppression
capability.
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Fig. 3 Pdf of parameter β with N = 4

4.3 Semi-orthogonal MAC with adaptive sensor grouping
As discussed in Section 3.2, adaptive sensor grouping is
beneficial when N ≥ 4. To implement the adaptive sen-
sor grouping, the nth sub-region of the phase partition is
[ϑ1,ϑ2), where ϑ1 = 2π(n−1)

N and ϑ2 = 2πn
N . Let hi = x+ jy

and focus on the case that the phase of hi falls into the first
sub-region [ 0, 2π/N). With N equal-length sub-regions
of the phase, the probability that the phase of a channel
response falls into a specific sub-region is 1/N . Thus, the
joint pdf of x and y is simply

fx,y (x, y) = N
π
exp

[− (x2 + y2
)]
, (36)

where x > 0 and x tanϑ1 < y < x tanϑ2. Based on this
joint pdf, it is simple to show that when K → ∞, the
means and variances of x and y are

μx = N
2
√

π
cos
(

ϑ1 + ϑ2
2

)

sin
( π

N

)
,

μy = N
2
√

π
sin
(

ϑ1 + ϑ2
2

)

sin
( π

N

)
,

σ 2
x = N

4π
cos (ϑ1 + ϑ2) sin

(
2π
N

)

+ 1
2

− μ2
x,

σ 2
y = − N

4π
cos (ϑ1 + ϑ2) sin

(
2π
N

)

+ 1
2

− μ2
y ,

and

E
{
xy
} = N

4π
sin (ϑ1 + ϑ2) sin

(
2π
N

)

.

Let h̃n =∑i∈�n
hi√
K

= x̃n+ jỹn = mnejφn . Then, accord-
ing to the central limit theorem, when K → ∞, x̃n and

Table 2 Values of Esemi−F {β} with N = 4

K 4 8 16 32 64 128

Esemi−F {β} 4 5.3 6.4 7.1 7.5 7.8

ỹn are i.i.d Gaussian random variables with means and
variances

μx̃ = μỹ =
√
K
N

μx, σ 2
x̃ = σ 2

ỹ = σ 2
x
N

.

It then follows that

E {αn} = E
{
x̃2n + ỹ2n

} = 2
(
μ2
x̃ + σ 2

x̃
)

= 2Kμ2
x

N2 + 1 − 2μ2
x

N
= 1

N
+ (K − N)

4π
sin2

( π

N

)
.

(37)

Therefore,

E {α} =
N∑

n=1
E {αn} = 1 + N (K − N)

4π
sin2

( π

N

)

≈
[
N
4π

sin2
( π

N

)]

K .

(38)

On the other hand,

E {βn}
= NE {αn}
(
μ2
x + σ 2

x
)
cos2φn +

(
μ2
y + σ 2

y

)
sin2φn + 2E

{
xy
}
cosφn sinφn

= NE {αn}
κ

.

(39)

As K → ∞, it can be shown that φn can be substituted by
ϑ1+ϑ2

2 and κ takes on the following value:

κ =
[
N
4π

cos (ϑ1 + ϑ2) sin
(
2π
N

)

+ 1
2

]

cos2
(

ϑ1 + ϑ2
2

)

+
[

− N
4π

cos (ϑ1 + ϑ2) sin
(
2π
N

)

+ 1
2

]

sin2
(

ϑ1 + ϑ2
2

)

+ 2
N
4π

sin (ϑ1 + ϑ2) sin
(
2π
N

)

cos
(

ϑ1 + ϑ2
2

)

sin
(

ϑ1 + ϑ2
2

)

= 1
2

+ N
4π

cos (ϑ1 + ϑ2) sin
(
2π
N

)[

cos2
(

ϑ1 + ϑ2
2

)

− sin2
(

ϑ1 + ϑ2
2

)]

+ N
4π

sin2 (ϑ1 + ϑ2) sin
(
2π
N

)

= 1
2

+ N
4π

cos2 (ϑ1 + ϑ2) sin
(
2π
N

)

+ N
4π

sin2 (ϑ1 + ϑ2) sin
(
2π
N

)

= 1
2

+ N
4π

sin
(
2π
N

)

.

(40)

Therefore

E {β} =
N∑

n=1
E {βn} = N + N2(K−N)

4π sin2
(

π
N
)

1
2 + N

4π sin
( 2π
N
)

≈
[

N2 sin2
(

π
N
)

2π + N sin
( 2π
N
)

]

K .

(41)
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5 Numerical results and discussions
Table 3 compares E {α} and E {β} among different MACs
for a fixed number of sensors, K. To put these num-
bers in perspective, the number of orthogonal channels,
N, and the amount of feedback required by each type
of MAC are also indicated in the table. The theoretical
and simulation results of E {α} and E {β} are plotted in
Figs. 4 and 5, respectively. Observe that when K is large
enough, the theoretical results agree very well with the
simulation results. For small K, the simulation result is
better than the theoretical result for E {α} of the semi-
orthogonal MACwith fixed sensor grouping. As for E {β},
there are differences between the theoretical and simula-
tion results of the hybrid MAC, and the semi-orthogonal
MAC (with either fixed or adaptive sensor grouping). This
observation suggests that for these three MACs, a suffi-
ciently large number of sensors is required to achieve the
asymptotic performance.
For the semi-orthogonal MAC with adaptive sensor

grouping andN = 4, asK → ∞, E {α} and E {β} increases
in the order ofK, and thus the averageMSE distortion goes
to zero. This phenomenon is the same as those of both
the coherent and hybridMACs. However, for the orthogo-
nalMAC and the semi-orthogonalMACwith fixed sensor
grouping, the average MSE distortion converges to a fixed
value as K increases. This is because E {α} = 1, regardless
of K, for these two MACs.
The semi-orthogonal MAC with adaptive sensor group-

ing can achieve the same performance at low γc and even
better performance at high γc as compared to the coher-
ent MAC. However, the semi-orthogonal MAC requires
N = 4 times the number of orthogonal channels and
about five times the number of sensors. Nevertheless,
it does not require channel phase information feedback.
Furthermore, the semi-orthogonal MAC with adaptive
sensor grouping can performs very close to the hybrid
MAC. According to the simulation results in Fig. 4, for
E {α}, the semi-orthogonal MAC is better for small K but
worse for large K. With about K = 16, the twoMACs have
the same E {α}. For E {β}, the semi-orthogonal MAC per-
forms nearly the same as the hybrid MAC for all values of
K. Again, it is important to point out that channel phase
information feedback is needed in the hybrid MAC.

Fig. 4 Simulation and theoretical results of E {α}

It is of interest to investigate the impact of the num-
ber of orthogonal channels N on the estimation perfor-
mance under the semi-orthogonal MAC with adaptive
sensor grouping. To this end, the theoretical quantities
E{α}
K and E{β}

K are plotted versus N for a sufficient large
K (K = 128N) in Fig. 6, where the simulation results
are also provided to verify the theoretical derivations.
As can be seen, as N increases from 4, E{α}

K decreases
while E{β}

K stays nearly the same. Therefore with a fixed
K, if N increases, which means more orthogonal channels
and each with fewer sensors transmitting on, the channel
noise suppression capability degrades, while the observa-
tion noise suppression capability is practically unchanged.
The degradation of the channel noise suppression capabil-
ity due to having more orthogonal channels is reasonable,
because with more orthogonal channels, the FC needs
to collect and process a larger number of received sig-
nal samples that are disturbed by independent AWGN
noise components, resulting in a larger noise power over-
all. On the other hand, the observation noise suppression
capability is determined only by the number of sensors,
independent of the number of orthogonal channels.
It is pointed out that Fig. 6 also provides the results

for N = 2. Compared to N = 4, although there are
fewer orthogonal channels and thus smaller (overall) noise

Table 3 Asymptotic performance in terms of E {α} and E {β}
Type of MAC E {α} E {β} Number of orthogonal

channels, N
Required feedback

Coherent 0.78 K 0.78 K 1 Exact channel phase

Orthogonal 1 K K None

Hybrid (N = 4) 0.20 K 0.78 K 4 Exact channel phase

Semi-orthogonal, fixed (N = 4) 1 8 4 None

Semi-orthogonal, adaptive (N = 4) 0.16 K 0.78 K 4 log2 N bits
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Fig. 5 Simulation and theoretical results of E {β}

power for N = 2, using N = 2 has almost the same
channel noise suppression capability as using N = 4.
In addition, the observation noise suppression capabil-
ity for N = 2 is much weaker than that for N = 4.
These phenomenons are consistent with the analysis in
Section 3.2. In general, N = 4 is the best choice for
the semi-orthogonal MAC with adaptive sensor group-
ing, which achieves the largest performance improvement
while requiring the least transmission bandwidth.
The qualities E{α}

K and E{β}
K are also plotted in Fig. 6 for

the hybrid MAC. The advantage of the hybrid MAC over
the semi-orthogonal MAC with adaptive sensor group-
ing is most obvious for N = 2. Again, this is because
with N = 2, destructive superposition of signals from
two sensors happens in the semi-orthogonal MAC, while
it is never the case in the hybrid MAC. As N increases,
the sub-regions of channel phases become narrow, and
the direct superposition behaves more and more like the
coherent combination. For N = 8, the two MACs have
nearly the same performance.

Fig. 6 Plots of E{α}
K and E{β}

K , by simulation and theoretical analysis

Regarding the bandwidth requirement (in terms of the
number of orthogonal channels), the hybrid and semi-
orthogonal MACs are much more efficient than the
orthogonal MAC. The coherent MAC is the most band-
width efficient since only one channel is used. For the
orthogonal MAC and the semi-orthogonal MAC with
fixed sensor grouping, no feedback of channel phases
from the FC to the sensors is required. For the coherent
MAC, due to the requirement of coherent combination
among sensors, channel phases need to be transmitted
from the FC to the sensors. The exact number of bits used
for such information feedback depends on the capability
of the feedback channel and the required accuracy, but
this is certainly a large amount of overhead. For the hybrid
MAC, because coherent combination among sensors in
each group is required, the amount of channel informa-
tion feedback from the FC to the sensors is still the same as
that of the coherent MAC. For the semi-orthogonal MAC
with adaptive sensor grouping, the FC needs to send only
log2N bits to inform each sensor the orthogonal channel
to transmit on.
The simulation results of average MSE achieved by the

five MACs under comparison are plotted in Fig. 7. When
K = N = 4, the coherent MAC obviously outperforms
the other 4 MACs at low γc, which is due to its outstand-
ing capability on channel noise suppression. In this case,
the hybridMAC and the semi-orthogonalMACwith fixed
sensor grouping are equivalent to the orthogonal MAC.
The semi-orthogonalMACwith adaptive sensor grouping
performs a little better than the orthogonal MAC.
With K increasing from K = 4 to K = 16, the per-

formance improvements are significant, except for the
semi-orthogonal MAC with fixed sensor grouping. In

Fig. 7 Comparison of the average MSE distortions among five
different MACs. Note that in the figure’s legend, “Semi-F” and
“Semi-A” mean the proposed semi-orthogonal MAC with fixed and
adaptive sensor grouping strategies, respectively
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particular, the performance of the semi-orthogonal MAC
with adaptive sensor grouping is the same as that of the
hybrid MAC, which is consistent with the theoretical
derivation, and it is between those of the orthogonal MAC
and the coherent MAC.
When K is further increased to K = 80, the perfor-

mance of the semi-orthogonal MAC with fixed sensor
grouping stays nearly the same as the performance with
K = 16. On the other hand, the performance of the semi-
orthogonal MAC with adaptive sensor grouping improves
significantly. The semi-orthogonal MAC with adaptive
sensor grouping and K = 80 achieves the same (at low γc)
or even better (at high γc) performance compared to the
coherent MAC with K = 16. In addition, with K =
80, the hybrid MAC only slightly outperforms the semi-
orthogonal MAC at low γc. All the simulation results
match with the theoretical analysis presented before.
Finally, the average MSE performances of the semi-

orthogonal MAC with adaptive sensor grouping are com-
pared for N = 4 and N = 8. As shown in Fig. 8, at low γc,
for the network with K = 80, using N = 8 cannot achieve
the same performance as using N = 4. If K increases to
140 for N = 8, then the performance is the same as that
of having N = 4 and K = 80. This is consistent with
the previous theoretical and simulation results, which are
E{α}
K ≈ 0.16 for N = 4 and E{α}

K ≈ 0.094 for N = 8.

6 Conclusions
For WSNs consisting of a sufficient large number of sen-
sors but operating under limited bandwidth resource, a
novel semi-orthogonal multiple access scheme was pro-
posed for transmission from K sensors to the FC over
N orthogonal channels, where K ≥ N . The paper thor-
oughly analyzed the performance of distributed estima-
tion over such a semi-orthogonal MAC with either fixed

Fig. 8 Performance comparison in terms of the average MSE for N > 4

or adaptive sensor grouping and compared with the
performance achieved with other related MACs. Com-
pared to the orthogonal MAC operating under the same
bandwidth, the semi-orthogonal MAC with fixed sensor
grouping has the same channel noise suppression capabil-
ity, but twice the observation noise suppression capability
as K approaches infinity. This is achieved with no require-
ment of information feedback from the FC to sensors. For
the semi-orthogonal MACwith adaptive sensor grouping,
it is determined that N = 4 is the most favorable num-
ber of orthogonal channels when taking into account both
performance and feedback requirement. In particular, the
semi-orthogonal MAC with adaptive sensor grouping is
shown to perform very close to that of the hybrid MAC
under the same bandwidth and number of sensors, while
requiring only two bits of information feedback instead of
the exact channel phase for each sensor.
The present paper considers estimating a single source

signal. In general, when the number of sources increases,
the amount of information to transmit from the sensors to
the FC increases, which translates to a larger transmission
bandwidth, or equivalently a larger number of orthogo-
nal channels. If the sources are uncorrelated, the proposed
semi-orthogonal transmission framework can be applied
individually for each source signal. However, if the source
signals are correlated, the correlation information should
be used in the development of joint semi-orthogonal mul-
tiple access schemes and this is left for further research.

Endnotes
1To be consistent with existing literature, the termMAC

is also used in this paper, although it is more appropriate
to use the term “multiple access scheme” when discussing
different communication methods between the sensors
and FC.

2The definition and meaning of equivalent channel
responses will be made clearer in Section 3.

3The interested reader is referred to [28] for a novel
power allocation solution under the semi-orthogonal
MAC, which is shown to improve the estimation perfor-
mance when compared to equal power allocation, espe-
cially at low channel signal-to-noise ratios.

4For complex scalars, vectors and matrices, R {·}
denotes the real part and I {·} denotes the imaginary part.

5This allocation is similar to the transmission in an
overloaded code-division multiple access (CDMA) sys-
tems [29, 30] if one views vector g(i) as the signature
vector of sensor i.

6For random variables, E {·} and D {·} denote expecta-
tion and variance, respectively.
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7If the channel response of the added sensor is of mag-
nitude larger than 1, then it can be taken as the first sensor
and the other sensor is taken as the added sensor.

8Since the phases of wireless channel responses are
modeled as uniform, one does not expect any benefit to
use non-uniform phase partitions.

Appendix A
To obtain the expression for β , first one has (recall (18) for
the definition of θn,l)

θ1,2 = σ 2
v ā

2
K∑

i=1
g(i)
1 (R {hi} cosφ1 + I {hi} sinφ1) g(i)

2

× (R {hi} cosφ2 + I {hi} sinφ2)

= σ 2
v Ptot

σ 2
s + σ 2

v

[

cosφ1 cosφ2

( K∑

i=1

g(i)
1 g(i)

2
2K1

R2 {hi}
)

+ sinφ1 sinφ2

( K∑

i=1

g(i)
1 g(i)

2
2K1

I2 {hi}
)

+ (cosφ1 sinφ2 + sinφ1 cosφ2)

×
( K∑

i=1

g(i)
1 g(i)

2
2K1

R {hi} I {hi}
)]

. (42)

When K and K1 approach infinity, one has
∑K

i=1
g(i)
1 g(i)

2
2K1

R2 {hi} = M
2K1

E
{
R2 {hi}

} = ρ
2
1
2 = ρ

4 ,
∑K

i=1
g(i)
1 g(i)

2
2K1

I2 {hi} = ρ
4 , and

∑K
i=1

g(i)
1 g(i)

2
2K1

R {hi}I {hi} = 0.
It then follows that

θ1,2 = σ 2
v Ptot

σ 2
s + σ 2

v

ρ

4
(cosφ1 cosφ2 + sinφ1 sinφ2)

= σ 2
v Ptot

σ 2
s + σ 2

v

ρ

4
cos (φ1 − φ2) .

(43)

Similarly, one can show that θ2,1 = θ1,2 =
σ 2
v Ptot

σ 2
s +σ 2

v

ρ
4 cos (φ1 − φ2) and θ1,1 = θ2,2 = σ 2

v Ptot
4
(
σ 2
s +σ 2

v
) .

Therefore,

β =
[ ∣
∣
∣h̃1
∣
∣
∣
∣
∣
∣h̃2
∣
∣
∣
]
[

1
4

ρ cos(φ1−φ2)
4

ρ cos(φ1−φ2)
4

1
4

]−1
⎡

⎣

∣
∣
∣h̃1
∣
∣
∣

∣
∣
∣h̃2
∣
∣
∣

⎤

⎦

= 2
[
m2

1 − 2ρ cos (φ1 − φ2)m1m2 + m2
2
]

1 − ρ2 cos2 (φ1 − φ2)
. (44)

Let m1ejφ1 = r1 + jt1 and m2ejφ2 = r2 + jt2. Then
m1 =

√
r21 + t21, m2 =

√
r22 + t22, φ1 = arctan

(
t1
r1

)
,

φ2 = arctan
(
t2
r2

)
. According to the central limit theorem,

m1ejφ1 andm2ejφ2 are two complexGaussian random vari-
ables with zero mean and unit variance. Furthermore, the

correlation coefficient between m1ejφ1 and m2ejφ2 is ρ.
Thus the joint pdf of r1, r2, t1 and t2 is

f (r1, t1, r2, t2)

= c2exp
{

− r21 + t21 − 2ρ (r1r2 + t1t2) + r22 + t22
1 − ρ2

}

,

c = 1
π
√
1 − ρ2

.

(45)

Also,

J =

∣
∣
∣
∣
∣
∣
∣
∣
∣

∂m1
∂r1

∂m1
∂t1

∂m1
∂r2

∂m1
∂t2

∂m2
∂r1

∂m2
∂t1

∂m2
∂r2

∂m2
∂t2

∂φ1
∂r1

∂φ1
∂t1

∂φ1
∂r2

∂φ1
∂t2

∂φ2
∂r1

∂φ2
∂t1

∂φ2
∂r2

∂φ2
∂t2

∣
∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

r1
m1

t1
m1

0 0
0 0 r2

m2
t2
m2− t1

m2
1

r1
m2

1
0 0

0 0 − t2
m2

2

r2
m2

2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= − 1
m1m2

. (46)

It then follows that

f (m1,m2,φ1,φ2) = f (r1, t1, r2, t2)
|J|

= c2m1m2exp
{

−m2
1 − 2ρm1m2 cos (φ1 − φ2) + m2

2
1 − ρ2

}

.

(47)

Let x = cos (φ1 − φ2) and y = φ2. Then

J =
∣
∣
∣
∣
∣

∂x
∂φ1

∂x
∂φ2

∂y
∂φ1

∂y
∂φ2

∣
∣
∣
∣
∣
=
∣
∣
∣
∣
− sin (φ1 − φ2) sin (φ1 − φ2)

0 1

∣
∣
∣
∣

= − sin (φ1 − φ2) ,

f (m1,m2, x, y) = 2f (m1,m2,φ1,φ2)

|J|

= 2c2m1m2√
1 − x2

exp
{

−m2
1 − 2ρm1m2x + m2

2
1 − ρ2

}

,

(48)

and

f (m1,m2, x)
= 2π f (m1,m2, x, y)

= 4m1m2

π
(
1 − ρ2)

√
1 − x2

exp
{

−m2
1 − 2ρm1m2x + m2

2
1 − ρ2

}

.

(49)
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Next,

E{β} = E
{
2
[
m2

1 − 2ρ cos (φ1 − φ2)m1m2 + m2
2
]

1 − ρ2 cos2 (φ1 − φ2)

}

= 8
(
1 − ρ2)

π
×
∫ ∞

0

∫ ∞

0

∫ 1

−1

(
m2

1 − 2ρxm1m2 + m2
2
)
m1m2

(
1 − ρ2x2

)√
1 − x2

× exp
{

−m2
1 − 2ρm1m2x + m2

2
1 − ρ2

}

dxdm1dm2

= 8
π
(
1 − ρ2)

∫ −1

1

1
(1 − ρ2x2)

√
1 − x2

×
∫ ∞

0
m2exp

{

−
(
1 − ρ2x2

)
m2

2
1 − ρ2

}

� (x,m2) dm2dx,

(50)

where

� (x,m2) =
∫ ∞

0

[
(m1 − ρxm2)

2 + (1 − ρ2x2)m2
2
]

× m1exp
{

− (m1 − ρm2x)2

1 − ρ2

}

dm1

=
∫ ∞

−ρm2x

[
y3 + ρxm2y2 + (1 − ρ2x2

)
m2

2y
+ρx

(
1 − ρ2x2

)
m3

2

]

× exp
{

− y2

1 − ρ2

}

dy. (51)

If −1 < x < 0, then

�(x,m2) =
∫ ∞

−ρm2x

[
y3 + ρxm2y2 + (1 − ρ2x2

)
m2

2y
+ρx

(
1 − ρ2x2

)
m3

2

]

× exp
{

− y2

1 − ρ2

}

dy

=
(
1 − ρ2)2

2
�

(

2,
ρ2x2m2

2
1 − ρ2

)

+ ρxm2
(
1 − ρ2) 32

2
�

(
3
2
,
ρ2x2m2

2
1 − ρ2

)

+
(
1 − ρ2x2

)
m2

2
(
1 − ρ2)

2
�

(

1,
ρ2x2m2

2
1 − ρ2

)

+ ρx
(
1 − ρ2x2

)
m3

2
(
1 − ρ2) 12

2
�

(
1
2
,
ρ2x2m2

2
1 − ρ2

)

.

(52)

If 0 < x < 1, then

�(x,m2) =
∫ ρm2x

0

[
y3 + ρxm2y2 + (1 − ρ2x2

)
m2

2y
+ρx

(
1 − ρ2x2

)
m3

2

]

× exp
{

− y2

1 − ρ2

}

dy

=
(
1 − ρ2)2

2
�

(

2,
ρ2x2m2

2
1 − ρ2

)

+ρxm2
(
1 − ρ2) 32

2
�

(
3
2
,
ρ2x2m2

2
1 − ρ2

)

+
(
1 − ρ2x2

)
m2

2
(
1 − ρ2)

2
�

(

1,
ρ2x2m2

2
1 − ρ2

)

+ρx
(
1 − ρ2x2

)
m3

2
(
1 − ρ2) 12

2
�

(
1
2
,
ρ2x2m2

2
1 − ρ2

)

+ρxm2
(
1 − ρ2) 32 γ

(
3
2
,
ρ2x2m2

2
1 − ρ2

)

+ρx
(
1 − ρ2x2

)
m3

2
(
1 − ρ2) 12 γ

(
1
2
,
ρ2x2m2

2
1 − ρ2

)

.

(53)

The functions γ (a, x) and � (a, x) are incomplete
gamma functions [31]. Since x�

(
3
2 ,

ρ2x2m2
2

1−ρ2

)
and

x
(
1 − ρ2x2

)
�
(
1
2 ,

ρ2x2m2
2

1−ρ2

)
are odd functions of x and the

integral with respect to x is from −1 to 1, the two terms
integrate to zero. Then one has

E {β} = 4
π
(
1 − ρ2)

∫ 0

−1

1
(1 − ρ2x2)

√
1 − x2

∫ ∞

0
m2exp

×
{

−
(
1 − ρ2x2

)
m2

2
1 − ρ2

}

�− (x,m2) dm2dx

+ 4
π
(
1 − ρ2)

∫ 1

0

1
(1 − ρ2x2)

√
1 − x2

∫ ∞

0
m2exp

×
{

−
(
1 − ρ2x2

)
m2

2
1 − ρ2

}

�+ (x,m2) dm2dx,

(54)

where

�− (x,m2) =
(
1 − ρ2)2

2
�

(

2,
ρ2x2m2

2
1 − ρ2

)

+
(
1 − ρ2x2

)
m2

2
(
1 − ρ2)

2
�

(

1,
ρ2x2m2

2
1 − ρ2

)

,

(55)
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�+ (x,m2)

=
(
1 − ρ2)2

2
�

(

2,
ρ2x2m2

2
1 − ρ2

)

+
(
1 − ρ2x2

)
m2

2
(
1 − ρ2)

2
�

(

1,
ρ2x2m2

2
1 − ρ2

)

+2ρxm2
(
1 − ρ2) 32 γ

(
3
2
,
ρ2x2m2

2
1 − ρ2

)

+2ρx
(
1 − ρ2x2

)
m3

2
(
1 − ρ2) 12 γ

(
1
2
,
ρ2x2m2

2
1 − ρ2

)

.

(56)

One also can compute

∫ ∞

0
m2exp

{

−
(
1 − ρ2x2

)
m2

2
1 − ρ2

}

�

(

2,
ρ2x2m2

2
1 − ρ2

)

dm2

=
∫ ∞

0
m2exp

{

−
(
1 − ρ2x2

)
m2

2
1 − ρ2

}∫ ∞
ρ2x2m2

2
1−ρ2

e−ttdtdm2

=
∫ ∞

0
e−tt

∫
√

(1−ρ2)t
ρ|x|

0
m2exp

{

−
(
1 − ρ2x2

)
m2

2
1 − ρ2

}

dm2dt

= 1 − ρ2

2
(
1 − ρ2x2

)

∫ ∞

0
e−ttγ

(

1,
(
1 − ρ2x2

)
t

ρ2x2

)

dt

= 1 − ρ2

2
(
1 − ρ2x2

)
1 − ρ2x2

ρ2x2
� (3)

(

1 + 1 − ρ2x2

ρ2x2

)−3

× F
(
1, 3, 2, 1 − ρ2x2

)

= (1 − ρ2) (ρ2x2
)2 F

(
1, 3, 2, 1 − ρ2x2

)
,

(57)

and similarly,

∫ ∞

0
m2exp

{
− (1−ρ2x2)m2

2
1−ρ2

}
m2

2�
(
1, ρ2x2m2

2
1−ρ2

)
dm2

= (1−ρ2)
2
(ρ2x2)

2 F
(
1, 3, 3, 1 − ρ2x2

)
, (58)

∫ ∞

0
m2exp

{
− (1−ρ2x2)m2

2
1−ρ2

}
m2γ

(
3
2 ,

ρ2x2m2
2

1−ρ2

)
dm2

= 2(1−ρ2)
3
2 (ρ2x2)

3
2

3 F
(
1, 3, 52 , ρ

2x2
)
, (59)

∫ ∞

0
m2exp

{
− (1−ρ2x2)m2

2
1−ρ2

}
m3

2γ
(
1
2 ,

ρ2x2m2
2

1−ρ2

)
dm2

= 2
(
1 − ρ2) 52 (ρ2x2

) 1
2 F
(
1, 3, 32 , ρ

2x2
)
, (60)

where F (α,β , γ , z) is the Gauss hypergeometric function
[31]. Thus

E {β} = 4
(
1 − ρ2)2

π

∫ 1

0

(
ρ2x2

)2

(
1 − ρ2x2

)√
1 − x2

×
[
F
(
1, 3, 2, 1 − ρ2x2

)

+ 4
3F
(
1, 3, 52 , ρ

2x2
)
]

dx

+4
(
1 − ρ2)2

π

∫ 1

0

ρ2x2√
1 − x2

×
[

F
(
1, 3, 3, 1 − ρ2x2

)+ 4F
(

1, 3,
3
2
, ρ2x2

)]

dx.

(61)

Appendix B
Under equal power allocation, the expression of βn for
the semi-orthogonal MAC with fixed sensor grouping
simplifies to

βn =

∣
∣
∣
∣
∑

i∈�n

√
N
K hi
∣
∣
∣
∣

2

N
K
∑

i∈�n

(

R {hi}
R
{
ĥn
}

∣
∣
∣ĥn
∣
∣
∣

+ I {hi}
I
{
ĥn
}

∣
∣
∣ĥn
∣
∣
∣

)2 . (62)

Let h̃n = ∑
i∈�n

√
N
K hi = mnejφn . Then h̃n is a circu-

larly symmetric complex Gaussian random variables with
zero mean and variance 1. The numerator of βn, |h̃n|2, is
of exponential distribution with parameter λ = 1, whose
pdf is

f|h̃n|2
(
|h̃n|2

)
= exp

(
−|h̃n|2

)
. (63)

Since ĥn has the same phase as h̃n, so the denominator
of βn turns to

N
K
∑

i∈�n
(R {hi} cosφn + I {hi} sinφn)

2

=
(
N
K
∑

i∈�n
R2 {hi}

)

cos2 φn

+
(
N
K
∑

i∈�n
I2 {hi}

)

sin2 φn

+2
(
N
K
∑

i∈�n
R {hi}I {hi}

)

cosφn sinφn.

(64)

When K → ∞, according to the strong law of large
numbers, (64) turns to

E
{
R2 {hi}

}
cos2 φn + E

{
I2 {hi}

}
sin2 φn

+2E {R {hi} I {hi}} cosφn sinφn

= 1
2
cos2 φn + 1

2
sin2 φn = 1

2
. (65)
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Therefore, when K → ∞, βn = 2|h̃n|2 is exponentially
distributed with parameter λ = 2, whose pdf is

fβn (βn) = 1
2
exp

(
βn
2

)

, βn ≥ 0. (66)

Finally, it is well known that the sum of N indepen-
dent and identically distributed (i.i.d.) exponential ran-
dom variables with parameter λ = 2 is a Gamma random
variable with parameters a = N and b = 2. For com-
pleteness, the pdf of the Gamma distribution is as follows:

fβ (β) = βa−1

� (a) ba
exp

(

−β

b

)

, β ≥ 0, a > 0, b > 0,

(67)

where � (a) = ∫∞
0 xa−1e−xdx is the Gamma function. If a

is an integer, then � (a) = (a − 1) !.
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