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Abstract

The article reports vehicular channel measurements in the frequency band of 5.8 GHz for IEEE 802.11p standard.
Experiments for both intra-vehicle and out-of-vehicle environments were carried out. It was observed that the
large-scale variations (LSVs) of the power delay profiles (PDPs) can be best described through a two-term exponential
decay model, in contrast to the linear models which are suitable for popular ultra-wideband (UWB) systems operating
in the 3-to 11-GHz band. The small-scale variations (SSVs) are separated from the PDP by subtracting the LSV and
characterized utilizing logistic, generalized extreme value (GEV), and normal distributions. Two sample Kolmogorov-
Smirnov (K-S) tests validated that the logistic distribution is optimal for in-car, whereas the GEV distribution serves
better for out-of-car measurements. For each measurement, the LSV trend was used to construct the respective
channel impulse response (CIR), i.e, tap gains at different delays. Next, the CIR information is fed to an 802.11p
simulation testbed to evaluate the bit error rate (BER) performance, following a Rician model. The BER results strongly
vouch for the suitability of the protocol for in-car as well as out-of-car wireless applications in stationary environments.
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1 Introduction
1.1 Motivation
Vehicle area networks (VANs) and vehicular ad hoc net-
works (VANETS) generally refer to networks between cars
and infrastructure points located along the road side [1,2].
These networks are aimed to deliver information about
the traffic, to ensure safety of the passengers, and to pro-
vide driver assistance and passenger entertainment [3].
The majority of future vehicular networks are envisaged to
conform with the IEEE 802.11p standard [4] described in
wireless access in vehicular environments (WAVE) [5] and
governed by a non-profit organization, the car-2-car com-
munication consortium (C2C-CC) [6]. IEEE 802.11p stan-
dardizes signal transmission for vehicle-to-vehicle (V2V)
or vehicle-to-infrastructure (V2I) communications, oper-
ated at a frequency band of 5.8 GHz [7].

Presently, there had been an upsurge in the interest of
the automobile industries regarding wider applications of
intra-vehicular wireless transmission. The use of wireless
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communication in the vehicle cuts down the wiring har-
ness, which will reduce the weight and cost of the car.
It also eliminates the need of drilling to pass the cables,
thereby improving robustness of the vehicle, and will sim-
plify the design as well as production processes. As men-
tioned earlier, the IEEE 802.11p protocol was specified
primarily for V2V/V2I scenarios where both transmitter
and receiver are placed outside the vehicle [8]. In order to
realize fully integrated intelligent transportation systems
(ITSs), it is important to evaluate the efficacy of the pro-
tocol for wireless connections in in-car (both transmitter
and receiver are inside the vehicle) and out-of-car (trans-
mitter is inside, and receiver is outside, or vice-versa)
scenarios as well.

1.2 Literature survey

There is a good number of open literature available that
deal with vehicular channel measurement and modelling.
We begin the list with [9], which provides a general review
on advances and challenges in V2V channel measure-
ment campaigns. The following papers, namely [10-12],
describe measurement-based narrowband channel mod-
els for different situations: on highways, in cities, and on

© 2015 Kukolev et al,; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly credited.


http://creativecommons.org/licenses/by/4.0

Kukolev et al. EURASIP Journal on Wireless Communications and Networking (2015) 2015:57

country roads. Different aspects of non-stationary vehic-
ular channel measurements in the frequency band of our
interest are addressed in [13,14]. Reports from some inter-
vehicular measurement campaigns in the 5.9-GHz band
are also made available in [15] and [16]. In particular,
Cheng et al. [15] study the suitability of IEEE 802.11a
for vehicular wireless links. Sen and Matolak [16] provide
a wide set of power delay profile (PDP) measurements
and proposed tapped delay line models based on Markov
chains.

As far as intra-vehicular channel measurements are con-
cerned, most of the articles are focused on ultra-wideband
(UWB) operating over a broad frequency spectrum of 3
to 11 GHz. For example, the performance of multiband
orthogonal frequency division multiplexing (MB-OFDM)
in intra-car communication is studied by Maehara et
al. [17]. In [18], Schack et al. report a comparison of
broadband channel sounding experiments over a differ-
ent range of cars. Another interesting paper is by Niu
et al. [19], where they describe a detailed UWB chan-
nel modelling campaign for intra-vehicular environments.
The characterization of the 5-GHz intra-vehicle com-
munication channel is only attempted recently in [20],
where the authors present power delay profiles, delay
spread, and statistical channel models for a minivan and a
bus.

Finally, in [21] and [22], the throughput and packet
delivery performance of the IEEE 802.11p protocol is stud-
ied in V2V and V2I scenarios with different speeds of
movement. However, to the best of our knowledge, none
of the authors utilize the measured intra-vehicle channel
models to evaluate the bit error rate (BER) for the IEEE
802.11p standard.

1.3 Contributions of the paper

In this paper, we present the results of intra-vehicle chan-
nel model measurements for the 5.8-GHz band for a
typical passenger car. We provide measurements for a
vehicle parked in an underground garage. The results were
collected in the frequency domain by a vector network
analyzer (VNA), then they were transformed into the time
domain using the inverse fast Fourier transform (IFFT),
and the large-scale variations (LSVs) from the measured
PDPs were separated. The small-scale variations (SSVs),
which were obtained after subtracting the LSV from the
PDP, were characterized statistically thereafter. Finally,
simulated BER results were obtained using a 802.11p sim-
ulation model. Specifically, the contributions of the paper
are as follows:

e Results for intra-vehicle and out-of-vehicle single
input single output (SISO) channel measurements
performed in the 5.875- to 5.885-GHz frequency
band.
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e Characterization of the LSV trends via a two-term
exponential decay model and the SSV random
variations via logistic, normal, and generalized
extreme value (GEV) distributions with the
two-sample Kolmogorov-Smirnov (K-S) test.

e Comparison of PDP decay trends of UWB and
802.11p for an identical measurement setup.

e BER simulation for 802.11p using the measured
channel data.

1.4 Organization of the paper

The paper reads as follows: Section 2 describes the mea-
surement setup realized through a VNA. In Section , we
provide a decay model to characterize the PDP, charac-
terize the LSV trends, and find the optimal statistical
distribution for the SSV. This section also includes a
comparison between 802.11p and vehicular UWB chan-
nel characteristics. Next, the BER performance for the
802.11p standard is presented in Section 4. Finally, some
conclusions are presented in Section 5.

2 Measurement setup

Measurements were performed with one transmitter (Tx)
and three receiver (Rx) antennas in a right-hand, four-
door Skoda Octavia car with dimensions: 4.659 x 1.814
x 1.462 m. The vehicle was parked on the sixth floor in
an underground garage of the Faculty of Electrical Engi-
neering (FEKT), Brno University of Technology (VUT).
Walls and floors of the garage premises are made of rein-
forced concrete, and they provide an environment that is
free from narrowband interference. There were no parked
cars on neighboring parking lots.

Figure 1a shows the underground garage and the park-
ing lot with the car and equipments. The receive/ transmit
antennas inside the car are zoomed in Figure 1b. The
four omni-directional conical monopole antennas that
were used are identical. The vertical polarization of the
antennas can be confirmed from the radiation patterns
presented in Figure 2 which depicts that the azimuth plane
pattern is circular.

Equipments for recording data were placed outside of
the vehicle. All doors and windows were closed, except the
driver’s window, which was slightly open to pass the cables
between the antennas and the recording equipment.

For measuring and recording the transmission coeffi-
cient between transmitter and receiver, a four-port VNA
from Agilent Technologies, E5071C (Agilent Technolo-
gies, Inc., Santa Clara, CA, USA) [7] was used (Figure 3
[bottom]). The transmit power was set at 5 dBm, and
phase stable coaxial cables were used for interconnec-
tions. The VNA measures the complex valued channel
transfer function in the frequency domain through the
s-parameter, Sy, which is the transmission coefficient
between port 1 (Tx) and port x € {2,3,4} (Rx). The
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antennas inside the car.

(b)

Figure 1 The underground parking lot and the receive/transmit antennas inside the car. (a) The vehicle under test. (b) Close up of the

measured frequency range (5.775 to 5.875 GHz) was
swept with a frequency step size of f; = 0.125 MHz. Due
to the fine resolution in the frequency domain, we were
able to construct the delay domainup tot; = 1/f; = 8 us
without aliasing effect of the VNA. The information, when
translated into the spatial domain, gives us a propagation
space resolution Py, = ¢/BW = 3 m and a maximum
propagation distance of Lyn.x = c¢/fy = 2.4 km. The
parameters, ¢ and BW, denote propagation speed of elec-
tromagnetic waves in free space (3 x 10® m/s) and the
bandwidth of the measured band, respectively.

The schematic diagram of the setup for IEEE 802.11p
frequency domain channel sounding is presented in
Figure 3 [top] [23]. Real and imaginary parts of the transfer
function (Sy1) were exported to MATLAB. The frequency
domain data over the entire bandwidth BW = 100 MHz

were partitioned into 10 MHz bins, where each bin cor-
responds to a sub-channel of 802.11p. All results were
transformed from the frequency domain into the time
domain, 4(t) = F~'H(f), utilizing the IFFT with a typical
rectangular window. The PDP was calculated by averaging
over ten sub-channel time-domain data.

Figure 4 shows transmitter and receiver antenna posi-
tions. A total of 15 different Tx-Rx combinations were
tested with separations ranging from 0.53 to 3.38 m. The
Tx antenna was placed at three different locations inside
the vehicle and at two locations outside the vehicle. In-
car Tx antenna positions were set at the right rear seat,
armrest in the middle of the car, driver seat, while for loca-
tions outside the car, two positions at a height of 1.09 m
were chosen: one in front of the car and the other one
near the right headlamp. The Rx antennas were installed

1500 150°
180°

H-plane
0° 10dBi
i O(ZiB 7

A20°

180°

Figure 2 Simulated gain pattern of the conical antennas for central frequency of 5.8 GHz.
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Figure 3 Block diagram of the measurement setup [top] and
Vector Network Analyzer Agilent Technologies E5071C with four
ports [bottom].

Figure 4 Schematic of antenna positions, RED - transmitter
antenna, BLUE - receiver antenna.
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on the left and right upper edges of the windshield and
on the roof in the rear part of the vehicle. The positions
of antennas were chosen for realizing both line-of-sight
(LOS) and non-line-of-sight (NLOS) scenarios. All these
combinations are described in detail in Table 1.

3 Channel description

The measured channel impulse response (CIR) is #(t) =
hen(t) * hi(t) where hen(t) refers to the actual chan-
nel response, * denotes time-domain convolution, and
Hp(f) = Flha(r)} is the transfer function of the
windowing operation. The band-limiting post-processing,
however, does not lead to any serious causality issues [24].
The generic multipath CIR is described by:

N-1

hen(v) = ) aiexp (j6)8(r — 1) (1)

i=0

where t; is the propagation delay, 4; exp (j¢;) is the com-
plex amplitude coefficient of the ith multipath compo-
nent, 8(.) is the Dirac delta function, and N is the total
number of multipath components.

The PDP is simply the squared channel impulse
response P(t) = |h(t)|?, and it includes LSV and SSV,
which can be designated mathematically in the following
manner: P(t) = y(t)+&(t), where y () denotes LSV and
&(7) is the SSV.

Table 1 Detailed settings for measurements (Tx and Rx
legends are shown in Figure 4)

Measurement Tx-Rx Tx Rx Remarks
number separation (m) position position

1 0.53 2R 2R LOS

2 0.69 4R 4M LOS

3 0.74 2M 2L LOS

4 0.85 2M 2R LOS

5 0.87 2M 4M LOS

6 0.94 2R 2L LOS

7 1.26 4R 2R NLOS

8 1.28 2R 4M NLOS

9 141 4R 2L NLOS

10 1.86 OR 2L Tx atanangle
11 203 oM 2L Tx in front
12 2.08 oM 2R Txin front
13 2.74 OR 2R Txatanangle
14 3.15 OR 4M Txatanangle

w

338 oM 4M Tx in front
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Figure 5 Power delay profile for LOS/ NLOS measurements
carried out for different Tx-Rx separations.

Figure 5 shows the measured PDP for different LOS and
NLOS conditions for both inside and outside of the vehi-
cle. As expected, the power levels are significantly higher
for the LOS measurements compared to the NLOS situ-
ations. The power levels for the NLOS case show rapid
variations near the noise floor (—110 dB).

3.1 Large-scale variations

Analytical calculations performed for closed spaces
[25,26] demonstrated an exponential decay of the PDP.
As intra-vehicular channels appear to have similar sig-
nal propagation environments, we express the LSV with a
two-term exponential model:

y(t) =Aexp(Br)+ Cexp (D7) ;0 <71 <ty5/2. (2
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Table 2 Parameter values for LSV
Tx-Rx Parameter values
separation (m) A B (x10%) C D (x10°)
0.53 —49.81 0.63 4598 —7.05
0.94 —48.56 0.64 43.89 —6.47
1.28 —50.66 0.46 4537 —5.20
2.03 —47.36 0.34 38.82 —3.68
3.38 —4532 0.14 3825 —4.28

The first term includes power from direct and major
reflected rays, and the second term, with a very low slope
(close to linear), reflects the power from diffused multi-
path components. This exponential model (2) offers more
flexibility compared to single-term exponential or lin-
ear models. Further, it also avoids discontinuities in the
extracted LSVs, which are present when one attempts to
divide the PDP into two (or more) delay parts and tries to
fit individual expressions for each of these parts [27].

In order to evaluate how well the LSV model (2) corre-
sponds to the actual PDP, we evaluated the mean square
error (MSE) between the PDP and the LSV:

M
MSE = AZ; Pir) — (P 50 <7 <122 ()

The MSE is 6.59 x 107>, averaged over all the M = 15
measurements.

The LSVs for the two-term exponential model for dif-
ferent distance between Tx and Rx antennas of 0.53, 0.87,
1.28,2.74, and 3.15 m are shown in Figure 6. It is observed
that LSV for the LOS case drops more rapidly than for the
NLOS scenario. This is in perfect harmony with earlier
observations [28].

| ——0.53m LOS Tx: 2R Rx:2R
-10% ——0.94m LOS Tx: 2R Rx: 2L
— 1.28m NLOS Tx: 2R Rx: 4M
g o0H ——2.03m NLOS Tx: OM Rx: 2L
% 3.38m NLOS Tx: OM Rx: 4M
a
2 -30f 1
=
>
]
2 -40F 1
i Out-of-car
©
£ 500 E
(=}
z
-60 4
_70 L L L L L L L
0 0.5 1 1.5 2 25 3 35 4
Time Delay [s] x10°

Figure 6 Normalized large-scale variation (y) of the PDP for LOS/
NLOS measurements carried out for different Tx-Rx separations.

SSV (€) of PDP [dB]

——0.53m LOS Tx: 2R Rx:2R

——0.94m LOS Tx: 2R Rx: 2L
1.28m NLOS Tx: 2R Rx: 4M

——2.03m NLOS Tx: OM Rx: 2L
3.38m NLOS Tx: OM Rx: 4M

15 . . . . . . .
0 0.5 1 1.5 2 25 3 3.5 4

Time Delay [s] x10°

Figure 7 Small-scale variation (£) of the PDP for LOS/ NLOS
measurements carried out for different Tx-Rx separations.
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Table 3 Two sample K-S test p values for fitting SSV with
different continuous distributions

Tx Tx-Rx Distributions

position separation (m) GEV Logistic Normal
0.53 0.3456 0.8838 0.7085

In-car 0.94 0.8838 0.8838 0.7085
1.28 0.7085 0.7085 0.8838

Out-of-car 2.03 0.9997 0.6297 05142
3.38 0.8838 0.7085 0.8838

The parameters of the model for these five distances
are given in Table 2. Both the coefficients, A and C, show
similar values for in-car (or out-of-car) situations. On
the other hand, the coefficient B decreases steadily with
increasing Tx-Rx separation whereas D increases.

3.2 Small-scale variations

The SSV was obtained through subtracting the LSV from
the measured PDD, ie., £&(r) = P(r) — y(r). Consid-
ering that the LSV follows (2), we separated SSVs for
five different distances, and the results are depicted in
Figure 7.

The characterization of the SSV is based on finding
the appropriate random process using the normal, the
logistic, and the GEV distributions. The GEV distribution
[29] appeared to be a good fit for both UWB [30] and
milimeter wave [31] small-scale variations. On the other
hand, the logistic family of distributions [32] has been
used successfully in ray-cluster-based modelling at 5 GHz
[33] and modelling the probability density function (PDF)
of the rms delay spread at 2.35 GHz [34]. We have also
included the normal distribution as a reference. The PDF
of these three distributions are given in (9), (10), and (11),
respectively.

f(x“l“)o') = (4‘)

—(x—u)z}

202

1
ex
UA 27 p[
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exp (%5*

o [1+ exp (:24)]°

f(x“'L’ 0) -

1 1 .
f(xlk, M,G) = —exp <—137k )13717]( (6)
o

where § =1+ k%. The parameters, i, o, and k, are the
location, scale, and shape parameters, respectively.

To compare distributions and SSV, we have performed
the two-sample K-S test [35]. The p values are presented
in Table 3. Higher p values for the logistic distribution
inside the car and for the GEV distribution outside the car
prove that they are the best candidates among the three
for describing the SSV in in-car and out-of-car situations,
respectively. The same can be observed from Figure 8,
where the cumulative distribution functions (CDFs) of
measured SSVs are fitted with these three distributions for
results measured at different distances.

3.3 Comparison with UWB

UWB possesses a great potential for high-speed data com-
munication and precise localization operations in clut-
tered closed-space hostile towards radio frequency (RF)
signal propagation. Traditionally, the PDP for UWB chan-
nels are described with a modified Saleh-Valenzuela (S-V)
model [19]. However, in a recent work by Demir et al. [36],
the authors found that the PDP for UWB transmission in
vehicular networks may be characterized by segmenting
the PDP (in dB scale) into several linear slopes. Inspired
by these facts, we tried to compare our results for 802.11p
protocol with measurements for UWB (3 to 11 GHz)
performed using the same VNA-based setup. The goal
was to find if one can attain similar LSV trends in wider
bandwidths as well.

The number of measured points was the same; how-
ever, due to the larger BW (8 GHz) and a frequency step
size of f; = 100 MHz, we have a smaller time range
ty = 1/fs = 10 ns. Thus, we cannot compare the PDPs
in an one-to-one basis. For analyzing LSV models, we use

Cumulative Probabilty

Cumulative Probabiity

/

) ? sV " ° ssv @ ° * ! *ssvig |
(a) (b) () (d)
Figure 8 Empirical CDF of small-scale variation fitted with three statistical distributions (logistic, GEV, and normal) for different Tx-Rx
separations. (@) d=0.53m,(b) d=094m,(c) d=1.28 m, (d) d =2.03m, and (e) d =3.38 m.

2 g
SSV(e)




Kukolev et al. EURASIP Journal on Wireless Communications and Networking (2015) 2015:57

1.28 m (802.11p)
10 1.28 m (UWB)
——0.53m (802.11p)
——0.53m (UWB)

-20

-30

-40

-50

-60

Normalized PDP [dB]

-70

-80

-90 q

-100 I I I I I I I
0 5 10 15 20 25 30 35 40

Normalized Time Samples

Figure 9 Comparison of 802.11p and UWB PDP trends in
normalized time scale.

a scaled comparison instead. For the UWB measurement,
the propagation space resolution is P, = 3 cm and the
maximum propagation distance is Ljyn,x = 30 m.

Figure 9 shows the UWB and the 802.11p normalized
PDP vs normalized time samples. For UWB, it was found
that the PDP constitutes one (or a few) major peaks fol-
lowed by somewhat linear decreasing slope. The reader
may also note the delay and lower power for the first
peak of the UWB PDP. In addition, the delay and the
maximum value of the peak is more for larger distances
between the transmitting and receiving antennas. How-
ever, this phenomenon is not observed in narrowband 5.8
GHz measurements for 802.11p.
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4 Simulation results

For BER simulation, we used MATLAB. A detailed
description of the simulation methodology can be
found in [37]. Parameters for generating the signal are
available in [38]. A block-scheme diagram that corre-
sponds to the SISO transmission model is presented in
Figure 10.

The Tx generates 10° data sub-frames for a given energy
per bit to noise power spectral density ratio (Ej/Np). For
signal transmission, we use rate 1/2 convolutional coding
and BPSK modulation. On the receiver side, we use simple
least square (LS) estimation and a hard Viterbi decoder.
The 802.11p standard is based on OFDM with Nippr =
64 for a bandwidth of 10 MHz. In the time domain, each
OFDM symbol contains 80 chips including a cyclic prefix
of length 16. The final transmitted signal has a duration of
8 us.

Rician distribution had been successfully utilized for
non-geometrical stochastic modelling of vehicular chan-
nels [11]. A Rician model also encompasses the Rayleigh
model as a special case. For the channel block in Figure 10,
the tap gains were calculated from the LSV based on a
simple Rician model. The respective CIRs are shown in
Table 4. It is interesting to find that real-life measurements
exhibit a very fast decrease of the tap gains, similar to
some earlier reports [39].

The BER results for different distances between Tx and
Rx, for LOS and NLOS cases, and for intra-vehicle and
out-of-vehicle situations are shown in Figure 11. Results
can be classified quite unambiguously into two groups,
one for intra-vehicle and the other for out-of-vehicle mea-
surements. The BER worsens for higher Tx-Rx distance

tion
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Table 4 Characteristics of the channel models
Tap delay (ns) Tap gain (dB)
0.53 m LOS 0.94 m LOS 1.28 m NLOS 2.03 m NLOS 3.38 m NLOS
0 0 0 0 0 0
10 —11.78 —10.61 —9.61 —6.06 —6.69
20 —17.69 —16.24 —14.90 —10.28 —11.06
30 —20.69 —19.27 —18.27 —1322 —13.93
40 —22.26 —2093 —2032 —15.28 —15.80
50 —23.11 —21.87 —21.58 —16.74 —17.04
60 —23.62 —2245 —22.39 —17.76 —17.85
70 —23.95 —22.83 —2291 —1850 —1840
80 —24.20 —23.10 —2327 —19.04 —18.76
90 -214 —2333 —2353 —1943 —19.01
K factor (dB) 21.30 20.07 19.61 15.15 1540

inside the car, but outside the vehicle, the BER values
almost remain unaffected when the Tx-Rx separation is
altered. The BER results for intra-vehicle simulations are
slightly better than the results for the out-of-vehicle chan-
nel. For a target BER of 1072, the required E; /Ny differs
by 6 dB.

5 Conclusions

The aim of the text was to assess the suitability of protocol
802.11p for in-car wireless applications. For the purpose,
extensive vehicular channel measurements in the 5.8-GHz
band were carried out. A double exponential decay model
was used for describing the basic trend of the measured
PDP, and we utilized it for IEEE 802.11p BER simulation.

Out-of-car

—+—0.53 m LOS Tx: 2R Rx: 2R

s|| —*—0.94 m LOS Tx: 2R Rx: 2L
1.28 m NLOS Tx: 2R Rx: 4M

——2.083 m NLOS Tx: OM Rx: 2L
3.38 m NLOS Tx: OM Rx: 4M

-10 -5 0 5 10 15 20 25
E,/N, [dB]

Figure 11 BER performance of IEEE 802.11p standard over the
measured channels.

The BER achieves the recommended values for all vari-
ants of the channel, and it can be concluded that 802.11p
standard (in particular, the PHY protocol stack) can be
adopted for intra-vehicular communication systems.
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