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Abstract

Explosive increase in mobile data traffic driven by the demand for higher data rates and ever-increasing number of
wireless users results in a significant increase in power consumption and operating cost of communication networks.
Heterogeneous networks (HetNets) provide a variety of coverage and capacity options through the use of cells of
different sizes. In these networks, an active/sleep scheduling strategy for base stations (BSs) becomes an effective way
to match capacity to demand and also improve energy efficiency. At the same time, environmental awareness and
self-organizing features are expected to play important roles in improving the network performance. In this paper, we
propose a new active/sleep scheduling scheme based on the user activity sensing of small cell BSs. To this end,
coverage probability, network capacity, and energy consumption of the proposed scheme in K-tier heterogeneous
networks are analyzed using stochastic geometry, accounting for cell association uncertainties due to random
positioning of users and BSs, channel conditions, and interference. Based on the analysis, we propose a sensing
probability optimization (SPO) approach based on reinforcement learning to acquire the experience of optimizing the
user activity sensing probability of each small cell tier. Simulation results show that SPO adapts well to user activity
fluctuations and improves energy efficiency while maintaining network capacity and coverage probability guarantees.

Keywords: Heterogeneous networks; Self-optimization; Energy efficiency; Reinforcement learning

1 Introduction
To satisfy the explosive increase in mobile data traffic
demand, heterogeneity is expected to be a key feature of
future wireless networks [1-4]. Heterogeneous networks
(HetNets) consist of a conventional cellular network over-
laid with a diverse set of lower power small cell base
stations (BSs), such as microcells, picocells, and femto-
cells, to improve spatial frequency reuse and coverage.
This allows the network to achieve higher data rates while
retaining seamless connectivity and mobility. However,
the overall energy consumption and operating cost of
networks are also increasing considerably by the deploy-
ment of these additional small cell base stations [5,6].
As a result, green wireless communication has attracted
the attention of both researchers and network operators,
and energy efficiency has become one of the key network
management parameters [2,7]. Additionally, the future
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heterogeneous networks are also expected to operate in
self-organizing manner to reduce operational expendi-
tures (OPEX) due to the deployment of large numbers of
BSs [8].
An effective way to adapt to the traffic demand while

improving energy efficiency is performing active/sleep
scheduling by taking advantage of the fluctuations in traf-
fic demand over time and space [9]. In [10], using a sleep
mode is shown to be effective especially when the cell
size is small and under light traffic conditions for a single-
tier network. For heterogeneous networks, Soh et al. [2]
applied the tools from stochastic geometry to analyze the
impact of load-aware sleeping strategy on coverage prob-
ability, finding its performance to be at least as good as
without using a sleep mode. Active/sleep scheduling can
be controlled via either the user equipment, the small cell,
or the core network [11]. If it is network-controlled as
proposed in [12], the information about the traffic load
and user location are needed to identify hotspots to make
the active/sleep decisions. Therefore, it is attractive to
deploy distributed sleep mode strategies which do not
involve the UE equipments, extra signaling overhead, and
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user location awareness. Wildemeersch et al. [5] investi-
gated using small cells in a distributed way to offload the
traffic from the macrocell network and exploiting their
cognitive capabilities of user activity sensing to improve
the energy efficiency by active/sleep scheduling. How-
ever, their analysis in a two-tier network environment only
considered the network performance of traffic offloading
and the user detection. The quality of service (QoS) of
users such as coverage probability and throughput which
should be guaranteed as the baseline of energy saving was
ignored. Moreover, the operation status of BSs were not
considered by their proposed user detection model in the
literature, and additional energy consumption would be
caused by the active BSs due to unnecessary sensing. Also
a user’s cell association with small cell tiers will affect
the detection of the user because only macrocell users
could be detected under their proposed model. This issue
makes the scheme not applicable to the general multi-tier
heterogeneous network scenario.
In this paper, we propose an active/sleep scheduling

scheme forK-tier heterogeneous networks exploiting self-
organizing capabilities. In our scheme, to guarantee cov-
erage, macrocells are always active. However, when a small
cell does not serve any active users, it goes into a sleep
mode, during which it wakes up only to sense macro-
cell user activity. If the small cell detects an active user
within its coverage during the sensing period, it becomes
active to offload traffic from the macrocell. We analyze
the coverage probability, network capacity, and energy
consumption of the proposed scheme in a K-tier hetero-
geneous network using stochastic geometry, accounting
for cell association uncertainties due to random position-
ing of users and BSs, channel conditions, and interference.
To save as much energy as possible, user detection fol-
lows a sensing probability, which is self-optimized by
the network. The sensing probability optimization (SPO)

approach based on reinforcement learning is proposed
to acquire the experience of optimizing the user activity
sensing probability of each small cell tier, considering the
user activity fluctuations and user QoS such as coverage
and throughput.
The rest of the paper is organized as follows: In

Section 2, we describe the system model and propose
the user activity sensing-based active/sleep scheduling
scheme. In Section 3, we describe the energy effi-
ciency optimization problem and present the details of
the proposed fuzzy Q-learning-based SPO approach. In
Section 4, we present the simulation results. Finally, we
draw the conclusions.

2 User activity sensing-based active/sleep
scheduling scheme

2.1 Systemmodel and assumptions
We consider a heterogeneous network that consists of K
tiers of BSs, where the first tier of macrocell BSs is overlaid
with K−1 tiers of denser and lower power small cell BSs.
We consider that all tiers share the full spectrum and,
hence, interference exists between tiers. All small cell BSs
operate in open-access mode, such that they are accessi-
ble to all users. In order to improve energy efficiency, we
propose an active/sleep scheduling scheme which makes
use of monitoring user activity and self-organizing capa-
bilities.
We model the user and BS activity using a time-slotted

model as depicted in Figure 1. To guarantee coverage,
macrocells are always active over the slot duration T .
When a small cell does not serve any active user, it goes
into a sleep mode to save energy but still senses macrocell
user activity over a sensing time ts. Active small cells do
not sense user activity and only transmit during T − ts to
ensure that only macrocell users are detected during sens-
ing time. This is because the small cells in our model use

Figure 1 Time slot model.
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energy detection (ED) to sense user activity due to its low
complexity and low power consumption [13,14]. However,
ED still may have false positives as it may also be affected
by noise or interference originated from macrocell users
outside the small cell coverage [13]. Nevertheless, to keep
the complexity low, in our model, if the detected energy
is higher than the threshold, the small cell believes that
there is an active macrocell user within its coverage range
and becomes active during T − ts by transmitting pilot
signals. Subsequently, the user reports the presence of
the small cell to the macrocell, and the user might be
handed over to the small cell according to cell associa-
tion policies (e.g., maximum received power-based cell
association [15]).
The spatial distribution of macrocell BSs in the net-

work is usually modeled by lattices or hexagonal cells
since their deployment is considered well-planned. Nev-
ertheless, it has been shown that modeling macrocell BSs
by homogeneous Poisson point process (PPP) is tractable
and accurate [16,17]. Small cells such as femtocell access
points are also extensively modeled by PPP, mainly due to
their uncoordinated and random deployment [15]. There-
fore, for K-tier heterogeneous networks, we model the
positions of BSs in the kth tier according to a homoge-
neous PPP �k with density λk . Users are also located
according to a homogeneous PPP �u with density λu that
is independent of �k (k = 1, 2, · · · ,K). The probabil-
ity that there resides at least one active user within the
coverage of a BS in the kth tier is [18]:

puk = 1 − e−λupkπR2 , (1)

where λupk is the user intensity associating with the kth
tier.
To reduce user detection energy, the sensing period of

BSs in the kth small cell tier follows a certain probability
psk (k = 2, 3, · · · ,K) which is self-optimized by the net-
work using the sensing probability optimization approach
described in Section 3.

2.2 Analysis of the active/sleep scheduling scheme
The probability of BS active/sleep modes is determined by
the sensing probability vector ps = (ps2, ps3, · · · , psK ) fol-
lowed by small cells at each tier. In our scheme, a small
cell becomes active if there is at least one user of the pre-
viously active small cell that needs to be served, or the
previously sleeping small cell performs user activity sens-
ing and detects a macrocell user. Note that this detection
may be a false positive. The state transition process of BS
active/sleep modes determined by the sensing probability
vector could be summarized as:

pak( ps) = pak( ps)puk + (1 − pak( ps))pskpu1pd
+ (1 − pak(ps))psk (1 − pu1) pf.

(2)

Here, pak(ps) and 1 − pak(ps) are the probabilities of
BSs’s active/sleep modes in the kth tier. pa1 = 1 because
macrocells are always active. pd and pf are the detection
probability and false alarm probability, calculated as [19]:

pd = Q
(( η

σ 2 − γ − 1
)√ N

2γ + 1

)
, (3)

pf = Q
(( η

σ 2 − 1
)√

N
)
, (4)

where Q (·) is the complementary distribution function
of the standard Gaussian, η is the detection threshold
used by energy detection, σ 2 is the variance of the addi-
tive white Gaussian noise, γ is the signal-to-noise-plus-
interference ratio (SINR), N = ⌊

τsfs
⌋
is the total sample

size, fs is the sample frequency. Note that, the detection
probability and false alarm probability could be adjusted
to certain target values, p∗

d and p∗
f , by setting sensing

threshold and sample frequency to appropriate values η∗
and f ∗

s , which is out of scope of this paper.

Theorem 1. The probability that a user associates with
the kth-tier small cell using the maximum received power
cell association policy is:

pk = λkpak(ps)
K∑
i=1

pai(ps)λi(Pi/Pk)2/α
, (5)

where Pk is the transmit power of BSs in the kth tier, and α

is the path loss exponent.

Proof. See Appendix 1.

The coverage probability is defined as the probability
that a user’s SINR from its associated BS is higher than the
target SINR value τ .

Theorem 2. The coverage probability of a user is:

Pc =
K∑

k=1
2πpak ( ps) λkP

2/α
k
∫∞
0 r exp

{
− τ rασ 2

−π
K∑
i=1

r2pai( ps)λiP2/αi (1 + ρ (τ ,α))

}
dr,

(6)

where ρ (τ ,α) = τ 2/α
∫∞
τ−2/α

1
1+xα/2 dx.

Proof. See Appendix 2.

If we assume orthogonal transmissions where equal
resources are allocated to each user in a round-robin
schedulingmanner, the ergodic capacityC of a typical user
in the K-tier heterogeneous network is given as:

C = ts
T
p1C0 + T − ts

T

K∑
k=1

pkCk . (7)
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In Equation 7, C0 is the ergodic rate of a user associated
with the first tier during the sensing time ts when there is
no interference from the other tiers, and Ck is the ergodic
rate of a user associated with the kth tier during the time
T − ts.

Theorem 3. The ergodic rate of a user associated with
the first tier is:

C0 = ln (1 + τ) 2πλ12P2/α1
p12λu

∫ ∞

0
r exp

⎧⎨
⎩− τ rασ 2

− π

K∑
k=1

r2pak ( ps) λkP
2/α
k − πr2λ1P2/α1 ρ (τ ,α)

}
dr

+ 2πλ12P2/α1
p12λu

∫ ∞

0

∫ ∞

ln(1+τ)

r exp

⎧⎨
⎩− (

et − 1
)
rασ 2

− π

K∑
k=1

r2pak ( ps) λkP
2/α
k − πr2λ1P2/α1 ρ

(
et − 1,α

)}
dtdr

(8)

and the ergodic rate of a user associated with the kth tier is:

Ck = ln (1 + τ) 2π(pak(ps))2λk2P
2/α
k

pk2λu

∫ ∞
0

r exp

⎧⎨
⎩− τ rασ 2

− π

K∑
i=1

r2pai(ps)λiP
2/α
i (1 + ρ (τ ,α))

⎫⎬
⎭ dr

+ 2π(pak(ps))2λk2P
2/α
k

pk2λu

∫ ∞
0

∫ ∞
ln(1+τ)

r exp

⎧⎨
⎩− (

et − 1
)
rασ 2

− π

K∑
i=1

r2pai(ps)λiP
2/α
i

(
1 + ρ

(
et − 1,α

))⎫⎬⎭ dtdr,

(9)

Proof. See Appendix 3.

According to the active/sleep model, the main power
consumptions of BSs in the first macrocell tier consists
of the constant power Ec1 and the processing power Ep1.
Hence, the expected energy consumption of a macrocell
is:

E1 = Ec1 + Ep1. (10)

The main power consumptions of BSs in the remaining
tiers consist of the constant power Eck , the sensing power
Esk and the processing power Epk during active mode
(k = 2, 3, · · · ,K) [5,20]. We consider that the energy
consumption is proportional to time, and constant power
is consumed over the entire time slot T . The expected

energy consumption of a small cell in the kth tier (k =
2, 3, · · · ,K) is:

Ek = Eck + (1 − pak(ps)) pskEskts/T︸ ︷︷ ︸
sensing energy for sleepmode

+ pak(ps)Epk (T − ts) /T︸ ︷︷ ︸
procesing energy for activemode

.

(11)

Consequently, the total energy consumption of the het-
erogeneous network is:

E =
K∑

k=1
λkEk . (12)

3 Self-optimization of user activity sensing based
on fuzzyQ-learning

While an active/sleep scheduling scheme improves energy
efficiency, the introduction of sleep mode for the BSs may
lead to outage or lower capacity affecting quality of ser-
vice. To guarantee at least basic network performance,
while improving energy efficiency, we formulate the opti-
mization problem of our active/sleep scheduling scheme
as follows:

P : min
ps

E (13)

s.t. Pc ≥ εp (14)

C ≥ εc. (15)

where εp and εc are, respectively, the threshold coverage
probability and average capacity offered to a user. Pc and
C are as defined in Equations 6 and 7, respectively.
To solve the problem P, we propose a SPO approach

based on fuzzy Q-learning [21-23], which optimizes the
key sensing probabilities of the proposed active/sleep
scheduling scheme by interacting with the uncertain envi-
ronment and learning from the past experience. Our
approach tunes the sensing probability for each K−1 tiers
in a self-optimized manner according to the active user
density λu. Assuming that the active user density does not
fluctuate fast, we avoid real-time tuning and execute the
tuning of the sensing probability periodically. Therefore,
our approach accepts centralized operation, and the new
values for sensing probabilities are computed by a central-
ized management entity and transmitted periodically to
the BSs at each tier.
The tuning of the sensing probabilities is represented by

an action vector a = (ps2, ps3, · · · , psK ). To manage con-
tinuous state λu and action vector spaces, a fuzzy infer-
ence system is used. Firstly, the current state λu should be
fuzzified into a fuzzy set s. The degree of truth αi(λu) that
the current state belongs to fuzzy sets si is determined by
membership functions. For example, as shown in Figure 2,
triangular membership functions are used to determined
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Figure 2Membership functions.

which sets the state λu belongs to and how much degree
of truth can be obtained for each set.
Then, fuzzy inference rules are used to determine the

tuning action a. The ith fuzzy inference rule for fuzzy set
si can be described as:

IF current state is si
THEN the action is ai1 with qi1,

· · · · · ·
or the action is aij with qij,

· · · · · ·
or the action is aiJ with qiJ .

Here, aij is the discrete sensing probability tuning action
vector of the jth inference result responding to the ith rule.
qij represents the elementary quality, and the higher value
of qij, the higher the trust for the corresponding sensing
probability configuration.
The action of the ith rule is selected by an explo-

ration/exploitation policy using ε-greed method as fol-
lows:

c (i) =
⎧⎨
⎩
random
j=1,2,...,J

(j), with prob. ε

arg max
j=1,2,...,J

qij, with prob. 1 − ε
. (16)

The inferred tuning action vector of sensing probabili-
ties for state s is given as:

a (s) =
I∑

i=1
aic(i)αi (s). (17)

In addition, during the trial-and-error process of action
policy exploration, to avoid bad actions that result in
negative performance, a must be checked according to
the constraints of coverage probability and capacity (see
Equations 14 and 15). Although the coverage probability
and the ergodic capacity are not given in a closed-form
expression, the integrals are fairly easy to compute. If the

coverage probability and capacity derived from the out-
put sensing probabilities do not meet the constraints, the
action for current state should be reselected according to
Equation 16 excluding the faulty actions.
After applying the tuning action, the corresponding

feedback reward is obtained from the environment. We
define the reward value as the inverse of average energy
consumption during a tuning action period, where the
corresponding punishments are coverage outage and
capacity shortage:

r =
{
1/E, if Pc ≥ εp and C ≥ εc
−1, otherwise . (18)

With the feedback reward, the quality function is
updated to maximize the expected reward. The quality
function Qπ (s, a) is defined as the expected sum of dis-
counted rewards from the initial state s0 under the optimal
action policy π as follows:

Qπ (s, a) = Eπ

[ ∞∑
t=0

θ tr(st , at) |s0 = s, a0 = a
]
. (19)

st and at denote the state and the action of the fuzzy
inference rule at step t, and θ is the discount factor.
The Q-learning algorithm updates the quality function

iteratively:

Qt+1(st , at) = Qt(st , at) + 
Qt , (20)

where 
Qt depends on the reward value, the quality func-
tion and the value function. The quality function of the
activated rules is calculated as:

Qt (st , at (st)) =
∑
i
qic(i)αi (st). (21)

And the value function of the new state after performing
the applied action is calculated as:

Vt(st+1) =
∑
i
max

j
qijαi (st+1). (22)

Using these three parameters obtained from Equations 18,
21, and 22, 
Qt is calculated as:


Qt = ξ(r + θVt(st+1) − Qt(st , at)). (23)

ξ is the learning rate for Q-learning.
Finally, the elementary quality qij, which determines the

fuzzy inference rules, should be updated by:


qij =
{


Qαi (st+1) , if j = c(i)
0, otherwise . (24)

4 Simulation results
In this section, we evaluate first the performance of the
active/sleep scheduling scheme and then the benefits of
reinforcement learning-based self-optimization approach.
The simulation parameters are listed in Table 1 and are
selected based on [2,5,9,24].
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Table 1 Simulation parameters

Parameters Value

Tiers of networks K 3

Network density λ1, λ2, λ3 (m−2) 10−6, 5 × 10−5, 10−4

Transmit power P1, P2, P3 (dBm) 43, 30, 20

Variance of noise σ 2 (dBm) −104 (10 MHz bandwidth)

Constant power E1c , E
2
c , E

3
c (W) 75, 20, 4

Sensing power E2s , E
3
s (W) 5, 4

Processing power E1p , E
2
p , E

3
p (W) 150, 50, 8

Target SINR τ (dB) 1

Sensing time ts 20%T

Target detection probability p∗
d 0.9

Target false alarm probability p∗
f 0.1

Path loss exponent α 4

Threshold of user capacity ξc (nat/s/Hz) 0.05

Threshold of coverage probability ξp 0.5

4.1 Performance of user activity sensing-based
active/sleep scheduling scheme

We first evaluate the coverage probability of a typical
user in the network when active/sleep scheduling is used.
Figure 3 shows that with decreasing sensing probabilities,
the coverage probability also decreases. This is expected
as the BSs will be more likely to be in the sleep state, and
hence, they will be less likely to cover active users. In addi-
tion, if there are more users in the network (i.e., the active
user density is higher), it will be easier for BS to detect
the active users, and consequently more BSs will be active.
Therefore, the coverage probability will be improved with
the increasing density of active users.
Figures 4 and 5 show the capacity of a typical user and

the network capacity per unit area, which is calculated by
summing all user capacities. As the sensing probabilities

Figure 3 Coverage probability.

Figure 4 User capacity.

increase, more BSs will be active. On the downside, the
network capacity is affected due to higher interference.
Also, more users will be offloaded to small cells, where the
users are not able to transmit during the sensing time of
the small cells. On the positive side, the spectrum utiliza-
tion will increase and more active BSs will lead to fewer
users per cell, and hence, higher resource allocation per
user. So, to guarantee the user capacity, the sensing prob-
abilities should not be configured too low to ensure that
there are enough BSs in the network to detect user activ-
ity and go into active mode to provide enough capacity for
users. In addition, if there are more users in the network,
the network capacity will improve as more users trigger
the activation of more BSs. However, if there are more
users in the network competing for the network capac-
ity, the capacity of a typical user which is almost inversely
proportional to the number of users in the network will
obviously reduce.

Figure 5 Network capacity.
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Finally, Figure 6 shows the energy consumption perfor-
mance. As expected, with increasing sensing probabilities,
energy consumption also increases. Energy consumption
will also increase with more users, which will make more
BSs active under the same sensing probabilities. Conse-
quently, to minimize the energy consumption, we should
configure the sensing probabilities as low as possible to
make more BSs sleep while maintaining coverage and
capacity guarantees. In the next section, we evaluate how
the self-optimization approach tunes the sensing proba-
bilities respecting the trade-off for energy efficiency and
quality of service.

4.2 Performance of self-optimization approach
Based on the analysis in the previous section, it is nec-
essary to configure the sensing probabilities to adapt to
the fluctuations in active user density and to maintain
both energy efficiency and quality of service. An exam-
ple of how the density of active user density fluctuates
within a day is shown in Figure 7. To understand and com-
pare the performance of our SPO approach under such
fluctuations, we compare it against the following schemes:

• Scheme 1: SPO. The sensing probabilities of K-tier
heterogeneous networks are self-optimized
periodically adapting to the user activity fluctuations
using reinforcement learning.

• Scheme 2: always sensing. All BSs in all small cell tiers
always sense user activity during the sensing time.
Hence, the sensing probability of BSs in every small
cell tier is 1.

• Scheme 3: always active. All BSs are always active,
and they do not perform user activity sensing.

• Scheme 4: only macrocell. All users are served by
macrocells (i.e., there are no active small cells in the
network).

Figure 6 Energy consumption.

Figure 7 User density fluctuations.

• Scheme 5: random sensing. Each small cell senses
user activity with a certain probability (e.g., 0.3 in our
evaluation).

• Scheme 6: random sleep. Each small cell goes into the
active/sleep mode with a certain probability (e.g., 0.3
in our evaluation) and does not do the user activity
sensing.

Figure 8 shows the comparison of the coverage probabil-
ity of all the schemes.We see that the coverage probability
cannot be guaranteed if all the small cells are turned
off (only macrocell case). The coverage probabilities of
schemes that use user activity sensing fluctuate with the
active user density. This is expected as the user density
affects the probability of BSs being in active or sleep state.
The coverage probability of random sensing scheme can-
not be guaranteed when the active user density is low.

Figure 8 Coverage probability comparisons.
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This is because the sensing probabilities are not properly
configured and there are not enough active BSs to guar-
antee the coverage. On the other hand, SPO is able to
adapt to the user density fluctuations shown in Figure 7
andmaintains the coverage probability around the thresh-
old value (i.e., the target coverage performance) when the
active user density is low. SPO fluctuates slightly around
the threshold due to periodic optimization, and not real-
time adaption. Nevertheless, SPO strikes the right balance
by turning appropriate numbers of BSs active, manag-
ing to improve energy efficiency while guaranteeing target
coverage.
Figure 9 shows the comparisons in terms of user capac-

ity. The user capacity performance of all schemes fluctuate
with the active user density mainly because of the fluctu-
ations of the number of users per cell. Users will obtain
high capacity when the user density is low under any of
the schemes. The random sensing scheme cannot guar-
antee user capacity, when the active user density is high
because there are not enough active BSs to provide the
necessary capacity. On the other hand, SPO scheme turns
as many as possible BSs to sleep and still guarantees the
target user capacity. In addition, we can conclude from
Figures 8 and 9 that SPO emulates the desired behavior by
emphasizing the coverage probability when the active user
density is low and the user capacity when the active user
density is high.
Finally, we compare all schemes in terms of energy con-

sumption in Figure 10. Compared to the always sensing,
always active, and random sleep schemes, the energy con-
sumption of SPO is greatly reduced by 14.37%, 83.78%,
and 22.33%, respectively. The energy consumption of
SPO is similar to the energy consumption of random
sensing, but SPO guarantees better QoS. On the other
hand, the random sensing and random sleep schemes

Figure 9 User capacity comparisons.

Figure 10 Energy consumption comparisons.

cannot guarantee QoS, and also, their energy consump-
tion may increase further if the probabilities of sensing
and being active are not properly configured. In addi-
tion, only-macrocell scheme is the worst scheme because
although the energy consumption is low, the spectrum
utilization is also significantly low, and therefore, its cov-
erage and capacity performance is much worse than the
other schemes. In summary, SPO provides an efficient way
to decide the active/sleep states of BSs with minimized
energy consumption and guaranteed QoS of users as it
tracks user activity and makes use of self-organization. In
this way, the heterogeneous networks operate more flexi-
bly and do not turn on BSs blindly, especially when there
is no traffic demand, which consequently improves the
energy efficiency.

5 Conclusions
This paper proposed an active/sleep scheduling scheme
for K-tier heterogeneous networks, which senses and
adapts to user activity. Coverage probability, network
capacity, as well as energy consumption of the proposed
active/sleep scheduling were analyzed using stochastic
geometry, accounting for cell association uncertainties
due to random positioning of users and BSs, propaga-
tion channel, and network interference. A reinforcement
learning-based SPO approach was proposed to optimize
the user activity sensing probability of each small cell tier,
considering user activity fluctuations and user QoS. Sim-
ulation results showed that SPO achieves low energy con-
sumption with guaranteed network capacity and coverage
probability. Possible future work includes the exploita-
tion of more environmental awareness capabilities. And
it would be of interest to extend the proposed scheme to
the case, where small cells perform opportunistic usage of
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the frequency spectrums, for higher frequency spectrum
usage and energy efficiency.

Appendices
Appendix 1
Proof of Theorem 1
The received power of a typical user from the nearest BS
in the kth tier is Prk = PkR−α

k , where Pk is the transmit
power of BSs in the kth tier, α is the path loss exponent,
and Rk is the distance to the nearest BS in the kth tier.
Under the maximum received power-based cell associa-
tion scheme where a user is associated with a BS if the
received power from the BS is higher than any others, a
typical user is associated with the kth tier when Prk > Pri
for all i ∈ {1, 2, · · · ,K}, i �= k. Therefore,

pk = ERk

[
P

[
Prk (Rk) > max

i�=k
Pri (Ri)

]]

= ERk

⎡
⎣ K∏
i=1,i�=k

P [Prk (Rk) > Pri (Ri)]

⎤
⎦

= ERk

⎡
⎣ K∏
i=1,i�=k

P
[
Ri > (Pi/Pk)1/αRk

]⎤⎦
=
∫ ∞

0

K∏
i=1,i�=k

P
[
Ri > (Pi/Pk)1/αr

]
fRk (r) dr,

(25)

where

P
[
Ri > (Pi/Pk)1/αr

]
= P

[
No BS closer than (Pi/Pk)1/αr in the ith tier

]
= e−pai(ps)λiπ(Pi/Pk)2/αr2 ,

(26)

and the probability density function (PDF) of Rk is

fRk (r) = d (1 − P [Rk > r])
dr

= 2pak ( ps) λkπre−pak(ps)λkπr2 .

(27)

Plugging (26) and (27) into (25), we obtain

pk = 2πpak (ps) λk

∫ ∞

0
r exp

{
−π

K∑
i=1

pai (ps) λi(Pi/Pk)2/αr2
}
dr

= λkpak( ps)
K∑
i=1

pai(ps)λi(Pi/Pk)2/α
.

(28)

Appendix 2
Proof of Theorem 2
Considering that only a macrocell user can transmit data
andwill have no interference from the other small cell tiers
during the time ts, the SINR of a macrocell user during the

time ts is higher than the SINR during the time T − ts. So,
the coverage probability of a typical user depends on SINR
during the time T − ts.
The SINR of a typical user at a distance r from its serving

BS in the kth tier during the time T − ts is defined as

SINRk(r) = Pkhkr−α∑K
i=1
∑

j∈�i Pihijr
−α
ij + σ 2

, (29)

where hk and hij are the channel power gain due to small-
scale fading form the serving BS and the jth BS in the ith
tier, respectively, we assume that hk ∼ exp (1) and hij ∼
exp (1), and rij is the distance from the jth BS in the ith tier
excluding the serving BS.
For a target SINR τ , the coverage probability of a typical

user is

Pc =
K∑

k=1
pkEr [P [SINRk (r) > τ ]]

=
K∑

k=1
pk
∫ ∞

0
P [SINRk (r) > τ ] fsRk (r) dr.

(30)

The PDF of the distance from a user served in the kth
tier to the serving BS is

fsRk (r) =
d
(
1 − P

[
Rk > r, Prk (Rk) > max

i�=k
Pri (Ri)

])
pkdr

=
d
(
1 − ∫∞

r

K∏
i=1,i�=k

[
Ri > (Pi/Pk)1/αx

]
fRk (x) dx

)

pkdr

(a)=
d
(
1 − 2πpak (ps) λk

∫∞
r x exp

{
−π

K∑
i=1

pai (ps) λi(Pi/Pk)2/αx2
}
dx
)

pkdr

= 2πpak (ps) λkr
pk

exp
{

−π

K∑
i=1

pai (ps) λi(Pi/Pk)2/αr2
}
,

(31)

where (a) follows from (26) and (27). The user SINR in
(29) is rewritten as SINRk(r) = hk

P−1
k

rαQ , where Q =∑K
i=1 Ii + σ 2. Therefore,

P [SINRk (r) > τ ]

= P

[
hk > rαP−1

k τQ
]

=
∫ ∞

0
exp

{
−rαP−1

k τq
}
fQ (q) dq

= EQ
[
exp

{
−rαP−1

k τq
}]

= exp
{
− τσ 2

r−αPk

} K∏
i=1

LIi

(
rαP−1

k τ
)
,

(32)
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where the Laplace transform of Ii is

LIi

(
rαP−1

k τ
)

= EIi

[
exp

{
−rαP−1

k τ Ii
}]

= E�i

⎡
⎣exp

⎧⎨
⎩−rαPi P−1

k τ
∑
j∈�i

hijr−α
ij

⎫⎬
⎭
⎤
⎦

= exp
{
−2πpai (ps) λi

∫ ∞

zi

(
1 − Lhi

(
rαPjP−1

k τx−α
))

xdx
}

= exp

⎧⎪⎨
⎪⎩−2πpai ( ps) λi

∫ ∞

zi

x

1 +
(
rαPiP−1

k τ
)−1

xα

xdx

⎫⎪⎬
⎪⎭

= exp
{−πpai ( ps) λi(Pi/Pk)2/αρ (τ ,α) r2

}
,

(33)

where zi = (Pi/Pk)1/αx is the shortest distance to the BS
in the ith tier, and ρ (τ ,α) = τ 2/α

∫∞
τ−2/α

1
1+xα/2 dx.

Plugging (31), (32), and (33) into (30), we obtain

Pc =
K∑

k=1
2πpak( ps)λk

∫ ∞

0
r exp

{
− τ rασ 2/Pk

− π

K∑
i=1

r2pai( ps)λi(Pi/Pk)2/α (1 + ρ (τ ,α))

}
dr

=
K∑

k=1
2πpak( ps)λkP

2/α
k

∫ ∞

0
r exp

{
− τ rασ 2

− π

K∑
i=1

r2pai(ps)λiP2/αi (1 + ρ (τ ,α))

}
dr.

(34)

Appendix 3
Proof of Theorem 3
The rate of the typical user is

ck (r) =
{
ln (1 + SINRk (r)) , if SINRk (r) > τ

0, otherwise .

(35)

And the ergodic rate of the typical user associated with the
kth tier during the time T − ts is

Ck = 1
Nk

Er
[
ESINRk [ck(r)]

]
= 1

Nk

∫ ∞

0
ESINRk [ck(r)] fsRk (r) dr,

(36)

where the average number Nk of users per cell in the
kth tier is calculated as Nk = pkλu/pak(ps)λk . And
the throughput of the user is inversely proportional to
the number of users in the cell due to the round-robin
scheduling manner.

Since E [X] = ∫∞
0 P [X > x] dx for X > 0, we obtain

ESINRk [ck (r)]

=
∫ ∞

0
P [ck (r) > t] dt

=
∫ ln(1+τ)

0
P [SINRk (r) > τ ] dt

+
∫ ∞

ln(1+τ)

P [ln (1 + SINRk (r)) > t] dt

= ln (1 + τ)P [SINRk (r) > τ ]

+
∫ ∞

ln(1+τ)

P

[
hk > rαP−1

k τQ
(
et − 1

)]
dt

= ln (1 + τ)P [SINRk (r) > τ ]

+
∫ ∞

ln(1+τ)

exp
{
−
(
et − 1

)
σ 2

r−αPk

} K∏
i=1

LIi

(
rαP−1

k
(
et − 1

))
dt.

(37)

Plugging (31), (32), (33), and (37) into (36), we obtain the
ergodic throughput of a user associated with the kth tier
during the time T − ts in (9).
During the sensing time ts, the user associated with the

first tier will have no interference from the other tiers.
Therefore, the user SINR is SINR0(r) = hk

P−1
k

rαQ0
, where

Q0 = I1 + σ 2.
The ergodic throughput of the first tier user during the

time ts is

C0 = 1
N1

Er
[
ESINR0 [c0(r)]

]
= 1

N1

∫ ∞

0
ESINR0 [c0(r)] fsR1 (r) dr.

(38)

The ergodic rate at distance r is

ESINR0 [c0 (r)]
= ln (1 + τ)P [SINR0 (r) > τ ]

+
∫ ∞

ln(1+τ)

P

[
h1 > rαP−1

1 τQ0
(
et − 1

)]
dt

= ln (1 + τ)P [SINR0 (r) > τ ]

+
∫ ∞

ln(1+τ)

exp
{

−
(
et − 1

)
σ 2

r−αP1

}
LI1
(
rαP−1

1
(
et − 1

))
dt,

(39)

where

P [SINR0 (r) > τ ]

= P

[
h1 > rαP−1

1 τQ0
]

= exp
{
− τσ 2

r−αP1

}
LI1

(
rαP−1

1 τ
)
.

(40)
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Plugging (31), (33), (39), and (40) into (38), we obtain the
ergodic throughput of a user associated with the first tier
during the time ts in (8).
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