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Abstract

Bayesian networks have become popular for modeling probabilistic relationships between entities. As their structure
can also be given a causal interpretation about the studied system, they can be used to learn, for example, regulatory
relationships of genes or proteins in biological networks and pathways. Inference of the Bayesian network structure is
complicated by the size of the model structure space, necessitating the use of optimization methods or sampling
techniques, such Markov Chain Monte Carlo (MCMC) methods. However, convergence of MCMC chains is in many
cases slow and can become even a harder issue as the dataset size grows. We show here how to improve
convergence in the Bayesian network structure space by using an adjustable proposal distribution with the possibility
to propose a wide range of steps in the structure space, and demonstrate improved network structure inference by
analyzing phosphoprotein data from the human primary T cell signaling network.
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Introduction
Probabilistic graphical models are a class of models often
used in various application fields. Their popularity is
partly due to their appealing visual representation of the
model structure that in many cases is also capturing the
real structure of the underlying system. Bayesian net-
works (BNs) are probabilistic graphical models that have
received broad attention in biological sciences, e.g., in
gene regulatory and signaling network modeling [1–5].
BNs are also utilized, for example, in medical diagnos-
tics [6], speech recognition [7], reliability and risk analysis
[8], and numerous other probabilistic decision making
applications [9]. BNs are able to incorporate prior infor-
mation as well as model the dependency structure of a
multivariate joint probability distribution. This structure
is often likened to the real network structure by inter-
preting the model as causal [10]. Correspondingly, in
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many applications, a key question is the inference of the
underlying network structure from experimental data.
Factors complicating BN structure learning include

superexponentially growing structure-space size as the
number of nodes increases. This prohibits exhaustive
evaluation for most practical applications and instead
forces to utilize heuristic search techniques, such as hill
climbing, which can suffer from finding mostly only local
maxima, or more preferably sophisticated sampling meth-
ods, like Markov Chain Monte Carlo (MCMC) methods.
MCMC methods present their own problems, among

which a major one is the speed of convergence. Con-
vergence is influenced by the sheer size of the space of
possible structures and the shape of the posterior land-
scape, which can contain local maxima that are hard for
the chain to escape. Size of the search space can be lim-
ited, e.g., by enforcing criteria like maximum in-degree,
but slow convergence and local minima can still remain a
bottleneck for MCMC.
To improve MCMC structure inference methods, var-

ious types of efficient methods have been proposed. For
example, [11] proposed devising proposal distributions
with an edge reversal technique. Notably, one can also
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cast structure learning into a problem of learning “super-
structures” (sets of structures), like trying to identify the
order of nodes [12], and improvements upon it [13, 14].
Other notable improvements in BN structure learning
also include the work in [15], where dynamic program-
ming is utilized to calculate the posterior probabilities of
all BNs in exponential time, and variations of this [16].
Although the dynamic programming approach can iden-
tify the optimal network structure exactly, it is applicable
only to networks with limited number of variables. In
addition, the methods based on dynamic programming
or node orders make it more challenging to use arbitrary
informative structural prior distributions.
The Bayesian network structure is restricted to directed

acyclic graph (DAG). MCMC in the space of DAGs
is more challenging than in continuous space because,
e.g., the exceedingly large discrete search space and the
acyclicity constraint, which make the search-space explo-
ration computationally demanding and all but the sim-
plest proposal distributions more difficult to define. Also,
due to the latter reason, adaptive MCMC methods have
been difficult to implement in DAG space.
The MCMC strategy presented here uses an adjustable

proposal distribution and improves convergence of the
MCMC chains practically without increasing the com-
putational costs. Indeed, the proposed method often
decreases computational load by enabling the chains to
escape peaks of local maxima much more efficiently.

Background
Bayesian networks
A Bayesian network (BN) [17] is a (semi-graphical) rep-
resentation of a joint probability distribution, describing
also the dependencies between variables (dependency
structure). Formally, given a set of random variables X =
{X1, ...,Xn}, a Bayesian network is defined as a pair (G, θ),
where G is a directed acyclic graph (DAG) whose n nodes
represent the variables in X and edges give a graphical
representation of the conditional independencies between
these variables so that each node Xi is conditionally inde-
pendent of its nondescendants given its parents in G.
Parameter set θ defines the conditional probability distri-
butions of these variables. G gives the factorization of the
joint distribution over X as

P (X1, ...,Xn|G, θ) =
n∏

i=1
P (Xi|PaG(Xi), θi), (1)

where PaG(Xi) is the set of parents of node Xi in G, and
θi denotes the parameters for the distribution of Xi con-
ditional on its parents. Thus, BNs can be used to model
probability distributions that respect the directed factor-
ization property, i.e., the distribution factorizes according
to the DAG.

In searching for the structure that most probably gener-
ated the data, of main interest is the posterior probability
of a DAG G given the data D

P (G|D) = P (D|G)P(G)

P(D)
, (2)

where P(G) is the prior probability of G, P(D) =∑
G′∈Gn P

(
D|G′)P(G′) is the probability of data, Gn is the

set of all possible DAG structures with n nodes, and

P (D|G) =
∫

θ

P (D|G, θ)P (θ |G) dθ (3)

is the marginal likelihood.
For certain choices of probability distributions and

parameter priors, it is possible to arrive at a closed form
solution for the marginal likelihood. The two main cases
are multinomial distributions with (independent) Dirich-
let priors [18, 19] and Gaussian distributions with normal-
Wishart priors [20] (called BDe and BGe models in [19],
respectively). Here, we will focus on discrete-valued data
and BNs having multinomial conditional probability dis-
tributions although the proposed structure MCMC is
applicable for any distribution.

Structure MCMC for Bayesian networks
Ideally, we would like to have the whole posterior distribu-
tion of DAGs and calculate our further analyses based on
that. But since the number of different DAGs grows super-
exponentially with n, evaluating any score for all possible
structures is prohibitive for all but the smallest of n (n ≤ 6
or so). Thus, one is forced to sample the posterior dis-
tribution with a method like MCMC, as is done in this
study. Also, it is often not justified to take just a sin-
gle DAG from the posterior due to, for example, a small
dataset making the posterior spread, or multimodality of
the posterior. Instead, to better represent the posterior, it
is sensible to take a set of network structures which have a
high posterior probability.
In the following, we shortly review the basic MCMC

for BN structure learning as well as some convergence
diagnostics.

StructureMCMC
In order to sample from the posterior distribution of
structures, aMarkov chain is set up so that its target distri-
bution is P(G|D) [21]. This is done using the Metropolis-
Hastings algorithm which consists of proposing a move
from structure G to G′ with probability Q(G′|G) and
accepting the move with probability

min
{
1,

P(D|G′)P(G′)Q(G|G′)
P(D|G)P(G)Q(G′|G)

}
. (4)

This action is called a Metropolis-Hastings (MH)
step/move. The probability distribution Q() is called pro-
posal distribution (or sometimes jumping distribution),
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and the ratio Q(G|G′)
Q(G′|G)

is called the Hastings ratio. The pro-
posal distribution in BN structure learning is most often
defined as

Q(G′|G) =
{

1
|NQ(G)| , if G

′ ∈ NQ(G)

0, if G′ /∈ NQ(G)
(5)

where NQ(G) is the neighborhood of G reachable by
Q(·|G), being most often the set of DAGs that are the
result of a single edge modification (addition, deletion,
reversal) to G, and |NQ(G)| is the cardinality of this set.
While in some applications the proposal distribution

can be symmetric (i.e., Q(G|G′) = Q(G′|G)) and thus
the Hastings ratio unity (in which case the Metropolis-
Hastings algorithm is called simplyMetropolis algorithm),
in the context of Bayesian network structures and (5), it
is generally not, which is due to the acyclicity require-
ments and thus varying neighborhood sizes. This fact
complicates the process of making new proposal distribu-
tions and is one of the main reasons for generally using
only simple (one-step) proposal distributions, although
approximating the Hastings ratio to be unity can also be
considered.

Convergence
After running the chain long enough (burn-in phase),
it should have attained its stationary distribution which
corresponds to P(G|D). Then, by taking a large enough
sample from the chain, we get a good estimate for this
true posterior distribution. The problem is in knowing
whether a chain has converged to the true stationary dis-
tribution or not. Several convergence assessmentmethods
have been proposed for MCMC in continuous space [22]
but not many suitable for BN structure learning.
One frequently used indicator for convergence is the

similarity of edge posterior probabilities calculated from
two or more independent chains. Posterior probability of
a feature f (e.g., an edge) can be calculated for a sample
from an MCMC chain as [1]

P
(
f |D) =

∑
G∈Gn

P(G|D)If (G) ≈ 1
|GS|

∑
G∈GS

If (G), (6)

where If is an indicator function, i.e., If (G) = 1 if graph
G contains the wanted feature and If (G) = 0 otherwise;
GS is the set of sampled graphs; and |GS| is the number of
sampled graphs. Noticeable deviations of edge posterior
probabilities between independent chains then indicate
that the chains have not converged to the same stationary
distribution.
In addition to the above convergence diagnostic, in this

study, we use score plots (or trace plots), which are sim-
ply the score (or the likelihood in (3) when given uniform
priors like here) plotted for each of the sampled DAGs.
Similar distribution of scores from independent chains

suggests convergence. Investigating score plots can usu-
ally show easily which chains are stuck on areas with lower
scores than some other chains.
These are only necessary (not sufficient) conditions for

convergence, and in fact, there is generally no way to
assure that a chain is converged to the target distribution
and that a finite sample from it is sufficiently representa-
tive of the true target distribution [22].

Proposal distribution
In the case of the standard MCMC, the only tunable
parameter of the sampling process, besides burn-in and
sample sizes, is the proposal distribution. Needed sample
sizes are dependent on the dataset size, data properties
(i.e., whether the model search space with this dataset is
multimodal or not), and also properties of the proposal
distribution.
To give some rationale for tweaking the proposal distri-

bution, consider the following: A correctly set-up MCMC
chain is guaranteed to converge to the target distribution,
given that the burn-in phase is long enough. As the DAG
structure space grows (super)exponentially with respect
to the number of nodes in a network, the required run
times for MCMC chains grow also. This is at least partly
due to the fact that as the size of the search space grows,
it is also more possible for the chain to get stuck on local
maxima for a long time. Some help for this can be found
by finding alternative proposal distributions for the MH
moves.
There is also the risk of false estimation if the con-

vergence is very slow, as a chain may spend too much
time in a locally high-scoring region. More specifically, if
a region or area of the search space (or structure/DAG
space) consists of a set of neighboring DAGs with rela-
tively equal scores, and this set is being surrounded by a
set of considerably lower scoring DAGs, then the proba-
bility of escaping such region can be very low, and if the
target distribution is estimated from such chain, it can be
badly skewed (see, e.g., [23]) and even pass a chosen con-
vergence criterion. Ideally, a proposal distribution should
be one that is capable of moving both within and between
areas of high scoring structures, allowing the sample to
include DAGs from several of them, while not getting
stuck on such areas for too long.
The usual choice of proposal distribution in the con-

text of learning Bayesian network structures is to consider
single edge changes to the DAG: addition, deletion, or
reversal of an edge. Such a proposal distribution is called
single-step or one-step in this paper. This reflects the
ability to make one step to the neighborhood of a DAG,
defined as the set of DAGs for which there is a probability
greater than zero of being proposed by the proposal dis-
tribution in use, i.e., the neighborhood of G is defined as{
G′|Q(G′|G) > 0

}
.
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Aside from classical single-edge proposal distributions,
other proposal distributions have also been presented.
These include inclusion order [24], optimal reinsertion
operator [25], and edge reversal moves [11]. Searching in
the space of equivalence classes has also been suggested
[26]. Also [27] discusses larger than one-step neighbor-
hoods in the context of Gibbs sampling.
When constructing the proposal distribution, the

acyclicity of the proposed structures must be taken into
account, for which an efficient algorithm has been pro-
posed [28]. However, the main difficulty in constructing
neighborhoods larger than single edge is that their size
grows superexponentially and the acyclicity checks start
to get computationally very demanding due to the need
to calculate the Hastings ratio in (4), for which the sizes
of the neighborhoods are needed (in case of the usual
uniform proposal distribution). The sizes of these neigh-
borhoods (and thus also the time required for acyclicity
checks) grow exponentially with the step length.
Below, we show that in many cases the neighborhood

sizes need not be evaluated, thus bypassing this problem
of growing neighborhood sizes.

DAG space
Taking a fixed number of nodes inX , the space of possible
model structures (here DAGs) can be described with an
undirected graph where each node stands for one struc-
ture and edges between them denote possible transitions
between these. The most elementary transitions consist
of single-edge modifications (addition, deletion, reversal)
to the structure that do not introduce cycles. The edges
are undirected since for each transition consisting of a
single-edge modification, there is a reverse transition with
the reverse edge modification (i.e., addition ↔ deletion or
reversal ↔ reversal), and thus, if there exists a transition
from Gi to Gj, then there necessarily is also a transition
from Gj to Gi.
A transition of length t between two structures Gi

and Gk is a walk of length t between their respec-
tive nodes in the model structure space, i.e., r =
(Gi,Gr1 ,Gr2 , ...,Grt−1 ,Gk). Note that this is not necessar-
ily a simple path, i.e., the same vertices can appear more
than once in the walk. Also note that due to the undirect-
edness of the graph, each transition can be traversed in
both directions, and therefore, for each r, there is a reverse
transition r′, for example, r′ = (Gk ,Grt−1 ,Grt−2 , ...,Gr1 ,Gi)
in the above case.

Multi-step proposal distributions
Let Qt(k|i, r) be a proposal distribution from structure
i to k that can be decomposed into t (here t > 1)
independent (sub)distributions Qj, j = 1, . . . , t, and
r = (r1, r2, . . . , rt−1) is a tuple of intermediate struc-
tures so that the whole move is i → r1 → · · · →

rt−1 → k. Note that we use here only the indices of
structures (e.g., i to denote Gi) to keep the notation
more readable. The probability of proposing the move is
then

Qt (k|i, r) = Q1 (r1|i)Q2 (r2|r1) · · ·Qt (k|rt−1) (7)

= Q1 (r1|i)Qt (k|rt−1)
t−1∏
j=2

Qj
(
rj|rj−1

)
,

where each subdistribution Qj
(
rj|rj−1

)
can be any func-

tion giving a probability for the move rj−1 → rj.
When using the proposal distribution Qt (k|i, r), the

move from i to k is in general possible using several dif-
ferent r. For example, if k is otherwise the same structure
as i but with two edges a and b added, it is possible to
add first either a or b and after that the other. We note
the set containing all such possible routes as RQt

i→k . The
probability that Qt (·|i) proposes a move from i to k is
then

Qt (k|i) =
∑

r∈RQti→k

Qt (k|i, r) . (8)

Extending standard single-step proposal distribution
We consider extending the usual proposal distribution
consisting of one single-edge modification to a multi-step
proposal distribution, capable of proposing transitions of
length t so that it consist of t sequential single-edge mod-
ifications, each drawn from a uniform distribution of the
corresponding neighborhood. In this case, each of the
subdistributions is defined as Q (ri+1|ri) = 1

q(ri) , where ri
and ri+1 are DAGs differing by a single-edge modification
and q(·) is a function giving the number of neighbor-
ing structures for a DAG. The neighborhood size can be
calculated by evaluating the number of all possible single-
edge modifications to the current DAG yielding an acyclic
graph.
Now the probability of proposing a transition of length

t from Gi to Gk is

Qt (k|i) =
∑

r∈RQti→k

1
q(i)

t−1∏
j=1

1
q(rj)

(9)

= 1
q(i)

∑
r∈Rti→k

t−1∏
j=1

1
q(rj)

,

and the probability of proposing a transition back fromGk
to Gi is similarly
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Qt (i|k) = 1
q(k)

∑
r′∈Rtk→i

t−1∏
j=1

1
q(r′j)

(10)

= 1
q(k)

∑
r∈Rti→k

t−1∏
j=1

1
q(rt−j)

= 1
q(k)

∑
r∈Rti→k

t−1∏
m=1

1
q(rm)

,

where the second equality is due to the equality r′ =(
r′1, r′2, . . . , r′t−1

) = (rt−1, rt−2, . . . , r1) resulting from cor-
respondence between RQt

k→i and RQt

i→k .
Thus, the Hastings ratio becomes

Qt (i|k)
Qt (k|i) = q(i)

q(k)
. (11)

To guarantee that the Markov chain constructed with
this proposal distribution has an equilibrium distribution
(which is P(G|D)), we need to show that the chain is
ergodic (i.e., irreducible and aperiodic). To prove the irre-
ducibility of the chain, we first assume that P(D|G) > 0
for all DAGs (as is the case when the hyperparameters are
all positive and non-zero) and then show that each state
is accessible from each other with transitions of arbitrary
length. To see this, consider moving from a DAG G with e
edges to a DAG G′ with e′ edges using t-transitions. This
can be done with the following steps:

1. First, dt = ⌊ e
t
⌋
t-transitions are used to remove

edges, where �·	 is the floor function. The resulting
graph has e− tdt edges. Note that an edge can always
be removed from an acyclic graph and the result is
also acyclic.

2. Consider one more t-transition. Its first
e − tdt − 1 = d1 steps are used to remove edges. The
result is a graph with only one edge.

3. The next t − d1 − 1 steps of the t-transition are used
to reverse the one remaining edge. The acyclicity is
guaranteed for every graph with more than one node.

4. The last remaining step removes the only edge in the
graph. The result is an empty graph.

5. Now note that if G′ is a valid acyclic graph, it can be
formed by adding its e′ edges to an empty graph in
any order and all the intermediate graphs will all be
acyclic as well. For adding e′ edges, a =

⌊
e′
t

⌋
whole

t-transitions and e′ − at steps from one further
t-transition are needed. To get rid of the extra
t − (e′ − at) = E steps in this partially needed
transition, add any single edge of G′ in the same
direction as it appears in G′ if E is even, or in the
opposite direction if E is odd.

6. Make E − 1 reversal operations on the only edge, the
result being a graph with one edge in the opposite
direction as in G′.

7. Reverse the only edge and follow with t − E − 1
additions of the edges in G′. After this, the first
t-transition is used.

8. Add the rest of the edges of G′ with a t-transitions.

Aperiodicity of the chain can be proven with the same
kind of proof as above. First, start by taking an integer s
large enough so that the above kind of transition from G
back to G via an empty graph can be made with s transi-
tions of length t. The same kind of transition from G to G
can also be made with s + 1 transitions, since in addition
to the exact same moves as in the first one with s transi-
tions, it is possible to use the tmoves of the one remaining
transition in the empty graph by adding an edge, reversing
it t − 2 times and then deleting it. The period of the state
is defined as gcd

{
r : P(r)

t (Gi|Gi) > 0
}
, where P(r)

t
(
Gi|Gj

)
denotes the probability of going from model Gj to Gi with
r steps of length t and gcd is a function returning the great-
est common divisor. Because both s and s + 1 belong to
the set given as argument to function gcd, the result is
necessarily 1.
Note that due to the construction of the multi-step pro-

posal distribution, a single DAG may be accessible via
more than onewalk, and thus, the probability of proposing
it is also larger. It is also possible that a proposed transi-
tion of many steps actually leads to the starting structure
or, e.g., just to a one-step neighbor in the structure space.
Although these can be seen as inefficiency of the proposal
distribution, the formation of such inefficient transitions
is improbable as the number of structural neighbors can
be quite large (simulation results not shown).

Choosing the proposal distribution
The proposal can be easily modified for different datasets
by tuning the transition lengths and the probabilities with
which they are proposed. This tuning can be done adap-
tively, similarly as in several other areas where MCMC is
used (e.g., [29]). Alternatively, the adaptive phase can be
restricted to the burn-in phase to make sure the actual
sampling is taken from the correct distribution.
A good method is to use mixtures of transitions with

different lengths, i.e., to propose at each iteration a tran-
sition of length t with probability pt . We denote proposal
distributions constructed in such a way with a vector[
p1, p2, . . . , pmax

]
. Note that the results derived in the

previous section (Eqs. (10) and (11)) apply also here.
A loose upper bound for the highest usable jump size is

2× (the maximal number of edges in a DAG) since with
such a move, every structure can be reached from every
other in one jump. This can be seen by considering that
for a DAG with maximal number of edges, we can remove
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all of the edges and construct a new DAG by adding
edges to the achieved empty graph. However, such jumps
would not be sensible in practice as they are just randomly
sampling the structure space and thus resulting in a very
inefficient MCMC. Thus, in practical setting, the highest
jump sizes should be limited to be much smaller than this
loose upper bound.
On the other hand, the use of shorter jumps is sensible

because with them, it is more efficient to explore the close-
by DAGs which are likely to give a more representative
sample of the current (local) maximum or drive the chain
towards a near high-scoring DAG. Short jumps are also
motivated by the fact that it is efficient to calculate the
Bayes factor in the acceptance ratio if there are only a few
changes to the structure due to canceling out of all the
non-modified edges in the likelihood ratio.
We also note that some of the proposal distribution

modifications presented earlier, e.g., edge reversal [11],
optimal reinsertion operator [25], and inclusion order
[24], can be seen as transitions capable of steps longer than
one.
The computational cost of using a proposal distribution

comprising a mixture of transitions of different lengths is
close to using a proposal distribution with only one-step
transitions. If we denote by T(M) the time complexity of
making one move in the structure space and by T(A) the
complexity of calculating the acceptance probability, then
for a mixture proposal distribution, the time complexity
is T(A) + ∑t

i=1 pi · i · T(M), where pi is the probability

of proposing a transition of length i as above. We can see
that for rather small t, which are also the most usable for
MCMC, the sum is close to T(M).

Application to signaling network inference
To study the performance of the multi-step proposal dis-
tribution, we used the dataset from [5] which contains
flow cytometry measurements of 11 proteins in a sig-
naling network. The structure of this network is mostly
known, but we aim at reconstructing it from the measure-
ments only. The total number of utilized data points is
5400, containing both unstimulated (observational) cases
and perturbations where some nodes have been either
activated or inhibited. The data was preprocessed and
discretized in the same way as in [5].
We find that when trying to learn the structure of the

signaling network as a BN in the normal setting using a
proposal distribution with only one-edge modifications,
the MCMC chains usually get stuck in local minima. This
can be seen in Fig. 1 where edge posterior probabilities
(6) from five different, independent chains are compared.
The scatter plots show that the chains got stuck in differ-
ent local maxima since if the samples were taken from the
same area in the posterior, the estimated edge posterior
probabilities should be similar, and thus, the points would
lie close to the diagonal in the figure. Each of these chains
was initiated with different random DAGs, and they were
run for 900,000 steps (burn-in) and a sample of 100,000
DAGs was taken.

Fig. 1 Edge posterior probabilities calculated from five different MCMC chains. The probabilities are compared to each other when the proposal
distribution is the usual one-step version. Numbers in the upper-left and lower-right corners indicate the amount of overlapping dots, and in the titles,
“i vs. j” denotes that edge posterior probabilities calculated from chain i are on the x-axis and those from chain j are on the y-axis. For visualization, a
small amount of noise is added to the dots to better separate them from each other. The total number of dots (i.e., possible edges) is N2 = 112 = 121
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Fig. 2 Scores calculated for the last 50,000 sampled graphs. The same five independent MCMC chains as in Fig. 1 were used. The proposal
distribution was the standard one-step version

Convergence can also be investigated by plotting the
scores of sampled DAGs from each chain, which is shown
in Fig. 2 for the same five chains as above. The chains
clearly do not reach the same area of search space but
are all trapped in different local maxima, despite the long
burn-in and sample periods.

When looking at the behavior of the example chains,
it is noted that during the whole sample, the chains may
practically remain in only one or two DAGs. This is illus-
trated in Fig. 3, where different DAGs visited by four
of the example chains are shown. To see why this hap-
pens, Fig. 4 shows the situation for one of the chains. The

Fig. 3 Trajectories of four MCMC chains in the sample phase. For each chain, the integers in the y-axis represent unique DAGs (which are in general
not the same between chains despite being represented by the same integers). The last 50,000 sampled DAGs are shown
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Fig. 4 Local maximum of a chain. An illustration of a local maximum for one of the five chains in Figs. 1, 2, and 3 during its sample phase. The nodes
A to H represent different DAGs. Edges denote the possible transitions of length 1 between the DAGs, with the numbers indicating the acceptance
probabilities (i.e., the probability of accepting the move if it was proposed). Possible transitions of length 2 are shown with dotted edges. One of the
local maxima in the case of the one-step proposal consists of DAGs C and D, between which the chain oscillates, since transitions elsewhere are very
improbable. Only edges representing transitions with acceptance probability higher than 0.0001 are shown to make the picture more readable

chain is trapped in an area of local minimum where it just
bounces between two different DAGs with relatively high
acceptance probabilities. Transitions to all the rest of the
neighboring DAGs are accepted with probabilities smaller
than p = 0.0001, meaning a rather improbable exit from
this peak.
Results similar to the ones presented above occur fre-

quently in trying to learn the BN structure. In fact, finding
chains converged to the same area in DAG space seems to
be a special case with this data.
Next we tested with a proposal distribution that pro-

poses both steps of lengths 1 and 2 with equal probabil-
ities, i.e., [p1 = 0.5, p2 = 0.5]. Figure 5 shows the score
plots again for five chains with this proposal distribution.
One chain (number 5) seems to be stuck at a more lower
scoring area than the four others, although its score is very
close to the top ones.
Excluding chain 5, the scatter plots in Fig. 6 confirm that

the four remaining chains have converged to the same area
and represent the same posterior distribution.
Allowing transitions of length 2 makes it possible for

the chains to escape local maxima easier. As an exam-
ple of this, consider the same local maximum area as

shown in Fig. 4. When the chain is allowed to make
transitions of length 2 (indicated by the dotted edges),
a way out of the local maximum is introduced. Thus, it
can be seen that in this case, the practically inaccessi-
ble DAGs (as can be seen from transition probabilities
of C→F and D→H) can be jumped over with transi-
tions of length 2. Note that these longer proposal moves
make available not only high-scoring network structures
E and G but also their neighbors (see outgoing edges from
nodes E and G). Depending on the situation, convergence
might be further accelerated by using even longer possible
transitions.
To further test how different proportions of one and

two steps affect convergence and sampling character-
istics, we selected six different proposal distributions
having varying proportions of one and two steps([
p1 = p, p2 = 1 − p

]
for p = 0, 0.2, 0.4, 0.6, 0.8, 1

)
. For

each of these, 100 chains with random start points were
ran each for 1,000,000 steps followed by taking a sample
of 100,000 DAGs. For each proposal distribution, the
samples were then combined, yielding samples of size
10,000,000, to obtain a view of how the posterior was
sampled, as seen in Fig. 7.
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Fig. 5 DAG scores when the used proposal distribution was [ p1 = 0.5, p2 = 0.5]. Scores were calculated for samples of 50,000 DAGs from the ends
of five independent MCMC chains

Fig. 6 Edge posterior probabilities when the proposal distribution proposes two steps with probability 0.5 and normal one step with probability 0.5.
Edge posterior probabilities were calculated from four different MCMC chains (chains 1 to 4 in Fig. 5) and compared to each other
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Again, the difference in convergence is evident between
proposals having two steps and the one without them.
The one-step proposal chains sample largely areas of
lower scoring DAGs and are mostly unable to find

the highest scoring DAGs. Importantly, we observe that
there is no single DAG standing out as the best scoring
structure; instead, there are tens of DAGswith about equal
scores.
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Table 1 Mean and standard deviation of numbers of DAGs
visited during sampling periods of the same chains as in Fig. 7

Proposal distribution Mean DAGs (std)

p1 = 1.0, p2 = 0.0 4.41 (3.3698)

p1 = 0.8, p2 = 0.2 8.3 (2.8373)

p1 = 0.6, p2 = 0.4 8.01 (2.4058)

p1 = 0.4, p2 = 0.6 7.24 (3.0021)

p1 = 0.2, p2 = 0.8 6.31 (3.212)

p1 = 0.0, p2 = 1.0 2.66 (2.4994)

Figure 7 demonstrates that the probability of reaching
these highest scoring DAGs is remarkably higher when
using more versatile proposal distributions than when
relying only on the standard one-step version. This is seen,
for example, in the lack of DAGs with an order num-
ber greater than 500 in one-step proposal runs, as well as
in that the posterior probabilities for the highest scoring
DAG are about 400 times larger for the tests where also
two steps are used in the proposal distributions.
To characterize the sampling of DAG space with dif-

ferent proposal distributions, we used the same runs as
in Fig. 7 and calculated the numbers of DAGs visited
during the sampling period of each chain and took the
mean of those numbers over the six different proposal
distributions (Table 1). Looking at the numbers reveals

that longer steps allow more efficient sampling in terms
of sampled DAGs, as they are able to propose transitions
to a much larger neighborhood and step over low-scoring
DAGs. Notable is also the low number of visited DAGs
in the proposal using only two steps, which results from
the proposal being unable to propose many DAGs just one
modification away, which may contain DAGs having com-
parable scores or belonging to the same equivalence class.
Thus, while steps of length 2 increase probability of con-
vergence as shown above, including also steps of length
1 gives a more “versatile” sample in terms of numbers of
sampled DAGs.
Figure 8 shows the maximum a posteriori (MAP) DAG

obtained from the combined samples of chains where the
proposal distribution was

[
p1 = 0.8, p2 = 0.2

]
. Compared

to the one shown in [5], this graph scores considerably
better (−3.4367 · 104 vs. −3.1682 · 104) and so does the
average graph (with edges present if posterior of edge
> 0.85, score −3.2460 · 104). Most of the edges in the
MAP DAG are the same as in [5], but there are a cou-
ple of differences. Perhaps the most notable difference is
the number of edges between the nodes of the triad Plcγ ,
PIP3, and PIP2. This triad is separated from the rest of
the network in the result of [5] even though it is known
to have connections. Our network captures some of these,
though it highlights the need for further interventional

Fig. 8MAP DAG from the combined sample in Fig. 7 when the used proposal distribution was [ p1 = 0.8, p2 = 0.2]
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Fig. 9 Scores of MAP DAGs for different dataset sizes. Scores were calculated with the normal one-step proposal distribution (i.e., [ p1 = 1.0,
p2 = 0.0], marked p = 1.0/0.0) and a proposal distribution with also steps of length 2 ([ p1 = 0.8, p2 = 0.2], marked p = 0.8/0.2). For each chain,
the burn-in was 1,000,000 and the sample size was 50,000. The scores were calculated 10 times, using different sampled datasets

measurements to be made to this triad in order to learn
the correct causal relationships.

Effect of dataset size
A growing dataset size should help identify the true
underlying DAG, but it can also render the posterior more
peaky, making it harder for the MCMC chains to tra-
verse it. To see how the performance varies with varying
dataset size, we sampled different numbers of data points
from the whole dataset and compared the MAP results of
two different proposal distributions (see Fig. 9). As can be
seen, with smaller datasets, the one-step proposal works
fine, but for any of the larger ones, the chains get stuck in
lower score areas of the posterior landscape, while when

allowing longer (here two steps) jumps, the chains are able
to escape these.

Comparison using simulated datasets
To test the effect of using steps larger than one in the
case of simulated datasets, we utilized the well-known
Alarm network [30]. We compared the performance of
MCMC using two different proposal distributions, one
with

[
p1 = 1.0

]
and another with

[
p1 = 0.8, p2 = 0.2

]
,

using the Alarm network to generate datasets contain-
ing 500 measurements of which 30 % were interventions.
For both proposal distributions, we ran four indepen-
dent MCMC chains using random initial DAGs, burn-in
of 500,000 and sample of 1,000,000 out of which every

Fig. 10 Edge posterior probabilities for simulated data from the Alarm network. Edge posterior probabilities for the best pairs of chains among four
different MCMC chains, when using two different proposal distributions
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1000th DAG was taken. A maximum fan-in of 5 was used
in all the simulations. For both proposal distributions, we
identified the pairs of chains that showed the best conver-
gence by choosing the chain pair with the lowest sum of
squared differences between their edge posterior proba-
bility estimates, and the scatter plots are shown for these
in Fig. 10. Theminimum sums of squared differences were
21.936 for

[
p1 = 1.0

]
and 0.0102 for

[
p1 = 0.8, p2 = 0.2

]
.

In many practical settings, the modeled systems con-
tain loops and hidden variables and the structure of such
a system is not thus perfectly modeled as an acyclic graph.
To mimic this situation with simulated data, we took an
approach where we generated data from two different ran-
dom BNs, then combined them to one dataset and tried to
learn the structure from the combined dataset. We used
networks with 10 nodes, generated 3000 data points from
both randomBNs (totaling 6000 data points), and then ran
for both

[
p1 = 1.0

]
and

[
p1 = 0.8, p2 = 0.2

]
three MCMC

chains each with different initial DAGs. For both of these
proposal distributions, we calculated as a measure for
convergence the sums of squared differences in estimated
edge posterior probabilities between each possible pair in
the set of these three chains. This was done six times,
and the average was calculated over the sums of squared
differences, yielding 0.352 for

[
p1 = 1.0

]
and 0.223 for[

p1 = 0.8, p2 = 0.2
]
. The differences are not big, but there

seem to be benefits in using proposal distributions with
larger than one step also in this scenario.

Conclusions
For many types of data, the posterior probability over
models can be highly multimodal, and thus, there is no
single model or equivalence class standing out. This is at
least partly due to the fact that the data was generated
by a system not perfectly representable as a Bayesian net-
work, although the effect is also to some extent present in
simulated datasets. Regardless of the sought-after poste-
rior being over models or features, it is important in such
cases that the sample from the posterior covers the greater
part of these high-scoring structures in order for the sam-
ple to be representative enough. One possiblemethod is to
start several MCMC chains with different start points and
combine the samples from these, as otherwise the needed
sampling from one chain might be excessively large. In
this case, it is still advisable to use an efficient proposal
distribution to prevent the chains from being stuck in low-
scoring local maxima and producing a less representative
sample.
The advantage of using the presented multi-step pro-

posal distribution over the other constructs, such as the
inclusion boundary methods or others, is its simplicity
and low demand for computation. The proposal distribu-
tion is not guaranteed to outperform all existing proposal
distribution variants in every scenario, but it is general and

flexible in the sense that it can be easily tuned, by varying
transition lengths and varying mixes of different transi-
tion lengths, unlike other constructs. Therefore, it allows
an easy implementation of adaptable MCMC for Bayesian
network structure learning, where the proposal is tuned
during the burn-in period, or provides a framework for
the development of full adaptive samplers. Importantly,
unlike other recently proposed structure inference meth-
ods which make use of e.g. node ordering or dynamic
programming, the multi-step proposal distribution pro-
posed here allows a straightforward use of informa-
tive priors of structures typically present in biological
applications.
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