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Abstract

Automatic speech and music activity detection (SMAD) is an enabling task that can help segment, index, and
pre-process audio content in radio broadcast and TV programs. However, due to copyright concerns and the cost of
manual annotation, the limited availability of diverse and sizeable datasets hinders the progress of state-of-the-art
(SOTA) data-driven approaches. We address this challenge by presenting a large-scale dataset containing Mel
spectrogram, VGGish, and MFCCs features extracted from around 1600 h of professionally produced audio tracks and
their corresponding noisy labels indicating the approximate location of speech and music segments. The labels are
several sources such as subtitles and cuesheet. A test set curated by human annotators is also included as a subset for
evaluation. To validate the generalizability of the proposed dataset, we conduct several experiments comparing
various model architectures and their variants under different conditions. The results suggest that our proposed
dataset is able to serve as a reliable training resource and leads to SOTA performances on various public datasets. To
the best of our knowledge, this dataset is the first large-scale, open-sourced dataset that contains features extracted
from professionally produced audio tracks and their corresponding frame-level speech and music annotations.
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1 Introduction

Speech and music activity detection (SMAD) has been a
long-studied problem for researchers in music informa-
tion retrieval due to its wide range of applications. SMAD
aims to identify the temporal locations of speech, music,
and their corresponding activity levels within a poly-
phonic mixture of audio signals. A reliable SMAD system
can be used to extract relevant parts of audio signals in
preparation for other speech or music focused tasks such
as spoken language identification [1, 2], speech recogni-
tion [3] and detection [4], speaker diarization, and singer
identification [5]. For radio broadcasters and television
services, by providing timing metadata about music and
speech portion of the broadcasted content, SMAD can
also help with a variety of tasks, such as data procurement
for royalty payments and dialog loudness measurement.
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Although the application of deep learning methods
has improved SMAD systems in recent years, this data-
driven approach requires large amounts of audio data with
the corresponding speech and music activity labels. The
collection of such datasets, however, has faced multiple
challenges. First, labeling the data is costly and labor-
intensive. Meléndez-Catalén et al. [6] report that annotat-
ing the 27.4h of Open Broadcast Media Audio from TV
(OpenBMAT) dataset took three annotators 130h each
for the music labels. Other radio broadcast datasets were
created by hired annotators with the associated cost [7, 8].
Second, the audio content often cannot be easily shared
due to the copyright limitations. Although existing radio
broadcast data have been successfully used to train SMAD
systems [7-9], the restricted access to this data impedes
the reproducibility and validity of the research.

The publicly available datasets also suffer from draw-
backs. Two datasets of considerable size, OpenBMAT [6]
and AVASpeech [10], for example, contain only either
music or speech labels, respectively (see Table 1). This
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Table 1 Dataset statistics on three subsets of the proposed TVSM dataset and open-sourced datasets with frame-level annotations.
Note that % of music/speech is estimated based on the duration labeled as music or speech and the total duration of the audio content

% of music % of speech % of overlap Label quality # of instances Duration (h) Usage
TVSM-cuesheet 63% 64% 0.39% Noisy 656 54.6 Training
TVSM-pseudo 61% 57% 0.33% Noisy 2563 1538.5 Training
TVSM-test 43% 43% 0.32% Clean 20 15 Test
OpenBMAT 50% N/A N/A Clean 1647 27.5 Test
AVAspeech N/A 52% N/A Clean 160 45 Test
ORF TV 42% N/A N/A Clean 13 9 Test
Muspeak 76% 24% N/A Clean 214 5 Test

means they can be used only for either speech or
music detection, but not both. The GTZAN Speech and
Music dataset [11], Scheirer & Slaney Music Speech [12],
MUSAN [13], and Muspeak [14] datasets contain only
short segments and non-overlapping speech or music
labels. Thus, these datasets can only be used for a simpli-
fied music and speech segmentation task, where the audio
segments can only be classified into either speech, music,
or noise without any overlap. In reality, the nature of tele-
vision and radio production is such that music and speech
co-occur regularly throughout a program. As a result,
SMAD is an ongoing and active field of study [15-20], and
the need for better open-sourced datasets remains to be
addressed.

To solve the dataset limitation hurdle, an alternative
research direction is to use synthetic data for train-
ing. A recent work by Venkatesh et al. explores existing
music and speech datasets to synthetically create train-
ing material that resembles real-world radio signals [8].
Their synthesis procedure approximates the audio pro-
duction workflow for radio such as transition duration,
fade curves [21], and audio ducking [22], by randomiz-
ing the choices of parameters. For example, the audio
transition between music-only, speech-only, and speech
with background music might be accomplished by a fade
curve with a linear, exponential, or an S-curve shape. This
approach allows the generation of overlapping speech and
music segments with frame-level annotations. The source
datasets used to synthesize training examples consist of
audio from BBC Radio Devon and LibriVox, a repository
of user-contributed audiobook recordings.

We recognize that only modeling parameters of audio
ducking and fade curves may not generate signals that
are representative of contemporary, professionally pro-
duced audio. Furthermore, data augmentation methods
designed for radio broadcasts may not consider the dif-
ferent audio mixing and recording techniques and esthet-
ics used to produce audio-visual media like TV shows
and movies. For example, TV/film production and post-
production differ from live radio production in the use of
dialog re-recording, foley, and sound effects.

In this work, we address the data challenge from a
different angle. Specifically, we show how leveraging a
large-scale dataset with noisy labels can improve SMAD
results. The presented TV Speech and Music (TVSM)
dataset is derived from around 1600 h of professionally
recorded and produced audio for TV shows. The noisy
labels are derived from different sources such as subti-
tles, scripted musical cue sheets, or pre-trained model’s
predictions (see Section 3 for details). Due to copyright
limitations, the audio is processed into Mel spectrogram
representations which are also used to train the proposed
benchmark models. Two additional features, VGGish [23]
and Mel-frequency cepstral coefficients (MFCCs) with
20 coefficients, are also provided in the released dataset
due to their popularity in audio-related tasks [24, 25].
We study the generalizability of our proposed dataset by
training various SOTA models and evaluating on a vari-
ety of datasets across different domains, such as broad-
cast, YouTube video, and TV shows. In the following
sections, we first review existing approaches on SMAD in
Section 2. Section 3 provides the statistics of the dataset
and a detailed description on the data collection process.
Section 4 gives an overview of our proposed bench-
mark and third-party methods, and Section 5 presents the
detailed evaluation results.

2 Related work

Extracting representative features from the audio that
have discriminative power for music and speech is one
of the key components of a SMAD system and has been
investigated in several prior studies. Early systems adopt a
more generic approach of using low-level features such as
amplitude, cepstra, pitch, zero-crossings, line spectral fre-
quencies, and RMS, followed by a simple classifier, such
as Gaussian mixture model or nearest neighbors [26—
29]. Later on, more targeted features have been investi-
gated. For instance, Wieser et al. proposed the continu-
ous frequency activation (CFA) feature to detect music
in TV productions or to detect speech and music in
radio broadcasts [30]. Other input feature representations
include the transient activation (TAC) feature to model
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transient/percussive activities in an audio signal [31] or
the utilization of multiple self-similarity matrices gen-
erated from different audio features to detect transition
points [17]. By exploring a variety of input features and
machine learning approaches, Khan and Al-Khatib con-
clude that the range of zero-crossings, the variance of the
Haar discrete wavelet transform, the root mean square of a
lowpass signal, the spectral flux, the linear predictive coef-
ficients, and the variance of four Mel frequency cepstral
coefficients in combination with a multi-layer percep-
tron (MLP) classifier can produce the best result in their
experimental setting [32]. Pinquier et al. proposed entropy
modulation, stationary segment duration, and number
of segments as the main features for speech/music clas-
sification [33]. Instead of using hand-crafted features,
Ajmera et al. extracted entropy and dynamism features
through neural networks, and trained an HMM model
with heuristic information for speech/music classifica-
tion [34]. Although input features are important to assist
machine learning classifiers for SMAD, different use
cases might require different input features. In contrast,
data-driven approaches can learn feature representations
directly from training data and ease the labor of designing
hand-crafted features.

As a result, the research focus in recent years has grad-
ually shifted towards machine-learned features/models
as opposed to hand-crafted features. For example,
Papakostas and Giannakopoulos [19] detected music and
speech using a convolutional neural network (CNN)
with a spectrogram input. Similarly, Doukhan et al. [18]
presented an open-source speech and music segmenta-
tion system based on the log Mel spectrogram and a
CNN architecture. Jang et al. used a trainable Mel-kernel
to extract the features for SMAD [35]. Multiple works
explore the impact of different model architectures. De
Benito-Gorron et al. compared several neural network
architectures, including a fully connected (FC) neural net-
work, a CNN, and a recurrent neural network (RNN), and
concluded that the recurrent architecture is most suit-
able for the task [36]. Lemaire and Holzapfel leveraged
the success of temporal convolutional networks (TCN) in
modeling sequential data and trained a SMAD system on
both in-house and openly available datasets [9]. To fully
utilize the existing data resources, they trained the model
on clip-level datasets and fine-tuned it on frame-level
datasets. However, due to copyright restrictions, most of
these methods are trained on either private or datasets
with limited size, hindering the progress of data-driven
approaches. As an alternative approach, transfer learning
has been studied by Choi et al. as a way of leveraging fea-
ture representations learned from different domains [37].
Venkatesh et al. also explored a data augmentation tech-
nique for training with a synthetic dataset remixed from
existing datasets [8].
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3 Dataset

Inspired by the abovementioned studies, we continue the
investigation of effective SMAD models with an alterna-
tive solution to limited data. Instead of augmenting or
synthesizing data, we explore the possibility of using large-
scale data with noisy labels. In contrast to clean labels,
which indicate accurate start and end times for each
speech/music region, noisy labels only provide approx-
imate timing, which may impact SMAD classification
performance. Nevertheless, these noisy labels allow us to
increase the scale of the dataset with minimal manual
efforts.

3.1 Overview

The presented TVSM dataset has a total number of
1608.1h of professionally recorded and produced audio
for TV shows. Unlike the majority of the pre-existing
datasets shown in Table 1, TVSM is significantly larger
in size and contains both speech and music labels at
the frame level. TVSM also contains overlapping music
and speech labels, and both classes have a similar total
duration.

The dataset contains three subsets based on their anno-
tation types and intended functionality. In particular,
TVSM-cuesheet and TVSM-pseudo are used for training,
and TVSM-test is used for testing. Additionally, these
subsets are distinguishable by their label creation pro-
cess, which will be elaborated on in the later sections. For
TVSM-cuesheet, each instance is a 5-min excerpt from
a TV show, whereas for TVSM-pseudo and TVSM-test,
each instance is a complete episode. TVSM-pseudo is also
larger in size than TVSM-cuesheet. The total instances
of TVSM-pseudo is four times more than TVSM-cuesheet
while the total duration is twenty-eight times longer than
TVSM-cuesheet (see Table 1). To facilitate the compari-
son across different methods and ensure the correctness
of the benchmarks on our proposed dataset, TVSM-test is
manually annotated and does not rely on noisy labels.

The content of the proposed dataset comes from a large
proprietary database of TV shows for online streaming
services and has been authorized for processing and dis-
tribution in a feature representation. All audio tracks are
legally accessed and processed into pre-extracted feature
representations. The instances from this dataset are sam-
pled between 2016 and 2019. The contents of the dataset
come from 13 countries with approximately 60% origi-
nating from the USA. The length of the content ranges
from a few minutes to over 1 h across various genres
as listed in Fig. 1. The audio is originally delivered from
the recording studios in a standard 5.1 surround format
and a 48-kHz sampling rate. We downmix the multi-
channel files to stereo and then mono via the standard
left-only/right-only (Lo/Ro) downmix formula [38] and
downsample the audio to a sampling rate of 16 kHz. The
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Fantasy 1% Horror 1% Romance 0.3%
Standup 2%
Action 2%
Sci-Fi 3% Drama 26%
Anime 3%

Thrillers 5%

Comedies
26%

Fig. 1 Genre distribution in the TVSM dataset

proposed dataset contains audio tracks in three different
languages, namely English, Spanish, and Japanese. All the
original audio signals are normalized to an average loud-
ness being — 27 LKFS =+ 2 LU dialog-gated via the Dolby
Professional Loudness Metering (DPLM) tool. The lan-
guage distribution is shown in Fig. 2. The name of the
episode/TV show for each sample remains unpublished.
However, each sample has both a show ID and a season
ID to help users identify the connection between the sam-
ples. For instance, two samples from different seasons of
the same show would share the same show ID and have
different season IDs.

3.2 Training set

3.2.1 Speech labels

Both TVSM-pseudo and TVSM-cuesheet contain speech
labels derived from subtitle information. Since each TV
program is typically delivered in a package of video, audio,
and subtitle files, pairs of audio and subtitles are readily
available. Thus, subtitle timestamps are a reliable source of
approximate start and end times of speech utterances. In
addition to expected deviations in precise timing informa-
tion, another possible source of label noise is the minimal
temporal duration. The minimal duration of each subti-
tle is set to one second in order to allow viewers enough
time to easily read. The minimum duration is a delivery

Spanish (ES)
20%

English (EN)
77%

Fig. 2 Language distribution in the TVSM dataset
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specification from the online streaming service. Neverthe-
less, the time stamps extracted from the subtitles seem to
consistently cover the speech regions based on our pre-
liminary examination. Closed captions (CC) are excluded
because—unlike subtitles which transcribe only speech—
CCs describe all important audio events including envi-
ronmental noises, sound effects, and speaker identities,
making them a much noisier source for speech labels.
In addition to the typical transcripts of conversational
speech, the lyrics from singing voices are also included
in the subtitle files. Since singing is composed of words
and semantic meaning like speech, we also include sung
regions in the speech labels.

3.2.2 Musiclabels

The noisy music labels of TVSM-pseudo and TVSM-
cuesheet come from two different sources. For TVSM-
cuesheet, the music labels are based on the cue sheets
in our proprietary sources. Cue sheets provide additional
metadata that document the appearance of music in TV
shows and films, including the start and end times. They
are originally intended to keep a record of the music usage
and entitled parties within an audio/visual program. The
cue sheets are stored in a structured manner to facil-
itate search and combinations with other data sources.
We matched 656 cue sheets from our internal database
to our TVSM dataset, leading toward the creation of
TVSM-cuesheet.

Cue sheet data is trustworthy, but the music labels cre-
ated from cue sheets are not necessarily as accurate as
one would expect. Two issues can be observed. First,
although cue sheets mark the start and end times of the
music regions, audio mixing techniques such as fade-in
and fade-out might offset the times by when the music
is perceptible, resulting in potentially inaccurate music
labels. Second, although the time stamps from cue sheets
are generally correct, issues such as incorrect time offsets
occur. An analysis using a rule-based method was imple-
mented to detect such errors. Approximately 20% of the
files were identified and corrected. Overall, cue sheets can
be assumed to be accurate within a tolerance window of
around 5 s.

For audio content without a matching cue sheet, our
pre-trained model is used to generate pseudo-labels.
Details on the pre-trained model and the pseudo-label
generation will be given in Section 5. Since the labels are
predicted by a pre-trained model, they can be particularly
noisy in hard-to-detect regions due to incorrect predic-
tions. We refer to this subset as TVSM-pseudo. The length
distribution of this subset can be seen in Fig. 3.

3.3 Testset
To evaluate and benchmark our proposed dataset, we
manually labeled 20 audio tracks from various TV shows
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Fig. 3 The length distribution (min) of the TVSM-pseudo dataset
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which do not overlap with our training data (i.e., TVSM-
cuesheet and TVSM-pseudo), and we refer to this subset
as TVSM-test. Audio files in TVSM-test are chosen based
on the genre distribution in TVSM dataset. We do not
exclude audio files that come from the same TV show in
either TVSM-cuesheet or TVSM-pseudo since the content
from the same TV show can be quite different. More-
over, we provide metadata (e.g., show ID and season ID) of
each sample to identify samples that come from the same
TV show. To create this test set, four volunteers manu-
ally annotated the speech and music ground truth labels.
Volunteers were all amateur musicians who used head-
phones and the Sonic Visualiser application! to annotate
active regions. One of the fundamental issues encoun-
tered during the annotation process is the definition of
music and speech. Specifically, the heavy usage of ambi-
ent sound and sound effects in various TV shows makes
it difficult to determine the active music regions. Simi-
larly, switches between conversational speech and singing
voices in certain TV genres also present unique challenges
for the annotators. To ensure the consistency of the labels
and avoid ambiguity, the following guidelines were agreed
upon among the annotators for differentiating music and
speech:

® Any music that is perceivable by the annotator at a
comfortable playback volume should be annotated.

e Since singing lyrics are included in the subtitles,
human singing voices should all be annotated as both
speech and music.

Uhttps://www.sonicvisualiser.org/, last accessed on 04/10/2022

e Ambient sound or sound effects without apparent
melodic contours should not be annotated as music.

e Traditional phone bell, ringing, or buzzing without
apparent melodic contours should not be annotated
as music.

e Filled pauses (uh, um, ah, er), backchannels (mhm,
uh-huh), sighing, or screaming should not be
annotated as speech.

3.4 Processed features

Due to copyright limitations, the audio data is made avail-
able as Mel spectrogram representations. We use the
PyTorch package Torchaudio® to extract the Mel spec-
trograms. After resampling the input audio to 16 kHz,
128 Mel bands are extracted with a hop size and window
length of 512 and 1024, respectively.

In addition to the Mel spectrograms, we also pro-
vide MFCCs and VGGish features. VGGish features are
extracted by the pre-trained VGGish model [23] as 128-
dimensional vector with 0.96s time resolution (no over-
lap). The features are PCA transformed (with whitening)
and quantized to 8-bits. We use PyTorch’s implementation
of VGGish model? to extract the features. MFCC features
are extracted by using the Librosa* python package,
with 20 coefficients and the same window length, hop size,
and sampling rate as the Mel spectrogram.

2https://pytorch.org/audio/stable/index.html, last accessed on 01/05/2022
3https://github.com/harritaylor/torchvggish
*https://librosa.org/doc/main/index.html
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4 Methods

4.1 Third-party methods

For comparison with our benchmark methods, we
included two third-party methods, which represent state
of the art, in our evaluation. The first one is the
InaSpeechSegmenter (referred to as T1) presented by [18].
InaSpeechSegmenter is a CNN-based audio segmentation
toolkit to split audio signals into homogeneous zones of
speech, music, and noise. The model used in this method
is trained on the Muspeak dataset.

The second method is the CRNN model proposed by [8]
(referred to as T2). The CRNN model used in this method
is one of the templates for the model in our benchmark
method (see Section 4.2.2); the main difference between
this method and our benchmark method is the training
data. Venkatesh et al. [8] trained their model on the com-
bination of synthetic data and real-world radio examples.
The source materials for their synthetic dataset come from
a variety of sources which contain audio files labeled as
either music, speech, or noise. To mimic the transition
between music and speech in real-world radio programs,
the authors incorporated mixing techniques such as fade
curves and audio ducking during the synthesis process.
Based on the reported results, this method is able to
achieve the SOTA performance when trained with hybrid
synthetic & real-world training data.

4.2 Benchmark method

In order to explore the interaction of large-scale data,
architectures, and hyperparameters, we investigate sev-
eral input representations and deep-learning architectures
in our benchmark method.

4.2.1 Input features

Log-Mel spectrograms are used as the input represen-
tation for the benchmark methods. In addition to the
commonly used log-Mel spectrogram, per-channel energy
normalization (PCEN) is also explored as an input nor-
malization method on Mel spectrogram instead of using
log. PCEN was originally proposed by [39] for keyword
spotting and has also been reported useful in sound event
detection (SED) [40]. However, PCEN has rarely been
studied in the music domain despite the task similarities
between SED and SMAD. PCEN has trainable parameters
for dynamic gain control, temporal integration, and range
compression. In contrast to static compression (such as
logarithmic transformation), PCEN has been shown as
a viable alternative aiming at improving robustness to
channel distortion [41].

4.2.2 Model architecture

The architectural choices in this work are informed by the
results of prior studies. To this end, we use the best archi-
tectures found in the literature, namely the convolutional
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recurrent neural network (CRNN) and TCN, as our start-
ing point.

The CRNN model in this work is adopted from an
architecture proposed by [8] with minor adjustments
to accommodate our input/output requirements. This
CRNN architecture consists of three convolutional lay-
ers, followed by two bi-directional recurrent layers and
one fully connected layer. The only difference between
our proposed CRNN and the one used by [8] is the num-
ber of filters in the convolutional layers. We found that by
using half of the filters for the first two layers, the model
performs better when training on TVSM-cuesheet. The
reason might be that TVSM-cuesheet has limited training
data, compared to the large amount of synthesized train-
ing data used by [8]. So, we reduce the complexity of the
model to avoid over-fitting.

The TCN model in this work also follows a similar
configuration as described in [8] with the exception of a
smaller kernel size due to the lower temporal resolution
of our input representation. This modification stabilizes
the optimization process in training. The proposed TCN
architecture consists of three repeated layers with each
layer having different stacks of dilated 1-D convolutional
layers. Table 2 lists the detailed parameters for both archi-
tectures.

A linear layer is attached to the end of each model to
generate a matrix A € R“*T where T represents the num-
ber of time frame. For each frame, the output consists of
two continuous values (C = 2) ranging from 0 to 1, repre-
senting the probability of speech and music respectively.
Finally, a max-pooling layer is used to generate frame-level
predictions with a temporal resolution of 5 frames in each
second. The TCN and CRNN models have a total number
of 258,834 and 831,890 parameters, respectively.

4.2.3 Training setup

We apply a random sampling strategy during training
time, where each training sample is a 20-s segment chun-
ked by randomly selecting an audio file and the starting
time of the audio on the fly. The models in this work are
trained by minimizing binary cross-entropy (BCE) loss.

Table 2 Parameters for TCN and CRNN model architecture

Model Arch. Parameters Values

TCN Kernel size {3,5,5}
No. filters {32,16,32}
No. stacks {9,5,2}
No. dilations {3,7,2}

Use skip connections {False, true, true}

CRNN Kernel size {3,11,11}
No. filters {64, 64, 16}
No. GRU units {80, 40}
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TVSM-cuesheet/TVSM-pseudo is divided into 90% and
10% for training and validation purposes, respectively.
The validation set is randomly chosen from the training
set. Similar to the test set, we do not exclude episodes
from the same TV show. We use the Adam optimizer
[42] with 0.001 learning rate and 0.0001 weight decay to
optimize the models. Early stopping is applied if the val-
idation loss does not change for 10 epochs. The learning
rate decreases with a scaling factor of 0.3, if the validation
loss does not change for 2 epochs.

5 Experiment

5.1 Experimental setup

To understand the influence of different variables in our
experimental setup (i.e., model architecture, training data,
PCEN), we include the following variants of our adopted
models in the ablation study:

® TCN-Cue: TCN trained on TVSM-cuesheet data

e TCN-P-Cue: TCN + PCEN trained on
TVSM-cuesheet data

e CRNN-Cue: CRNN trained on TVSM-cuesheet data

® CRNN-P-Cue: CRNN + PCEN trained on
TVSM-cuesheet data

e TCN-P-Pseu: TCN + PCEN trained on
TVSM-pseudo data

® CRNN-P-Pseu: CRNN + PCEN trained on
TVSM-pseudo data

In brief, CRNN-P-Cue uses CRNN while TCN-P-Cue
uses TCN as the model architecture and is trained on
TVSM-cuesheet. The pre-trained model of CRNN-P-Cue
is used to predict the labels of the audio in TVSM-pseudo
since it achieves better performance than TCN-P-Cue
(see Tables 4 and 5). The labels predicted by CRNN-P-
Cue are then used to train the same CRNN architecture
(CRNN-P-Pseu) and TCN architecture (TCN-P-Pseu).

The sed eval toolbox [43] is used to perform
segment-level evaluation as used in the MIREX 2018 com-
petition® to be comparable and consistent with prior work
[8, 9]. For each method, we report the class-wise F-score
and error rate with a segment size of 10 ms. The error
rate is the summation of deletion rate (false negative)
and insertion rate (false positive), as defined in the tool-
box. Since a binary decision must be attained for music
and speech to calculate the F-score, a threshold of 0.5
is used to quantize the continuous output of speech and
music activity functions. No post-processing is applied.
Furthermore, a two-tailed paired T-test is conducted to
compare the statistical significance between two variants.
We report the p-value between the F-score of each sample
from two different setups.

Shttps://www.music-ir.org/mirex/wiki/2018:Music_and/
or_Speech_Detection, last accessed on 04/30/2021
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The investigated methods are evaluated on TVSM-test
and four additional openly available datasets to repre-
sent a variety of audio content. The statistics of these
datasets are listed in Table 1. The OpenBMAT [6] and
ORF TV dataset [44] are collected from TV programs, and
AVASpeech [10] comprises audio from YouTube, while
Muspeak [14] has a variety of content such as concert,
radio broadcast, and low-fidelity folk music.

5.2 Results

Tables 4 and 5 show the evaluation results for speech
and music, respectively. These results are discussed in the
following sections.

5.2.1 Third-party methods

It can be observed that T2 outperforms T1 on music
detection. This gap in performance is largely due to an
inherent limitation of T1. Since T1 is only capable of pre-
dicting either speech or music, it struggles when the data
contains both speech and music simultaneously. This can
be seen from Tables 4 and 5 that the F1-score for speech is
similar to T2 while the music has a large difference. More-
over, take TVSM-test for example, as shown in Table 3, T1
has deletion rate 0.68 for music while 0.18 for speech. The
insertion rate relates to false positive while deletion rate
relates to false negative. Both are the lower the better. As
a result, the high deletion on music indicates that when
speech and music appear together, the model is biased
towards predicting speech, causing a significant drop in
the performance of music detection. This highlights the
importance of building a system that supports the detec-
tion of overlapping speech and music. The differences
between T1 and T2 are statistically significant (p < 0.05)
for music but not for speech.

5.2.2 CRNNvs.TCN

Comparing the performance of TCN-Cue and CRNN-
Cue, it can be found that the CRNN outperforms the
TCN on all test sets, especially for music. This result is
generally consistent with the findings of [8]. While they
hypothesized that the use of the TCN might be advan-
tageous for handling longer sequences due to its longer
effective memory, our results show that even with a longer
input sequence (20s as opposed to 8s in [8]), the perfor-
mance difference between CRNN and TCN architectures

Table 3 Error, deletion, and insertion rate evaluated on
TVSM-test dataset by T1 methods. The metrics are calculated via
sed_eval toolbox

Error rate Deletion rate Insertion rate
Music 0.70 0.68 0.02
Speech 033 0.18 0.15
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remains substantial. The differences between TCN-Cue
and CRNN-Cue are statistically significant (p < 0.05) for
both music and speech.

5.2.3 PCEN

The usefulness of PCEN can be determined by com-
paring CRNN-Cue/TCN-Cue and CRNN-P-Cue/TCN-
P-Cue. The results show that PCEN is helpful on all
the music datasets except for TVSM-test. One possi-
ble explanation is the presence of ambient sound (e.g.,
low-frequency tone without constantly changing pitch) in
this test set. TVSM-test shares considerable similarities
with the training dataset (TVSM-cuesheet and TVSM-
pseudo). The level difference between music and ambient
sound can sometimes be very subtle in the training set.
As a result, PCEN could accidentally increase the volume
of ambient sound effect, leading to more false positives in
the output. To verify this assumption, we examined sev-
eral instances from TVSM-test where ambient sounds are
presented, and the similar false-positive behaviors can be
observed. Figure 4 shows one of these samples, which is a
snippet of a TV show from TVSM-test where a woman is
talking and an ambient sound is playing at the same time.
We can see that with PCEN, most of the ambient sound is
predicted as music. Moreover, compared to CRNN, TCN
seems to benefit more from the addition of PCEN. This
could imply that for the less efficient model, input features
play a more important role in determining the overall per-
formances. Compared to music, speech prediction does
not improve by PCEN. Since all the audio tracks in our
proposed dataset are normalized to a consistent speech-
gated loudness level, the advantage of dynamic gain con-
trol from PCEN could be less effective in this case. The
differences between CRNN-Cue/TCN-Cue and CRNN-P-
Cue/TCN-P-Cue are statistically significant (p < 0.05) for
both music and speech.

Mel Spectrogram

4096
N 2048
1024
512

music
speech

Without PCEN

music
speech

With PCEN

music
speech

o |

0.6 1.2 1.8 2.4 3 3.6 4.2 4.8

Fig. 4 An example selected from TVSM-test where PCEN fails. The
figure shows the detection of background ambient sound with or
without PCEN in a 5-s segment. Yellow regions indicate active labels
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while purple regions stand for inactive labels
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5.2.4 Impact of training data

The differences between CRNN-P-Cue/TCN-P-Cue and
CRNN-P-Pseu/TCN-P-Pseu outline the influence of dif-
ferent training subsets. In sum, both TCN and CRNN
models trained on TVSM-pseudo can achieve better per-
formance on speech and music prediction. The result
suggests that large amount of pseudo labels can be used
as a valuable source for training. Other training strategies
such as noisy student training ([45]) can also be explored
in the future to benefit from pseudo labels.

Surprisingly, for the CRNN model, the improvement
from using a larger subset (TVSM-pseudo) versus a
smaller subset (TVSM-cuesheet) for training is only
marginal; this is especially the case for music. Since the
music labels in TVSM-pseudo are generated via pseudo-
labeling using our pretrained model, the same types of
prediction errors are likely to propagate to the larger set.
As aresult, the quality of these pseudo-labels could poten-
tially limit the results and reduce the effect of increasing
the size.

The limitation can be seen from Fig. 5, especially on
the ORF TV and OpenBMAT datasets. We discover that
CRNN-P-Pseu is more sensitive to background noise,
such as low-frequency ambient sound or background
actor talking, when training on TVSM-pseudo. The mis-
classification of noise to music results in a higher false-
positive rate.

The differences between CRNN-P-Cue/TCN-P-Cue
and CRNN-P-Pseu/TCN-P-Pseu are statistically signifi-
cant (p < 0.05) for both music and speech.

5.2.5 Comparison with the state of the art

By comparing our benchmark method (CRNN-Cue) with
the best SOTA method (T2), as shown in Tables 4 and
5, CRNN-Cue outperforms T2 on most of the test sets
for both speech and music. Since both CRNN-Cue and
T2 have a similar model architecture, the primary differ-
ence is the training material. The improvement is more
obvious when compared to our best benchmark method
(CRNN-P-Pseu). This result supports our assumption that
a large but noisy-labeled real-world dataset can serve as
a viable solution to the data challenge in SMAD and
can lead to improvements over training with synthesized
data. The only exception is the speech detection perfor-
mance on the Muspeak dataset. There are two potential
reasons for this discrepancy. First, the labels of human
singing voice in Muspeak follow a different definition, as
singing is labeled as music only in Muspeak, whereas in
TVSM all singing with recognizable lyrics is also labeled
as speech via the subtitle metadata. Second, Muspeak is
partly included in the training data of T2 according to [8],
which decreases the confidence in the validity of a direct
comparison.
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(music)
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(speech)

[ CRNN-P-Pseu

ORF TV

Muspeak
(music)
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Fig. 5 The mean error rate (the lower the better) across all datasets as described in the sed_eval toolbox. The models CRNN-P-Cue and
CRNN-P-Pseu are selected for comparison. TVSM-test (music) and Muspeak (music) represent the music evaluation while TVSM-test (speech)
represents the speech evaluation. The other test datasets only contain either speech or music labels as described in Section 3

Table 4 F-measures for segment-level evaluation on speech detection

Model Arch. Training data PCEN Muspeak AVASpeech TVSM-test

Third-party method (T1) CNN 0.94 0.79 0.84
Third-party method (T2) CRNN 0.97 0.77 0.81
TCN-Cue TCN TVSM-cuesheet 0.60 0.86 0.90
TCN-P-Cue TCN TVSM-cuesheet v 0.61 0.86 0.89
TCN-P-Pseu TCN TVSM-pseudo v 0.60 0.88 0.91
CRNN-Cue CRNN TVSM-cuesheet 0.63 0.86 0.91
CRNN-P-Cue CRNN TVSM-cuesheet v 0.63 0.86 0.91
CRNN-P-Pseu CRNN TVSM-pseudo v 0.67 0.88 0.91
The Highest result of each evaluation dataset is marked as boldface
Table 5 F-measures for segment-level evaluation on music detection

Model Arch. Training data PCEN ORF TV Muspeak OpenBMAT TVSM-test
Third-party method (T1) CNN 0.60 0.93 047 048
Third-party method (T2) CRNN 0.85 0.99 0.85 0.88
TCN-Cue TCN TVSM-cuesheet 0.79 0.86 0.82 0.88
TCN-P-Cue TCN TVSM-cuesheet v 0.86 0.93 0.84 0.90
TCN-P-Pseu TCN TVSM-pseudo v 0.87 0.97 0.87 0.93
CRNN-Cue CRNN TVSM-cuesheet 0.89 0.93 0.88 0.93
CRNN-P-Cue CRNN TVSM-cuesheet v 0.92 0.94 0.90 0.91
CRNN-P-Pseu CRNN TVSM-pseudo v 0.92 0.95 0.91 0.94

The Highest result of each evaluation dataset is marked as boldface
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5.3 Dataset deliverables

This work includes a GitHub repository for python mod-

ule delivery and a Zenodo entry for dataset delivery®.
The GitHub repository includes:

e Python code for data pre-processing, including
scripts for 5.1 downmixing, Mel spectrogram
generation, MFCCs generation, VGGish features
generation, and the PCEN implementation

e Python code for the experiment, including scripts of
data loaders, model implementations, training
pipeline, and evaluation pipeline
Pre-trained models for each conducted experiment
Prediction output of each audio in the evaluation
datasets

e README. txt file that documents the usage of the
code for reproducibility

We use Zenodo to enable version control of the pro-
posed dataset. The Zenodo entry includes:

e An agreement form for anyone who is interested in
using this dataset for research purposes.

e Mel spectrogram, VGGish, and MFCCs features of
the proposed dataset, which are stored in NumPy
format with unique IDs assigned for each file.

e Speech and music labels stored in csv format; each
row in the csv file has a start time, end time, and class
labels to describe each speech and music region. The
csv file has the corresponding IDs as the
pre-extracted features.

e Metadata for each instance stored in csv format; each
row in the csv file containing each file’s name and the
corresponding show ID, season ID, release year,
genre, length, original country, and language.

6 Conclusion

We presented TVSM, a large-scale TV show dataset with
noisy labels for the task of SMAD. The dataset con-
tains two training subsets with noisy labels generated by
different strategies and a test subset with clean, manual-
created annotations. Compared to other publicly available
datasets, our TVSM is larger in size and is sampled from
real-world professionally produced audio that is diverse in
both genres and languages. We investigated the effective-
ness of each subset for various model architectures and
third-party methods. Compared to two third-party meth-
ods trained with synthetic and small-scale data, our pro-
posed benchmark methods were able to generalize better
and outperform state-of-the-art results on several existing
datasets, in spite of training on noisy labels. Our evalu-
ation results suggest that, while it is possible to leverage

Ohttps://github.com/biboamy/TVSM-dataset
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large data with noisy labels (e.g., TVSM-pseudo) for train-
ing SMAD models, the quality of the labels is still crucial
for further improvements. Future directions include:

® A detailed investigation of the impact of the
constituent languages in the training materials in
order to achieve a better generalization for speech
detection

e Experimenting with alternative pseudo-labeling
methods such as teacher-student learning [46] and
other model architectures such as forms of attention
mechanism in order to minimize the deleterious
impact of the noisy labels

e Providing other metadata or labels for the TVSM
dataset, such as loudness level of music and speech

e Adding new labels to this dataset, such as human
non-speech vocalizations [47]

e Exploring data augmentation techniques to improve
the model’s robustness against ambient sound
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