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Abstract

Deep learning techniques are currently being applied in automated text-to-speech (TTS) systems, resulting in
significant improvements in performance. However, these methods require large amounts of text-speech paired data
for model training, and collecting this data is costly. Therefore, in this paper, we propose a single-speaker TTS system
containing both a spectrogram prediction network and a neural vocoder for the target language, using only 30 min of
target language text-speech paired data for training. We evaluate three approaches for training the spectrogram
prediction models of our TTS system, which produce mel-spectrograms from the input phoneme sequence: (1)
cross-lingual transfer learning, (2) data augmentation, and (3) a combination of the previous two methods. In the
cross-lingual transfer learning method, we used two high-resource language datasets, English (24 h) and Japanese (10
h). We also used 30 min of target language data for training in all three approaches, and for generating the
augmented data used for training in methods 2 and 3. We found that using both cross-lingual transfer learning and
augmented data during training resulted in the most natural synthesized target speech output. We also compare
single-speaker and multi-speaker training methods, using sequential and simultaneous training, respectively. The
multi-speaker models were found to be more effective for constructing a single-speaker, low-resource TTS model. In
addition, we trained two Parallel WaveGAN (PWG) neural vocoders, one using 13 h of our augmented data with 30
min of target language data and one using the entire 12 h of the original target language dataset. Our subjective AB
preference test indicated that the neural vocoder trained with augmented data achieved almost the same perceived
speech quality as the vocoder trained with the entire target language dataset. Overall, we found that our proposed
TTS system consisting of a spectrogram prediction network and a PWG neural vocoder was able to achieve
reasonable performance using only 30 min of target language training data. We also found that by using 3 h of target
language data, for training the model and for generating augmented data, our proposed TTS model was able to
achieve performance very similar to that of the baseline model, which was trained with 12 h of target language data .
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1 Introduction
Deep learning techniques are now widely used in TTS
systems due to their ability to generate higher quality syn-
thesized speech than traditional methods. For example,
recent end-to-end neural models such as Tacotron [1],
Tacotron 2 [2], Deep Voice 3 [3], and Char2Wav [4] are

*Correspondence: bb.zolzaya@gmail.com
1Department of Information Science and Intelligent Systems, Tokushima
University, Tokushima, Japan
Full list of author information is available at the end of the article

all able to generate natural-sounding speech. However,
these models require a large amount of paired text-speech
data for training, as well as substantial processing power.
Chung [5] found that the Tacotron model requires more
than 10 h of training data to produce good synthesized
speech. But collecting large amounts of speech data is
expensive and time-consuming, which creates a signifi-
cant hurdle when developing TTS systems for the world’s
many, less widely spoken languages. Thus, recent studies
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have proposed a variety of techniques which can be used
for TTS with low-resource languages. These techniques
include:
Monolingual transfer learning: When there is only a

small dataset of a particular type of speech available, such
as the speech of an additional speaker, emotional speech
data, and alternative speaking style data, a pre-trained
model, trained using a large amount of a different type of
speech data, can be used as a low-resource speech model
by using transfer learning. Tits et al. [6] explored trans-
fer learning for TTS with low-resource, emotional speech.
After training their model with a large dataset, they fine-
tuned it using a small, neutral speech dataset from a new
speaker. They then adapted the resulting model by train-
ing it with a small, emotional speech dataset also created
using the new speaker. Bollepalli et al. [7] used the same
method as in [6], except that Lombard speech was used
for transfer learning instead of emotional speech. They
adapted a pre-trained TTS system using 2 h of normal
speech data from a new speaker. They then adapted the
normal speech model for the new speaker to a different
speaking style from the same speaker, such as Lombard
speech, using a transfer learning method. In studies [6]
and [7], all of the datasets used were in the same language.
Cross-lingual transfer learning: Since large amounts

of data are often unavailable for low-resource languages,
most of the proposed approaches for TTS for these lan-
guages have used cross-lingual transfer learning to train
their target language TTS systems. However, when using
cross-lingual transfer learning, input space mismatches
can occur. Chen et al. [8] developed TTS systems for
low-resource languages and explored cross-lingual sym-
bol mapping to improve the transfer of knowledge learned
previously from a high-resource language dataset. Three
methods for cross-lingual symbol mapping were evalu-
ated, and two of these methods, which were denoted
“Unified” and “Learned”, achieved good results. Their
proposed method “Learned” automatically mapped the
relationship between source and target language linguis-
tic symbols to transfer knowledge learned previously. To
do this, they pre-trained an automatic speech recogni-
tion (ASR) system using the source language, then fixed
the parameters of the pre-trained ASR system and con-
catenated their proposed Phonetic Transformation Net-
work (PTN). They used the target language data in this
stage, and PTN learned to find the possible target sym-
bols given the ASR output, source symbols. Their results
when using their proposed “Learned” method were no
better than when using the “Unified” method, but were
comparable. In this study, we used two high-resource lan-
guages, English and Japanese, and these datasets were
used both sequentially and simultaneously when train-
ing the model. Therefore, in our approach, we used
the “Unified” method. In other words, we converted the

transcriptions of all of the utterances in each dataset into
their phonetic transcriptions based on IPA, and we then
created a unified symbol set to solve the input space
mismatch problem.
Multi-speaker models: In addition, multi-speaker

models have been used to reduce the amount of train-
ing data needed for TTS. Latorre et al. [9] have shown
that multi-speaker models, which use a small amount
of data from each speaker, are more effective than
speaker-dependent models trained with more data. In
[10], researchers investigated the effect on TTS perfor-
mance of training a multi-speaker model using a speaker-
imbalanced corpus. They found that simply combining all
the available data from every speaker when training the
multi-speaker model produced better results than using a
speaker-dependent model. Gutkin et al. [11] constructed
a multi-speaker, acoustic database using crowdsourcing,
and then used it to bootstrap a statistical, parametric
speech synthesis system. These studies all used multi-
speaker datasets which were in the same language as the
target speech.
Multilingualmodels: Since high-quality, multi-speaker

data is generally unavailable in most low-resource lan-
guages, multilingual or multilingual/multi-speaker mod-
els can be used to address data availability issues. Yu et
al. [12] proposed a multilingual bi-directional long short-
term memory (BLSTM)-based speech synthesis method
which transforms the input linguistic features into acous-
tic features. The input layer and hidden layers of the
BLSTM were shared across different languages for speech
synthesis of low-resource languages, but the output layer
was not shared. The input feature vectors of different
languages were combined to form a single, uniform repre-
sentation of the input features. The shared hidden layers
transform the uniform input features into an internal
representation that can benefit low-resource TTS. Their
proposed multilingual BLSTM-based speech synthesis
method was able to more accurately predict acoustic fea-
tures than a monolingual BLSTM. Li and Zen [13] built
a long short-term memory (LSTM) recurrent neural net-
work based, multi-language/multi-speaker (MLMS) sta-
tistical parametric speech synthesis system using six lan-
guages. Their proposed MLMS model achieved similar
performance to that of conventional language-dependent
and speaker-dependent models. They also demonstrated
that adapting their proposed system to new languages
using limited training data achieved better performance
than building low-resource languagemodels from scratch.
Korte et al. [14] conducted experiments to compare
the naturalness of speech from single-speaker models
with speech from multilingual models when different
amounts of the target speaker’s data were used for train-
ing. They also compared the naturalness of speech from
monolingual, multi-speaker models with speech from
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multilingual, multi-speaker models when larger amounts
of non-target language training data were used. As a
result, they demonstrated the effectiveness of using mul-
tilingual models to improve the naturalness of speech
in low-resource language TTS systems, finding that the
use of foreign language training data improved the qual-
ity of low-resource target language speech output. Their
proposed multilingual model used a separate encoder
for each language to represent language information.
They found that this method of representing language
information was more effective than using language
embedding. Lee et al. [15] built bilingual, multi-speaker
TTS models using two monolingual datasets to investi-
gate how speech synthesis networks learn pronunciation
from datasets of different languages. They noticed that
two, learned phoneme embeddings were located close
together when they had similar pronunciations. There-
fore, based on this observation, they proposed a training
framework to utilize phonetic information from a dif-
ferent language. They showed that pre-training a speech
synthesis model using datasets from both high- and
low-resource languages could enhance the performance
of the TTS model with low-resource languages. Chen
et al. [16] built a cross-lingual, bilingual TTS system
with learned speaker embedding, using two monolin-
gual, multi-speaker datasets. A speaker encoder model,
trained with the English and Chinese datasets, was used
to represent the latent structure the utterances of differ-
ent speakers and language pronunciations. The learned
speaker embedding extracted by the speaker encoder was
then used to condition the spectrogram prediction net-
work. They noted that the learned speaker embedding
could represent the relationship between pronunciations
across the two languages, even though English and Chi-
nese have different phoneme sets. They observed that
phonemes with similar pronunciations were inclined to
remain closer to each other across the two languages than
to the other phonemes.
Data augmentation:Data augmentation is widely used

in ASR to produce additional synthetic training data [17],
[18] and [19]. Recent speech synthesis studies have shown
that data augmentation can also improve the performance
of TTS models. Huybrechts et al. [20] built high-quality
TTS models for expressive speech, to be used when only
a very small amount of expressive speech data is avail-
able for a target speaker. First, they generated synthetic
speech data from a source speaker to the target speaker
in the desired speaking style using a voice conversion
model. Second, they trained the TTS model using the
generated synthetic speech data and the target speaker
recordings. Then the pre-trained model was fine-tuned
with non-synthetic data in order to focus on the actual
target space more closely. Using both data augmenta-
tion and fine-tuning methods improved the signal quality,

naturalness, and style adequacy of the synthetic speech
without any drop in speaker similarity. Hwang et al. [21]
proposed a TTS-driven data augmentation method to
improve the quality of the output of a non-autoregressive
(NAR) TTS system. First, they trained the source autore-
gressive (AR) TTSmodel using recorded speech data from
a professional speaker. Then, text scripts were prepared
for generating synthetic data using the source AR TTS
model. After generating a large amount of synthetic data
(179 h), this augmented corpus was used to train the tar-
get NAR TTS model. The proposed data augmentation
method was effective and significantly improved the qual-
ity of the output of the NAR TTS system. Cooper et al.
[22] investigated two speaker augmentation scenarios for
a multi-speaker TTS model. The first speaker augmen-
tation method creates “artificial” speakers by changing
the speed of the original speech using a sound exchange
audio manipulation tool (SoX) [23]. The second method
uses low-quality data containing background noise and
reverberation, which was collected for purposes other
than TTS, such as ASR. This low-quality data consisted
of four new ASR corpora which included speech in dif-
ferent dialects. They modified the postnet and encoder
of the Tacotron model to support the additional chan-
nel and dialect factors. The channel represents a factor in
the low-quality data jointly caused by the frequency char-
acteristics of the recording equipment, noise and rever-
beration. Their modified Tacotron model trained with
low-quality data improved the naturalness of the syn-
thesized speech of speakers seen during training. They
observed that the speaker augmentation method using
low-quality data contributed to speech naturalness rather
than speaker similarity and improved the quality of the
synthetic speech for seen speakers. Liu et al. [24] built a
bilingual TTS model for use when the amount of target
language data was limited. They tried to solve the prob-
lems of accent carry-over and mispronunciation. Accent
carry-over can occur during cross-lingual speech syn-
thesis, so tone preservation mechanisms were used to
address this. Mispronunciation during low-resource syn-
thesis occurs when the synthesizer does not have enough
examples to learn proper phonetization. They addressed
this problem with data augmentation, using noise and
speed perturbations to increase the target low-resource
language dataset 10-fold. SoX was used for speed per-
turbation. Their experimental results demonstrated the
significant potential of data augmentation for improving
speech quality when working with extremely low-resource
languages. Our proposed method uses a data augmenta-
tion method similar to that used in [22] and [24], but in
these studies either two or four additional versions of the
original utterances, respectively, were generated by chang-
ing the speed factor. Vehicle noise was then added to all
of the utterances in [24]. In this study, we generated syn-
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thetic speech with a wider range of variation, creating
26 versions of each utterance from the original speech
by changing the pitch and speed. While [22] and [24]
increased the amount of training data 3-fold and 10-fold,
respectively, using data augmentation we increased the
amount of target language training data 27 times the size
of the original dataset.
In previous studies of monolingual and cross-lingual

transfer learning which appear in the literature, knowl-
edge learned from a large amount of data was transferred
and a pre-trained model was adapted with the specific
type of speech data in the same language or speech data in
another language. In this study, we are proposing a single-
speaker TTS system for use in a low-resource scenario;
therefore, we also used the same method proposed in pre-
vious studies, and trained a monolingual, single-speaker
TTS model. But in our approach, two high-resource lan-
guages, English and Japanese, were used sequentially for
pre-training to improve the transfer of linguistic knowl-
edge. Both of the high-resource language corpora we used
are publicly available and contain speech data from a
different, single, female speaker. In contrast, our target
Mongolian language dataset contains speech data from a
single, male speaker. Therefore, our single-speaker TTS
model was trained using a different single-speaker dataset
at each training stage, e.g., during the pre-training and
fine-tuning stages. The phonemes of the few Mongolian
letters which are not contained in English are contained
in Japanese, and vice versa. For example, the phonemes of
the Cyrillic letters ‘ ’ and ‘ ’ are not contained in English,
while the phonemes of the Cyrillic letters ‘y,’ ‘ ’ and ‘ ’
are not contained in Japanese. In addition, the Mongo-
lian language belongs to the Altaic family of languages. It
has been suggested that Japanese is linguistically related
to Altaic, as there are structural similarities and the pro-
nunciations of the phonemes are very similar. English, on
the other hand, is an Indo-European language. Therefore,
we first used English, then Japanese, to train the pre-
trained model, because it is generally more effective to
train models using the less similar data first.
In previous studies involving multi-speaker models and

multilingual models which appear in the literature, inves-
tigators built multi-speaker models using monolingual
data in order to reduce the amount of training data
needed, while multilingual models were trained using
multilingual or multilingual, multi-speaker datasets. In
contrast, our aim is to build a monolingual, single-speaker
TTSmodel which can synthesize theMongolian speech of
the male speaker recorded in the target language dataset.
But we believe that a multi-speaker model can be used
as a component in its development. In this study, since
we do not have multi-speaker data for the targeted low-
resource language, we instead trained the multi-speaker
model with multilingual data, using the same input repre-

sentation (one speaker per language, with different speak-
ers for each language), and then fine-tuned it to realize
the proposed monolingual, single-speaker TTS model. In
other words, we used a multi-speaker model and mul-
tilingual data to obtain a monolingual, single-speaker
model.
Although we used transfer learning in two different sit-

uations (with both single- and multi-speaker models) to
address the issue of the limited data, we found that 30
min of target language training data was insufficient for
cross-lingual training. Therefore, we generated a training
dataset which was 27-fold larger using data augmentation
in order to solve the limited target language data issue,
and this dataset was used to train both the single- and
multi-speaker models. Since the augmented data can be
considered to be from different speakers, it may therefore
be more suitable for training a multi-speaker model.
In this paper, we propose a single-speaker TTS sys-

tem for the low-resource language of Mongolian. The
contributions of this paper are as follows:

1 We explore the TTS model’s performance after
cross-lingual transfer learning using high- and
low-resource language datasets. These datasets were
used both sequentially and simultaneously during the
training of the spectrogram prediction network.

2 We create a large amount of augmented data by
changing some of the characteristics of a very small
amount of original target language speech data, such
as pitch and speed, and evaluate the TTS model’s
performance when this augmented data is used for
training.

3 We show how the performance of our low-resource
language TTS model is enhanced by combining the
previous two methods.

4 We investigate how much original target language
data is needed when training the proposed TTS
model in order to achieve the same results as the
baseline model trained with a much larger amount of
target language data.

5 We demonstrate how augmented data can also be
used to train the neural vocoder, in addition to the
spectrogram prediction network.

In the experiments related to contributions 1–3
described above, we tested two types of TTS models:
single-speaker (MS) and multi-speaker (MM).
The rest of this paper is organized as follows. The archi-

tecture used to conduct our experiments, the input repre-
sentation method used, the datasets used and all subjec-
tive evaluations we conducted are presented in Section 2.
In Section 3, we describe each of the various methods
we tested when building our proposed TTS system, our
experiments, and the results of our subjective evaluations.
Our conclusions are then presented in Section 4.
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2 Experimental setup
2.1 TTS system
As mentioned previously, we tested single-speaker and
multi-speaker TTS models, trained with high-resource
and low-resource language datasets, sequentially or
simultaneously, with or without augmented data, to
obtain a single-speaker TTS system that is effective when
only a limited amount of target language training data is
available. Our base TTS system consists of three com-
ponents: an x-vector speaker encoder, a Tacotron 2-
based spectrogram prediction network, and PWG neural
vocoder [25]. We adopted the original Tacotron 2 archi-
tecture, which consists of a bi-directional LSTM-based
encoder and a unidirectional LSTM-based decoder with
location sensitive attention, using the same hyperparam-
eters as in [2], except for the addition of a loss func-
tion for guided attention loss [26], which supports faster
convergence. Although a reduction factor (r), represent-
ing the number of frames to generate at each decoding
step, was not used in [2], we used the reduction factor
r = 1 for the single-speaker model, while the reduction
factor r = 2 was used for the multi-speaker model to
speed up the training process. Table 1 shows the hyper-
parameters used in all models. We used a batch size of
32 for all of the models, except the pre-trained, multi-
speaker models trained with both high-resource language
datasets. The spectrogram prediction network was con-
structed using the open-source speech processing toolkit
ESPnet [27]. We used a pre-trained x-vector [28] for
speaker embedding, as provided by Kaldi. The speaker
embeddings were concatenated with each encoder state.
PWG is a non-autoregressive neural vocoder trained to
minimize multi-resolution, short-time Fourier transform
(STFT) loss and waveform domain adversarial loss. We
used the public implementation1 to train the PWG neu-
ral vocoder with augmented data created using a very
small target language dataset and it was used to gen-
erate the waveform in all of our experiments. Figure 1
shows an overview of our base TTS system. The speaker
embedding network in Fig. 1 is used to train a multi-
speaker model. For the single-speaker model, we used the
same network without speaker embedding. Although we
used three monolingual, single-speaker datasets simulta-
neously for the multi-speaker model, we did not use the
language identity.

2.2 Input representation
We chose English and Japanese as our high-resource
source languages and usedMongolian as the low-resource
target language in our experiments. The pronunciation
of some phonemes in the three languages are similar;
therefore, learned phoneme embedding can be shared,

1https://github.com/kan-bayashi/ParallelWaveGAN

Table 1 Hyper-parameters and network architectures

Feature extraction

Sampling rate 22,050 Hz

Window size 46.4 ms (1,024 pt)

Shift size 11.6 ms (256 pt)

Acoustic feature log-mel spectrogram 80
dim

Encoder

# phoneme embedding dimension 512

# CNN layers 3

# CNN filters 512

CNN filter size 5

# BLSTM layer 1

# BLSTM units 512

Decoder

# LSTM layers 2

# LSTM units 1024

# Prenet layers 2

# Prenet units 256

# Postnet layers 5

# Postnet filters 512

Postnet filter size 5

# Speaker embedding dimension 512

Attention

# Dimensions in attention 128

# Filters in attention 32

Filter size in attention 31

Sigma in guided attention loss 0.4

Reduction factor (r) 1 (MS) / 2 (MM)

Optimization andminibatch

Dropout rate 0.5

Zoneout rate 0.1

Learning rate 0.001

Optimization method Adam with β1 = 0.9, β2
= 0.999, ε = 10-6

# Epoch 300 / 500 / 1000

Batch size 32 / 64

improving the performance of our low-resource language
TTS model. We created a unified symbol set to solve
the input space mismatch between the source and tar-
get languages before training. The transcriptions of all
of the utterances in the English and Mongolian datasets
were converted into their phonetic transcriptions based
on IPA. For Japanese, the transcripts of all of the utter-
ances were first converted into Romaji using an online
converter [29] and then converted from their Romaji rep-
resentations into phonetic transcriptions based on IPA.
Table 2 shows all of the phonemes used in each dataset.
Since some phonemes in these three languages have the
same pronunciations, there are overlapping phonemes in
the source and target languages. On the other hand, some

https://github.com/kan-bayashi/ParallelWaveGAN
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Fig. 1 Overview of the base TTS system. Speaker embedding is used to train the multi-speaker model, but is not used for training the single-speaker
model

phonemes exist only in a particular source or target lan-
guage. The number of phonemes which occurred only
in the English language was greater than the number of
phonemes that existed only in the target language. In con-
trast, all of the phonemes of the Japanese language are
contained in Mongolian. Only one phoneme in the tar-
get language dataset, ‘ö,’ is not contained in either of the
high-resource language datasets, while three phonemes,
‘l,’ ‘ ’ and ‘c’ are contained in the data of one of the
high-resource languages. Therefore, to create the unified
symbol set, the phonemes ‘ö,’ and ‘c’ were inserted into
the English language dataset by replacing the phonemes
that sound themost similar in the English source language

dataset. We did not replace many phonemes, and each
new phoneme replaced only one occurrence of the English
language phonemes. This replacement is necessary when
the source and target datasets are used sequentially during
cross-lingual transfer learning.

2.3 Dataset
English and Japanese were selected as our high-resource
source languages. As our English speech corpus, we used
LJSpeech [30], a public domain dataset consisting of
13,100 utterances, with a total length of 24 h. Each audio
file is a single-channel, 16-bit PCM WAV with a sam-
pling rate of 22,050 Hz. For our Japanese speech corpus,

Table 2 Phonemes used in each dataset

# English Japanese Mongolian # English Japanese Mongolian

1. a (aı, a ) a a 21. v v v

2. b b b 22. w - -

3. d d d 23. z z z

4. e e e 24. æ - -

5. f f f 25. - -

6. g g g 26.

7. h h h 27. - -

8. i i i 28. - -

9. j j (ja, jo, ju) j (ja, jo, j ) 29. - -

10. k k k 30. - -

11. l - l 31. - -

12. m m m 32. ı - -

13. n n n 33.

14. o o o 34. -

15. p p p 35. - -

16. r r r 36. - -

17. s s s 37.

18. t t t 38.

19. u u u 39. - -

20. - - ö 40. - c c
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JSUT [31] was used. It is also a public dataset consisting of
7696 utterances, with a total length of 10 hours of paired
text-speech data. We down-sampled each audio file in the
corpus to 22,050 Hz. These source corpora feature the
voices of different, single, female speakers.
We prepared a target speech corpus using part of a

Mongolian language translation of the Bible, which was
manually divided into individual sentences. The entire
corpus consisted of 8183 short audio clips of a single, male
speaker, with a total length of 12 h. Each audio file is a
single-channel, 16-bit PCM WAV with a sampling rate of
22,050 Hz. We randomly selected 30 min of paired text-
speech data, consisting of 307 utterances, to use as the
target language dataset in our experiments. There are 35
letters in theMongolian Cyrillic alphabet. We counted the
number of occurrences of each letter in the 30 min of
target language data before the transcriptions were con-
verted into their phonetic representations, in order to
explore how the number of occurrences of a letter affects
the learning of its pronunciation. Table 3 lists the Mon-
golian letters contained in the 30-min and 12-h target
language datasets with corresponding phonetic symbols,
as well as the number of occurrences and the distribu-
tion of each letter. We sorted the list in descending order
by the number of occurrences of the letters in the entire
dataset. The letter ‘ ’ is not contained in the target lan-
guage dataset because it is never used in the Mongolian
language—only Russian loanwords contain this letter. Its
pronunciation is identical to ‘ ’; Russian loanwords which

include the letter ‘ ’ will sometimes be spelled with ‘ .’
In addition, the letters ‘ ’ and ‘ ’ are also only used in
foreign words, and thus appear infrequently. Also, the let-
ter ‘ ’ does not appear in the middle or at the end of a
Mongolian word, but sometimes appears at the beginning
of a word. Therefore, the four consonants ‘κ’, ‘ ,’ ‘ ’ and
‘ ’ are called “special consonants” in Mongolian, and the
number of occurrences of these letters is usually small.
Although we randomly selected 30 min of target lan-
guage data for training, the distribution of letters within
this target language training data is almost the same as
the distribution of letters in the entire 12 h of the target
language dataset. The chart in Fig. 2 shows the distribu-
tion of each letter in both the 30 min and 12 h of target
language data.
We used the entire 12 h of target language data to train

the baseline TTS model (M-MN), which was used for a
performance comparison with the proposed models. In
addition, the baseline PWG neural vocoder (NV-MN) was
also trained using the entire 12 h of target language data,
for a performance comparison with the vocoder trained
using augmented speech data (NV-DA).

2.4 Evaluation
We conducted an AB preference test to assess the qual-
ity of the output from the neural vocoders trained using
the original target data (NV-MN) and augmented tar-
get data (NV-DA). Our subjects were asked to select the
higher quality speech when comparing 15 speech samples

Table 3 Occurrences and distributions of Mongolian letters in the 30-min and 12-h target language datasets and IPA phonetic symbols

# Letter Phoneme
#Occurrences and distribution

# Letter Phoneme
#Occurrences and distribution

30 minutes 12 hours 30 minutes 12 hours

1. a a 1870 11.00% 54403 11.33% 18. m 372 2.19% 10349 2.15%

2. n, 1378 8.11% 41565 8.65% 19. v 234 1.38% 8175 1.70%

3. e 1625 9.56% 38739 8.07% 20. 190 1.12% 6744 1.40%

4. g 1030 6.06% 28254 5.88% 21. z 218 1.28% 6691 1.39%

5. p r 1060 6.24% 26879 5.60% 22. i 148 0.87% 5109 1.06%

6. i 686 4.04% 25673 5.34% 23. 259 1.52% 4890 1.02%

7. d 827 4.86% 23810 4.96% 24. i 176 1.04% 4641 0.97%

8. x h 856 5.04% 22237 4.63% 25. e j 132 0.78% 4390 0.91%

9. l 742 4.36% 21224 4.42% 26. 114 0.67% 3516 0.73%

10. Y u 684 4.02% 19969 4.16% 27. c 72 0.42% 2351 0.49%

11. t 647 3.81% 19362 4.03% 28. ja 27 0.16% 1765 0.37%

12. o o 805 4.74% 19019 3.96% 29. j 17 0.10% 843 0.18%

13. i 613 3.61% 18724 3.90% 30. ë jo 36 0.21% 727 0.15%

14. y 604 3.55% 17868 3.72% 31. k 24 0.14% 591 0.12%

15. ö 532 3.13% 14145 2.94% 32. f 5 0.03% 471 0.10%

16. c s 495 2.91% 13438 2.80% 33. p 1 0.006% 401 0.08%

17. b 519 3.05% 13330 2.78% 34. i 1 0.006% 26 0.005%
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Fig. 2 Distribution of each letter in 30-min and 12-h target language datasets

generated by each vocoder. The results of this evaluation
are shown in Table 5.
For the spectrogram prediction models, we conducted

subjective naturalness and speaker similarity tests (Test-1
to Test-5). To evaluate the naturalness of the synthesized
speech produced when using each TTS model, we con-
ducted subjective tests using eight speech samples pro-
duced by each model which were not contained in the
training dataset. We used the web-based MUltiple Stim-
uli with Hidden Reference and Anchor (webMUSHRA)
test [32] to evaluate naturalness. All of the speech sam-
ples being evaluated are presented in one panel, and the
samples within the panel are randomized. We created
four separate naturalness test sets (Test-1, Test-2, Test-3,

and Test-4, shown in Table 4), each containing eight stim-
ulus panels. Each panel included a hidden reference and
hidden anchors. In addition to the hidden reference and
hidden anchors, Table 4 also shows all the systems that
generated the speech samples included in each stimu-
lus panel. Test-1 and Test-2 are naturalness evaluation
tests of the single-speaker and multi-speaker models used
in the cross-lingual transfer learning method explained
in Section 3.2.1, in order to investigate the effect of the
high resource language dataset. Test-3 is a comparison
of all of the proposed single-speaker and multi-speaker
models described in Section 3.2, conducted to determine
the best performing method. Test-4, the final naturalness
evaluation test, was conducted to compare the output of

Table 4 Systems used to generate the speech samples included in each stimulus panel of the MUSHRA subjective naturalness tests

Systems / Tests
MUSHRA subjective naturalness tests

Test-1 Test-2 Test-3 Test-4

Systems � MSJ-TL � MMJ-TL � MM-DA � MMEJ-TL-DA

� MSE10-TL � MME10-TL � MSEJ-TL � MMEJ-TL-DA1hour

� MSE24-TL � MME24-TL � MSEJ-TL-DA � MMEJ-TL-DA2hours

� MSEJ-TL � MMEJ-TL � MSEJ-TL-DAD � MMEJ-TL-DA3hours

� MMEJ-TL � M-MN

� MMEJ-TL-DA

� MMEJ-TL-DAD

� M-MN

Hidden reference � Ground truth � Ground truth � Ground truth � Ground truth

Hidden anchors � MSEJ-TL-DA � MMEJ-TL-DA � MMEJ-TL-DA3hours � MSEJ-TL

� M-MN � M-MN � MMEJ-TL
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the models when using the best performing method (a
combination of cross-lingual transfer learning and data
augmentation, as described in Section 3.2.4), when differ-
ent amounts of the target language data were used during
training. All of the TTS systems shown in Table 4 are sum-
marized in Table 7 at the end of Section 3. The results
of these naturalness evaluations are shown in Figs. 5, 10,
and 11.
A MUSHRA speaker similarity evaluation (Test-5) was

also performed to compare the output of proposed multi-
speakermodelMMEJ-TL-DA, which uses a combination of
transfer learning and data augmentation, with the ground
truth Mongolian target speech data. Study participants
also compared the output of the baseline M-MN model
with the ground truth. They evaluated the similarity of
eight speech samples generated from each of these two
models, in comparison to the ground truth speech data,
to assess their similarity to the original target language
speech. The results of these comparisons are shown in
Fig. 12. These comparisons were performed because, in
addition to the small, target language dataset, two high-
resource language datasets and augmented data were also
used to build the basic single-speaker TTS system used in
the proposed model.
Twenty-two subjects were asked to rate the natural-

ness and speaker similarity of the synthesized audio, and
twenty-nine subjects were asked to rate the quality of
the output from the neural vocoders. All of the subjects
who participated in the subjective naturalness, similarity,
and quality tests were native Mongolian speakers. Speech
samples generated by each of these models and vocoders
are publicly available2.

3 Methods and results
3.1 PWG neural vocoder results
In this study, we proposed a TTS system containing both
a spectrogram prediction network and a neural vocoder,
for use when only a small amount of target data is avail-
able. To evaluate the effectiveness of training the vocoder
with augmented data, we trained a PWG neural vocoder
with 13 h of our augmented data and 30 min of original
target language data (NV-DA), while the baseline vocoder
was trained with 12 h of original target language data
(NV-MN). We then performed an AB preference test to
compare the output of the two PWG vocoders, as evalu-
ated by twenty-nine, native Mongolian speaking subjects.
We used the same M-MN baseline model used by the
spectrogram prediction model for both of the vocoders.
Listeners had the option of selecting “no preference” if the
difference between the synthesized speech pairs was too
difficult to distinguish. The test results in Table 5 show
that the quality of the synthesized speech generated by
the two vocoders was almost the same, as it was difficult
2https://zolzaya-byambadorj.github.io/tts/

Table 5 Results of AB preference test on vocoders trained with
original (NV-MN) and augmented (NV-DA) data

NV-MN (baseline) NV-DA No preference

21.61% 16.09% 62.30%

for the listeners to distinguish the difference. Therefore,
the PWG neural vocoder trained with augmented data
was used to generate the waveform in all of the follow-
ing experiments investigating the best method of train-
ing the spectrogram prediction network, as described in
Section 3.2.

3.2 Spectrogram prediction models and results
3.2.1 Proposedmethod 1: Cross-lingual transfer learning
We trained the TTS model for our target language by
transferring knowledge from our source languages in
two ways. First, we used the source and target language
datasets sequentially to train the TTS model without
speaker embedding. To obtain pre-trained models, we
first trained the TTS models using only the English (E) or
Japanese (J) source language datasets, each of which con-
tains speech data from a different, single, female speaker.
The English speech dataset is more than twice as long as
the Japanese dataset. Therefore, in addition to model pre-
trained with the entire English dataset (E24), we also pre-
trained a model using randomly selected English speech
data equal in size to the Japanese dataset (E10) to deter-
mine the effect of using different proportions of the high-
resource languages. The model which was pre-trained
with the entire English source language dataset (E24) was
also adapted by training it again with the Japanese source
language dataset, creating a fourth pre-trainedmodel (EJ).
These four TTS models (E10, E24, J and EJ), pre-trained
with the high-resource language datasets, were trained
again using the target language dataset, as in [6], [7] and
[8], which in this study consisted of Mongolian language
data. All of the datasets were recorded using the voice of
a single male or female speaker. Therefore, we denote our
single-speaker, sequentially-trained, cross-lingual trans-
fer learning models as MSE10-TL, MSE24-TL, MSJ-TL and
MSEJ-TL. The training flow diagrams for these models are
shown in Fig. 3.
In order to evaluate the effectiveness of multi-speaker

training, the source and target language datasets were
also used to simultaneously train a second set of pre-
trained TTS models with speaker embedding as the con-
ditioned feature. In other words, we pre-trained three
multi-speaker TTS models using bilingual datasets as fol-
lows: one using the Japanese source language dataset
with the target language dataset, one using 10 h of the
English source language dataset with the target language
dataset, and one using 24 h of the English source lan-
guage dataset with the target language dataset. Onemulti-
speaker TTS model was also pre-trained using trilingual

https://zolzaya-byambadorj.github.io/tts/
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Fig. 3 Training flow diagrams for our single-speaker TTS models. Transfer learning from the source languages to the target language is used, where
a are models using only different amounts of the English dataset, b is a model using only the Japanese dataset, and c is a model using the entire
datasets of both high-resource languages

datasets (the entire, high-resource language datasets of
both English and Japanese, along with 30 min of the tar-
get language dataset), with each dataset containing speech
data from a different, single speaker. These four, pre-
trained, multi-speaker TTS models were then fine-tuned
using the same target language Mongolian dataset used to
train the pre-trainedmulti-speaker models, as in [15]. The
four multi-speaker, simultaneously-trained, cross-lingual
transfer learning models were denoted as MME10-TL,
MME24-TL, MMJ-TL, and MMEJ-TL. The training flow
diagrams for these models are shown in Fig. 4.
All pre-trained TTS models shown in Figs. 3 and 4

were trained for 300 epochs, and the final models, fine-
tuned with the target language dataset, were trained
for 1000 epochs. We compared the performance of the
four single-speaker and four multi-speaker models to
understand how each training approach, i.e., using each
high-resource language dataset separately, or both high-
resource language datasets, either sequentially or simulta-
neously, affects the quality of the TTS system’s output. We
found that using both high-resource languages datasets
simultaneously improved the performance of both the
single-speaker and multi-speaker models. The results of
our comparison are shown in Fig. 5 in Section 3.2.2. Based
on these results, we used both high-resource language

datasets for model training when using the transfer learn-
ing method with data augmentation, as described in the
following section.

3.2.2 Test-1 and Test-2: Cross-lingual transfer learning
method

In these experiments, we investigated the effects of train-
ing the models with high-resource languages on low-
resource language TTS performance. Figure 5 shows the
boxplots of the MUSHRA subjective naturalness scores
for the single-speaker and multi-speaker TTS models
described in Section 3.2.1. Native Mongolian speak-
ing subjects performed these naturalness evaluations.
As we expected, when using the same amount of data
from each of the high-resource languages, the effect of
Japanese language training on low-resource target lan-
guage TTS performance was more beneficial than English
language training for both the single-speaker and multi-
speaker models. We think this is because, as explained
in Section 1, Japanese and Mongolian are more simi-
lar than English and Mongolian. However, we can see
that when the entire English language dataset was used
for training, the performance of both the single-speaker
and multi-speaker models was better than when using
the Japanese high-resource language dataset. A reason for

Fig. 4 Training flow diagrams for our multi-speaker TTS models. Transfer learning from the source languages to the target language is used, where a
are models using the different amounts of the English dataset and the Mongolian dataset, b is a model using the Japanese and Mongolian datasets,
and c is a model using the entire datasets of both high-resource languages and the Mongolian dataset
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Fig. 5MUSHRA naturalness scores for single-speaker and multi-speaker models trained using cross-lingual transfer learning, where (a) are
single-speaker models trained with one high-resource language or both and (b) are multi-speaker models trained with one high-resource language
or both. MSJ(Japanese) , MSE10(English,10hours) , MSE24(English,24hours) , MSEJ(EnglishandJapanese) : sequentially trained single-speaker models. MMJ(Japanese) ,
MME10(English,10hours) , MME24(English,24hours) , MMEJ(EnglishandJapanese) : simultaneously trained multi-speaker models

this could be the size of the datasets. The English speech
dataset is more than twice as long as the Japanese dataset.
Using both high-resource language datasets improved
the performance of both the single-speaker and multi-
speaker models more than using only one high-resource
language dataset. Therefore, we used both high-resource
language datasets to train the single-speaker and multi-
speaker models using the transfer learning method in the
rest of the experiments. In addition, as shown in Fig. 5,
the performance of the multi-speaker models (MMJ-TL,
MME10-TL, MME24-TL and MMEJ-TL) was better than the
performance of the corresponding single-speaker mod-
els (MSJ-TL, MSE10-TL, MSE24-TL and MSEJ-TL), even
thoughMUSHRA naturalness evaluations (a) and (b) were
conducted separately. Among the multi-speaker mod-
els trained with only one high-resource language dataset
during the pre-training stage (MMJ-TL, MME10-TL and
MME24-TL), when the target language dataset was not
used in the pre-training stage, the operation of the models
was almost the same as that of the corresponding single-
speaker models, except for the use of speaker embedding.
This suggests that using target language data when train-
ing the pre-trained model improves the performance of
the TTS model. Note that we used only 30 min of the
target language data to train the models shown in Fig. 5.
The results for these models are low because the use of
only 30 min of target language data for pre-training and
fine-tuning the models is insufficient for generating good
quality speech when using cross-lingual transfer learning.
Studies [6] and [15] also showed that the amount of target
data used affects the performance of the final fine-tuned
model. But we can see from these experiments that the
use of high-resource languages helps the models learn to
synthesize speech in the low-resource target language.

3.2.3 Proposedmethod 2:Data augmentation
Data augmentation is a method commonly used to
address the problem of insufficient data. We used a basic
audio data augmentation method which involves altering

the pitch and speed of the original speech data, generat-
ing synthetic data from the original samples. We changed
the pitch and speed of only 30 min of the original target
language data using the SoX tool [23] to synthetically gen-
erate a large amount of data with a wide range of variation,
while using the same transcriptions as the original sam-
ples. The number of semitones of shift when changing the
pitch was between −2.5 and 2.5, at steps of 0.5. The ratio
of the speed of the augmented speech to the speed of the
original speech was within the range of 0.7 to 1.55 times
the speed of the original speech, at steps of 0.05, but no
augmented data was generated at 1.05 times the original
speed. The SoX tool shifts the full spectrum, not just the
pitch, therefore all formants are also modified. We gener-
ated 26 different versions of 30 min of the original target
language data, as shown in Table 6 of Section 3.2.5, creat-
ing a total of 13 hours of augmented target language data.
We then trained a multi-speaker TTSmodel with both the
augmented data and 30min of the original target language
data, treating it as a multi-speaker dataset. We also used
the x-vectors for each virtual speaker generated during
data augmentation. A single-speaker TTS model was also
trained with the same data. We denoted these single-
speaker and multi-speaker data augmentation models as
MS-DA and MM-DA, respectively, and their training flow
diagrams are shown in Fig. 6. Both models were trained
with the augmented data for 500 epochs. The augmented
data was also used to train the PWG neural vocoder,
which was designated NV-DA.

3.2.4 Proposedmethod 3: Combination of cross-lingual
transfer learning and data augmentation

We then created two additional TTS models by training
the single-speaker and multi-speaker models MSEJ-TL-
DA and MMEJ-TL-DA with the two high-resource lan-
guage datasets, the original target language dataset and
the augmented data. These two models are almost the
same asMSEJ-TL andMMEJ-TL, described in Section 3.2.1,
except that augmented data was also used for training.
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Table 6 Number of semitones of pitch shift (PF), or ratio of speed
of the new speech to speed of the original speech (SF), used
when generating augmented data from the original data, for
each virtual speaker

# Speaker Pitch or
speed factor

# Speaker Pitch or
speed factor

1 −2.5 PF 14 0.85 SF

2 −2.0 15 0.9

3 −1.5 16 0.95

4 −1.0 17 1.1

5 −0.5 18 1.15

6 0.5 19 1.2

7 1.0 20 1.25

8 1.5 21 1.3

9 2.0 22 1.35

10 2.5 23 1.4

11 0.7 SF 24 1.45

12 0.75 25 1.5

13 0.8 26 1.55

PF pitch factor, SF speed factor

The single-speaker model pre-trained using both high-
resource languages datasets simultaneously was fine-
tuned using augmented data and then fine-tuned again
using the original target language data. The pre-trained
multi-speaker model was trained using the trilingual
datasets. During pre-training of the multi-speaker model,
the two source language datasets are single-speaker
datasets, while the target language dataset contains both
original and augmented target data; thus, it can be consid-
ered a multi-speaker dataset with 27 “speakers”. The pre-
trained multi-speaker TTS model was then fine-tuned
using the original target language dataset.
Both the pre-trained single-speaker and pre-trained

multi-speaker models were trained for 300 epochs using
the high-resource language datasets, and the pre-trained
single-speaker model was also fine-tuned by training it
with augmented data for 500 epochs. The final models
were both fine-tuned by training each model for 1000

epochs using the original target language dataset. Training
flow diagrams for the single-speaker and multi-speaker
models are shown in Fig. 7.

3.2.5 Proposedmethod 4: Combination of cross-lingual
transfer learning and data augmentation with
additional fine tuning

For these TTS models, we added additional fine-tuning
steps, using some of the augmented target language data
to further improve the models’ gradual adaptation to
the target language. We used t-SNE [33] to visualize the
x-vectors extracted from the real and virtual speakers’
speech, as shown in Fig. 8. Table 6 shows the identity of
each virtual speaker generated by changing the pitch and
speed factors of the original speech data, where the iden-
tity of the real speaker is 27. The x-vectors extracted from
virtual speakers 1, 2, 11, 12, 13, 14, 15, 21, 22, 23, 24, 25,
and 26 were judged to be farther away from the x-vectors
of the real speaker. Therefore, the first set of augmented
data contained these 13 copies of the 30 min of the orig-
inal target language data, which sounded very different
from the original target language speech. The second set
of augmented data contained 7 copies (from virtual speak-
ers 3, 9, 10, 17, 18, 19 and 20) of the original data which
soundedmore similar to the original target speaker’s voice
than the augmented speech in the first set. The x-vectors
extracted from virtual speakers 4, 5, 6, 7, 8, and 16 were
closest to the x-vectors of the real speaker. Therefore,
the third set of augmented data contained these 6 copies
of the original data, which sounded the most similar to
the target speaker’s actual voice. We used these three
sets of the augmented data to fine-tune the pre-trained
model sequentially. The single speaker model, which was
pre-trained with the two high-resource language datasets,
was then sequentially fine-tuned using the same three
sets of augmented data. Finally, the pre-trained, single-
speaker model was fine-tuned with the original target
language dataset. For the multi-speaker model, the pre-
trained multi-speaker model was trained with the trilin-
gual datasets (two high-resource language datasets plus
the original and augmented target language datasets)
and then sequentially fine-tuned using the three sets of

Fig. 6Method used to train TTS models with augmented target language data, where a is a single-speaker model and b is a multi-speaker model
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Fig. 7Methods used to train TTS models using cross-lingual transfer learning and augmented data, where a is a single-speaker model and b is a
multi-speaker model

augmented data. The model was then fine-tuned again
using the original target language dataset. We denoted
these single-speaker and multi-speaker models as MSEJ-
TL-DAD and MMEJ-TL-DAD, respectively. Training flow
diagrams for these models are shown in Fig. 9. Both the
pre-trained single-speaker and pre-trained multi-speaker
models were trained for 300 epochs using the high-
resource language datasets. We then further trained both
of these fine-tuned models for 500 epochs at each fine-

tuning step, using the sets of augmented data sequentially,
before a final 500 epochs of training using the original
target language data.
All proposed systems described in Section 3.2 are sum-

marized in Table 7 at the end of Section 3.

3.2.6 Test-3: All proposedmethods
Figure 10 shows the boxplots of the MUSHRA subjective
naturalness scores, as rated by native Mongolian speakers,

Fig. 8 t-SNE visualization of x-vectors extracted from the speech of the real and virtual speakers, where Speaker 27 is the real speaker
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Fig. 9Methods used to train TTS models using cross-lingual transfer learning and augmented data with additional fine-tuning steps, where a is a
single speaker model and b is a multi-speaker model

for all of the proposed single-speaker and multi-speaker
models described in Sections 3.2. As discussed in Section
3.2.1, we found that using both high-resource language
datasets simultaneously improved the performance of
both the single-speaker andmulti-speaker models. There-
fore, we used both high-resource language datasets for
model training when using the transfer learning method
with data augmentation, described in Sections 3.2.4 and
3.2.5. All of the proposed models evaluated in Fig. 10 were
trained using only 30 min of original target language data.
The amount of augmented data (DA) used for training

these models is almost same as the amount of original

target language training data used for the baseline single-
speaker model M-MN, which achieved the best results in
our experiment. The augmented data was used to train
both single-speaker and multi-speaker TTS models, but
the single-speaker model (MS-DA) was a failure because it
could not synthesize intelligible speech. Therefore, we did
not ask the study participants to rate this model. Although
the naturalness score of the multi-speaker model trained
with augmented data (MM-DA) was lower than the scores
of most of the other models, it was able to learn how
to synthesize intelligible speech using only augmented
data and 30 min of the original target language data.

Fig. 10MUSHRA naturalness scores for all single-speaker and multi-speaker models. M-MN: TTS model trained with 12 h of target language data;
M-MN30: TTS model trained from scratch with only 30 min of target language data; MSEJ: sequentially trained single-speaker model; MMEJ:
simultaneously trained multi-speaker model; TL: cross-lingual transfer learning; DA: data augmentation; DAD: data augmentation method with
additional fine-tuning
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This suggests that adding speakers could improve train-
ing of multi-speaker models, since the augmented data
can be considered to be multi-speaker data. Also note that
although the MSEJ-TL model was trained using both high-
resource language datasets and the original target speech
data, the MM-DA model received a higher score, even
though the MM-DA model was unable to learn the pro-
nunciations of some of the letters which appeared very few
times in the 30 min of original target language data, which
was used to generate the augmented data. For example,
the letters ‘ ,’ ‘ ,’ ‘ ’ and ‘ ,’ which could not be synthe-
sized by the MM-DA model, occurred less than 100 times
in the 30 min of the target language data. But some let-
ters, such as ‘ ’ and ‘ ,’ which also occurred less than 100
times in the data, could be learned by this model. This
is because the phonetic notations of the letters ‘ ,’ ‘ ,’ ‘ë’
are a combination of phonemes. Although these letters
appear infrequently in the 30 min of original target lan-
guage data before the transcriptions were converted into
their phonetic representations, each phoneme contained
in the phoneme notations of these letters occurred more
than 100 times in the 30 min of original target language
data. Furthermore, the phonetic notation of some letters,
such as ‘ ,’ is the same as the phonetic notation of some
other letters, such as ‘ ,’ ‘ ,’ ‘ ’ and ‘ ’ because these let-
ters have the same pronunciation. Therefore, although
these letters only occurred a few times in the data, since
we used phonetic representations the pronunciations of
these letters could still be learned. We also observed that
some letters which occurred less than 200 times in the
data could not be synthesized clearly. However, if the tran-
script to be converted into speech does not include these
particular, low-frequency letters, the synthesized speech
created using the MM-DA model sounds very reasonable.
Thus, in general, the performance of the multi-speaker
model using augmented data (MM-DA) shows that the use
of augmented data can improve the performance of TTS
models.
Regarding the models trained using the cross-lingual

transfer learning method, the pronunciations of the let-
ters that only occurred a few times in the target language
data could be learned from the high-resource language
datasets, since there are overlapping phonemes in the
source and target languages. Therefore, learned phoneme
embeddings are shared by the different languages. The
model trained with only 30 min of target language data
from scratch (M-MN30) could not synthesize intelligible
speech. However, the performance of the single-speaker
and multi-speaker transfer learning models (MSEJ-TL and
MMEJ-TL) shows that the cross-lingual transfer learn-
ing approach improves TTS model performance when
only a small amount of target data is available. On the
other hand, single-speaker model MSEJ-TL was trained
using data from three languages sequentially, while multi-

speaker model MMEJ-TL was trained using data from
three languages simultaneously. As a result, the natural-
ness score of multi-speaker model MMEJ-TL is higher
than that of single-speaker model MSEJ-TL. This suggests
that adding languages could also improve the training of
multi-speaker models.
Each of the proposed methods, i.e., using only trans-

fer learning or only data augmentation, were capable of
improving the performance of the TTS model. Therefore,
unsurprisingly, we can also see in Fig. 10 that a combina-
tion of both the transfer learning and data augmentation
methods improved both single-speaker (MSEJ-TL-DA)
and multi-speaker (MMEJ-TL-DA) model performance.
As mentioned previously, adding speakers or adding lan-
guages each improved the performance of the multi-
speaker models. In the case of the model MMEJ-TL-DA,
we added both languages and speakers simultaneously.
As a result, the performance of the multi-speaker model
with data augmentation (MMEJ-TL-DA) was superior to
that of the single-speaker model with data augmenta-
tion (MSEJ-TL-DA), the multi-speaker model without data
augmentation (MMEJ-TL) and the multi-speaker, single-
language model with data augmentation (MM-DA). We
can also see that the performance of TTS models MSEJ-
TL-DAD andMMEJ-TL-DAD improved slightly when fine-
tuning steps that included the use of augmented data
were added. Related works [17], [22] and [24] have used
data augmentation-generated synthetic speech created by
changing the speed and tempo of the original speech
within a relatively narrower range of variation, compared
to the augmentation method used in our study. In other
words, the differences between the synthetic and real
data used in previous studies were not as great as in
our approach. In contrast, we generated our synthetic
speech using a wider range of variation, and 26 versions
of the data were generated from the original speech. As
a result of this wider variation, the speech of some of
the virtual speakers is very different from the speech of
the real speaker, while some is very similar to the real
speaker’s speech. Therefore, gradual fine-tuning as part
of a multi-stage process may yield further gains in per-
formance. On the other hand, although the naturalness
score of single-speaker model MSEJ-TL-DAD is lower than
that of multi-speaker model MMEJ-TL-DAD, we observed
that the effect of the additional fine-tuning steps using
augmented data was greater on the single-speaker model
than on the multi-speaker model, when their natural-
ness scores are compared with those of the corresponding
single- andmulti-speakermodelsMSEJ-TL-DA andMMEJ-
TL-DA. We suspect this may occur because the single-
speaker model “discovers” each new speaker at each train-
ing stage, while the multi-speaker model encounters all of
the speakers during the first training stage; thus, gradual
fine-tuning may have been more effective for the single-
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speaker model and less effective for the multi-speaker
model.
Finally, the results shown in Fig. 10 indicate that the

performance of the multi-speaker (MM/MMEJ) TTS mod-
els was superior to that of the single speaker (MS/MSEJ)
TTS models. In other words, multi-speaker models were
effective as intermediate models when constructing a
single-speaker, low-resource TTS model. The score of
the proposed MMEJ-TL-DAD model was higher than the
scores of the other models trained with a limited amount
of target language data, but lower than the score of the
baseline M-MNmodel.

3.2.7 Test-4: The size of the target language training data
We also wanted to know the minimum amount of original
target language training data that was needed to obtain a
model with the same performance as the baseline model.
Therefore, we increased the 30 min of original target lan-
guage data to 1, 2, or 3 h of training data. We selected
this data randomly, and then created 26 different versions
of augmented data using the same amounts of original
target language data (1, 2, or 3 h) as described above.
Although the proposed multi-speaker model with addi-
tional fine-tuning (MMEJ-TL-DAD in Fig. 10) achieved
the best performance, we chose the proposed multi-
speaker model utilizing a combination of cross-lingual
transfer learning and data augmentation (the MMEJ-TL-
DA model described in Section 3.2.4) because it is less
time-consuming to train and has almost similar perfor-
mance to the best-performing model. We trained it with
these various amounts of target language data, and with
the additional augmented training data created using this
extra target language data. The performance of these var-
iously trained models, and the baseline model, were then
compared based on the naturalness of the output speech,
which was measured using a MUSHRA test. Figure 11
shows the boxplots of the naturalness scores for these
models. The performance of the models improved as the
amount of original target language data increased. Three
hours of target language data were sufficient to cover vari-

Fig. 11MUSHRA naturalness scores for baseline and proposed
multi-speaker model trained with various amounts of target language
data

ations in pronunciation, and fluctuations in the speakers’
voices were enhanced using data augmentation. Further-
more, the multi-speaker model was able to capture the
features of the original voices more accurately than the
single-speaker model. Therefore, the naturalness score of
the proposed model trained with three hours of the orig-
inal target language data was similar to the score of the
baseline model trained with 12 h of target language data.
We also observed that the proposed models trained with
two and 3 h of the original target language data synthe-
sized very clear, good quality speech, while the baseline
model synthesized slightly more nuanced speech. There-
fore, the native Mongolian speaking subjects may have
preferred the output of the baseline model.

3.2.8 Test-5: Speaker similarity
AMUSHRA speaker similarity evaluation was performed
on the output of the MMEJ-TL-DA and baseline mod-
els. Note that we again chose the proposed multi-speaker
model MMEJ-TL-DA, which utilizes a combination of
cross-lingual transfer learning and data augmentation
(as described in Section 3.2.4), instead of the best per-
forming model MMEJ-TL-DAD, for our speaker similarity
evaluation test. We asked our native Mongolian speak-
ing subjects to evaluate speech samples generated by our
proposed and the baseline models in comparison to the
ground truth of the original Mongolian speaker. The sub-
jects were asked to, “Please rate the speaker similarity of
each speech sample in comparison to the reference sam-
ple, on a scale of between 0 (definitely different) to 100
(definitely the same).” The results are shown in Fig. 12.
Our goal in this study was to obtain a model whose per-
formance is the same or similar to that of the baseline

Fig. 12 Speaker similarity comparison of speech samples generated
using our proposed model and using the baseline model, in relation
to the ground truth
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model in a low resource scenario. The baseline model
was trained with more than 10 h of target language data,
while our best performing proposed models fine-tuned
pre-trained models trained with two high-resource lan-
guages and augmented data. Therefore, we wanted to
know how training TTSmodel with the high-resource lan-
guage data and augmented data affect speaker similarity
between the speech samples generated by our proposed
model and the ground truth. The results of our evalua-
tion show that speaker similarity of the speech samples
generated by our proposed model to the ground truth
was slightly lower when using cross-lingual training and
augmented data. But the similarity score of our proposed
model was only slightly lower than the similarity score of
the baseline model, despite the proposed model using far
less original target language data for training.
Finally, we have summarized all of systems evaluated in

this study in Table 7.

4 Conclusion
In this paper, we proposed a TTS system containing
both a spectrogram prediction network and a neural
vocoder, for use when only a small amount of target
data is available. We compare the performance of var-
ious TTS models and found that multi-speaker models
were effective as intermediate models when construct-
ing a single-speaker, low-resource TTS model. We trained
some models using only transfer learning and some using
only data augmentation, to evaluate how each method
affected the naturalness of the speech output by the TTS
model. We found that training the TTS model using
both cross-lingual transfer learning and data augmenta-
tion improved performance, reducing the gap between
our low-resource model and the baseline M-MN model,
which was trained with a much larger amount (12 h) of
original target speech data. We then tried adding addi-
tional fine-tuning steps using augmented data and the
original target language data, which slightly improved
the performance of our proposed model. Although the
naturalness and speaker similarity scores for our pro-
posed model using both cross-lingual transfer learning
and data augmentation was very reasonable, we also
investigated increasing the amount of original target lan-
guage data used for training. By increasing the amount
of original target language data used for model train-
ing from 30 min to 3 h, our proposed model using both
cross-lingual transfer learning and data augmentation
achieved performance very close to that of the baseline
model.
We also trained the PWG vocoder using augmented

data generated from 30 min of the original target lan-
guage data. As a result, our proposed method achieved
almost the same speech quality as the vocoder trained
with the entire 12 h of target language data. As a result,

our proposed TTS system, consisting of a spectrogram
prediction network and a PWG neural vocoder, was able
to achieve almost equivalent performance to the baseline
model using only 3 h of original target language training
data, and reasonable performance using only 30 min of
original target language training data.
In future work, we will investigate other TTS

approaches for use with low-resource languages, to see if
we can outperform our baseline TTS model trained with
a large Mongolian dataset.
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