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Abstract

In this paper, we propose a novel feature compensation algorithm based on independent noise estimation, which
employs a Gaussian mixture model (GMM) with fewer Gaussian components to rapidly estimate the noise parameters
from the noisy speech and monitor the noise variation. The estimated noise model is combined with a GMM with
sufficient Gaussian mixtures to produce the noisy GMM for the clean speech estimation so that parameters are
updated if and only if the noise variation occurs. Experimental results show that the proposed algorithm can achieve
the recognition accuracy similar to that of the traditional GMM-based feature compensation, but significantly reduces
the computational cost, and thereby is more useful for resource-limited mobile devices.
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1 Introduction
The automatic speech recognition (ASR) technology
can provide convenient input interfaces for electronics
devices, such as mobile phone, tablet computer, and nav-
igation instrument. However, the performance of speech
recognition systems is often severely degraded by the
environmental noise. Therefore, the noise reduction tech-
nology is necessary for the embedded ASR systems.
The typical ASR system is composed of the front-end

feature extraction and back-end pattern classification. In
the front-end processing, theMel frequency cepstral coef-
ficient (MFCC) is widely used to represent the speech
signal [1]. Besides, the perceptual linear predictive (PLP)
features [2], spectro-temporal features [3], and cochlear
filter cepstral coefficients (CFCC) features [4] have also
been successfully used for speech recognition. In the back-
end classification, the statistical acoustic models are com-
monly used, such as hidden Markov model (HMM) [5],
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artificial neural network (ANN) [6], and dynamic Bayesian
network (DBN) [7].
In real-world applications, the environmental noise

and other speech variations usually cause the serious
mismatch between the present speech feature and pre-
trained acoustic model. In order to reduce the mismatch,
much research has been made and a large number of
robust speech recognition techniques have been proposed
[8, 9]. These methods can be mainly divided into two cat-
egories: the feature-domain and model-domain methods.
The purpose of the front-end feature-domain approaches
is to make the speech feature more robust to noise or to
compensate the testing speech features to make the input
testing data closer to the training condition. In general,
the feature-domain methods can be further divided into
three sub-categories: robust feature extraction [10, 11],
feature normalization [12, 13], and feature compensation
[14, 15]. Compared to the model compensation, feature-
space methods are not related to the back-end acoustic
models and have low computational cost.
In the back-end, model-domain methods modify the

parameters of the prior trained acoustic model, which
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makes the acoustic model match the noisy testing envi-
ronment as well as possible. Maximum a posteriori (MAP)
adaptation [16], maximum likelihood linear regression
(MLLR) [17, 18], maximum a posteriori linear regres-
sion (MAPLR) [19], and parallel model combination
(PMC) [20, 21] are representative examples of model com-
pensation. Generally speaking, model compensation can
achieve higher recognition accuracy than feature-domain
methods. However, it usually leads to significantly larger
computational expense and therefore may be not suitable
for real-time applications.
This work focuses on the model-based feature compen-

sation [22] and measurement science [23]. In the model-
based feature compensation, the Gaussian mixture model
(GMM) is typically employed to represent the distribu-
tion of speech features and it is assumed that the noisy
speech GMM can be obtained by modifying the mean
vectors and covariance matrices of the pre-trained clean
speech GMM according to the noise parameters. The
environmental noise is modeled by a single Gaussian dis-
tribution, whose mean and variance are estimated from
the silence duration of the testing speech [24] or from
the noisy speech [25] by the expectation-maximization
(EM) algorithm [26]. To obtain the closed-form solution
of the noise parameters, the vector Taylor series (VTS)
technique [27, 28] is used to approximate the nonlinear
relationship between the clean and noisy speech cepstral
features. Finally, the clean speech feature is restored from
the noisy speech feature by the minimum mean squared
error (MMSE) method according to the estimated noisy
speech GMM.
In this paper, we propose a novel feature compensa-

tion algorithm based on fast noise estimation technique
using an independent Gaussian mixture model (IGMM)
for resource-limited ASR devices. In this method, the
noise estimation is separated from the feature compen-
sation and is performed by an independent GMM with
fewer Gaussian components. In other words, the feature
compensation algorithm employs two GMM: GMM1 and
GMM2. GMM1 is composed of fewer Gaussian com-
ponents and used to rapidly estimate the noise param-
eters from the noisy testing speech. GMM2 consists of
more Gaussian components and is used for the clean
speech estimation. The proposed algorithm can achieve
the recognition accuracy similar to that of the origi-
nal GMM-based feature compensation and significantly
reduces the computational complexity of the noise esti-
mation. It can make a good balance between the compu-
tational complexity and recognition accuracy and thus is
more suitable for resource-limited embedded systems.
The rest of this paper is organized as follows. In the next

section, we describe the noise estimation method using
independent Gaussian mixture model. The model combi-
nation and clean speech estimation are given in Section 3.

The experimental procedures and results are presented
and discussed in Section 4. Conclusions are drawn in
Section 5.

2 Noise estimation using the independent
Gaussianmixturemodel

In the traditional feature compensation, the noise estima-
tion and clean speech estimation share the same GMM,
which is trained by clean speech features during the train-
ing phase and is converted to noisy GMM in the testing
condition. In order to guarantee the accuracy of clean
speech estimation, the speech model usually consists of a
large number of Gaussian components, which leads to a
high computational cost. To improve computational effi-
ciency without reducing the recognition accuracy, this
paper employs two GMMs to estimate the noise param-
eters and restore the clean speech feature respectively,
which is illustrated in Fig. 1. GMM1 composed of fewer
Gaussian components is used to represent approximately
the distribution of the speech feature and estimate rapidly
the noise parameters from noisy speech features by the
EM algorithm. Moreover, the average log-likelihood dif-
ference of GMM1 is considered as a sign of noise varia-
tion, which is used to decide whether or not to perform
model combination. If the auxiliary function of the EM
algorithm converges, the noise information which is com-
posed of the noise variation sign and noise parameters
is sent to model combination module, where the esti-
mated single Gaussian noise model is combined with
GMM2 to obtain noisy GMM for clean speech estima-
tion. GMM2 has sufficient Gaussian components and can
accurately characterize the distribution of speech in the
cepstral domain. The noise distribution is independent
of the speech distribution and thus it can be considered
that the estimated noise parameters are weakly related to
the Gaussian number of the speech model, which is used
for the noise estimation. Therefore, in the model com-
bination, the noise model estimated by GMM1 is closer
to that estimated by the traditional GMM which con-
sists of a large number of Gaussian components and is
employed for both the noise estimation and clean speech
restoration. On the other hand, the Gaussian number of
GMM2 is similar to that of the traditional GMM-based
feature compensation and the noisy GMM obtained by
combining the GMM2 and estimated noise model can
accurately restore the clean speech. Therefore, the pro-
posed algorithm can achieve the recognition accuracy
similar to that of the traditional GMM-based feature
compensation.
This paper only considers the additive noise and ignores

the channel distortion. According to theMFCC extraction
method, we can obtain the relationship between the noisy
speech cepstral feature y and clean speech cepstral feature
x as:
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Fig. 1 The proposed feature compensation scheme

y = Clog
(
exp

(
C−1x

) + exp
(
C−1n

))
(1)

where n denotes the cepstral features of the additive
noise; C and C−1 denote the discrete cosine transform
(DCT) matrix and its inverse transform matrix, respec-
tively. By taking the first-order VTS expansion at point
(μx, μn0) both sides of (1), we can obtain the following
linear approximation:

y = (I − U)(x − μx) + U(n − μn0) + Clog
(
exp

(
C−1μx

)

+exp
(
C−1μn0

))

(2)

where μx and μn0 are the mean of x and the initial mean
of n, respectively; I denotes the identity matrix; U is given
by,

U = Cdiag
(

exp
(
C−1μn0

)

exp
(
C−1μx

) + exp
(
C−1μn0

)

)

C−1 (3)

where diag() denotes the diagonal matrix whose diagonal
elements are equal to those of the vector in the parenthe-
ses. Taking the expectation on both sides of (2), the mean
vector of the noisy speech μy can be expressed as:

μy = Uμn − Uμn0 + Clog
(
exp

(
C−1μx

) + exp
(
C−1μn0

))

(4)

where μn is the mean of n. Similarly, we can obtain the
variance of the noisy speech

∑
y by taking the variance

operation on both sides of (2):

�y = (I − U)�x(I − U)T + U�nUT (5)

where �n denotes the variances of n.
In the noise estimation, the probability density function

(PDF) of the speech signal is represented by GMM1:

b(xt) =
M∑

m=1
cm

{
(2π)−

D
2 |�x,m|− 1

2 × exp
[
− 1
2
(xt − μx,m)T�−1

x,m(xt − μx,m)

]}

(6)

where xt denotes the tth static cepstral feature vector;
cm,μx,m , and �x,m are the mixture coefficient, mean
vector, and covariance matrix of the mth Gaussian com-
ponent, respectively; and M and D denote the Gaussian
number of GMM1 and the dimension of the static feature

xt , respectively. GMM1 is trained from clean speech in
the training phase and used to estimate the noise param-
eters from noisy testing speech. The noise parameters, μn
and �n, are estimated using the EM algorithm under the
maximum likelihood criterion and the auxiliary function
is defined as:

Q(λ̄|λ) = −1
2

M∑

m=1

T∑

t=1
γm(t)

×
[
(yt − μy,m)T�−1

y,m(yt − μy,m) − log
∣
∣
∣�−1

y,m

∣
∣
∣
]

(7)

where γm(t) = P(kt = m|yt , λ) is the posterior probabil-
ity of being in mixture component m at time t given the
observation yt and the prior parameter set λ; λ̄ denotes the
new GMM parameter set.
For the mth Gaussian component of GMM1, (4) can be

rewritten as:

μy,m = Umμn − Umμn0 + Clog
(
exp

(
C−1μx,m

)

+exp
(
C−1μn0

))
(8)

Substituting (8) into (7) and setting the derivative of
Q(λ̄|λ) with respect to μn to zero, the noise mean μn can
be estimated by,

μn =
[ M∑

m=1

T∑

t=1
γm(t)UT

m�−1
y,mUm

]−1

×
[ M∑

m=1

T∑

t=1
γm(t)UT

m�−1
y,m

× (
yt − Clog

(
exp

(
C−1μx,m

) + exp
(
C−1μn0

))

+Umμn0)

]

(9)

In the cepstral space, there are weak correlations among
the different components of the cepstral vector, and
thereby �x,m, �n, and �y,m can be simplified into the
diagonal matrices. Equation (5) can be rewritten as:

σy,m = (Vm · ∗Vm)σx,m + (Um · ∗Um)σn (10)

whereVm = I−Um; σy,m, σx,m, and σn denote the variance
vectors which are composed of the diagonal elements of
�y,m, �x,m, and �n, respectively; the operation symbol ·∗
denotes the element-wise product for two vectors whose
dimensions are the same. By substituting (10) into (7) and
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taking the derivative of Q(λ̄|λ) with respect to σn, we can
obtain:

∂Q(λ̄|λ)

∂σn
=

M∑

m=1

∂ηy,m
∂σn

∂Q(λ̄|λ)

∂ηy,m

=
M∑

m=1

∂ηy,m
∂σn

T∑

t=1
γm(t)

[
(yt − μy,m) · ∗(yt − μy,m)

−(Vm · ∗Vm)σx,m − (Um · ∗Um)σn
]

(11)

where ηy,m = (σy,m)−1 = [
(Vm · ∗Vm)σx,m + (Um · ∗Um)

σn)]−1 and each element of ηy,m is the reciprocal of the
corresponding element of σy,m. The D×Dmatrix ∂ηy,m

∂σn
can

be regarded as the weighting factor of the mth Gaussian
component and is written as:

Gm = −∂ηy,m
∂σn

= (UT
m · ∗UT

m) × diag
[
((Vm · ∗Vm)σx,m

+(Um · ∗Um)σn)
−2]

(12)

To obtain the closed-form solution of the noise variance,
the weighting factor Gm is approximated as a constant
matrix:

Gm = (UT
m · ∗UT

m) × diag
[
((Vm · ∗Vm)σx,m

+(Um · ∗Um)σn0)
−2] (13)

where σn0 is the initial value of σn and is estimated from
previous EM iteration. By setting the derivatives ofQ(λ̄|λ)

with respect to σn to zero, the noise variance σn can be
computed as:

σn =
[ M∑

m=1

T∑

t=1
γm(t)Gm(Um · ∗Um)

]−1

×
[ M∑

m=1

T∑

t=1
γm(t)Gm((yt − μy,m) · ∗(yt − μy,m)

−(Vm · ∗Vm)σx,m)

]

(14)

In addition to noise estimation, another function of
GMM1 is to monitor time variations of the environmental
noise. When the recognizer is under the stationary condi-
tion, the parameters of GMM2 used for clean speech esti-
mation are not updated and the noisy GMM2 estimated
from the previous time interval is directly employed for
the clean speech feature estimation of the current time
interval, which can save energy and improve battery run-
time for mobile devices. When the environmental noise
varies, the clean GMM2 is combined with the estimated
noise parameters μn and σn to produce the noisy GMM2

for computing clean speech features. It is difficult to
determine whether the noise variation occurs by compar-
ing the noise parameters of two time intervals directly.
Therefore, this work employs the average log-likelihood
difference over all the frames of the current time interval
as the sign of noise variation. Besides the adapted noisy
GMM1 estimated from the current testing speech, the
noise parameters of the previous time interval are saved
in memory and used to produce another noisy GMM1 by
model combination with the clean GMM1. If the average
log-likelihood difference of the two noisy GMM1 is more
than the threshold, we can believe that the noise varia-
tion occurs. The noise variation sign and noise parameters
compose the noise information, which is sent to model
combination module to decide whether or not to update
the parameters of the noisy GMM2.
As shown in Fig. 1, the complete noise estimation pro-

cess is summarized below.

1. Initialize the initial mean μn0 and initial variance σn0
using the vector of all zeros and the vector of all ones,
respectively.

2. Initialize the mean μy,m and variance σy,m of GMM1
with μy,m= μx,m, σy,m=σx,m.

3. Compute the posterior probability of the noisy
speech using GMM1.

4. Compute the auxiliary function of the EM algorithm
by Eq. (7).

5. Estimate the noise parameters μn and σn using Eqs.
(9) and (14), respectively.

6. Update the mean μy,m and variance σy,m of GMM1
using Eqs. (8) and (10), respectively.

7. Update the initial mean μn0 and initial variance σn0
with μn0 = μn, σn0=σn.

8. If the convergence criterion is not met, go to step 3.

3 Model combination and clean speech
estimation

3.1 Model combination
The Gaussian number of GMM2 is much greater than that
of GMM1 and thus it can accurately represent the distri-
bution of cepstral speech features. GMM2 is trained by
the clean speech during the training phase and its PDF can
be written as:

b(xt) =
N∑

i=1
cn

{
(2π)−

D
2 |�x,i|− 1

2

×exp
[
−1
2
(xt − μx,i)

T�−1
x,i (xt − μx,i)

]}
(15)

where xt denotes the tth static cepstral feature vector; ci,
μx,i, and �x,i are the mixture coefficient, mean vector, and
covariance matrix of the ith Gaussian component, respec-
tively; and N is the Gaussian number of GMM2. If the
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noise variation occurs, the means and variances of GMM2
will be updated using the following equations:

μy,i = Clog
(
exp

(
C−1μx,i

) + exp
(
C−1μn

))
(16)

σy,i = ((I − Ui) · ∗(I − Ui))σx,i + (Ui · ∗Ui)σn (17)

where μy,i is the noisy mean vector of the ith Gaussian
component; σy,i is the noisy variance vector, which is com-
posed of the diagonal elements of the noisy covariance
matrix �y,; and Ui is given by,

Ui = Cdiag
(

exp
(
C−1μn

)

exp
(
C−1μx,i

) + exp
(
C−1μn

)

)

C−1

(18)

In order to improve computational efficiency, Eq. (18)
is implemented by the fast DCT algorithm and can be
rewritten as:

Ui = C
[

diag
(

exp
(
C−1μn

)

exp
(
C−1μx,i

) + exp
(
C−1μn

)

)

C−1
]

(19)

Equation (19) can be performed by D DCT calculations
and thus its number of multiplications is approximately
equal to D2log2D + D2.

3.2 Clean speech estimation
The static coefficient x̂t of the clean speech feature is
estimated from the noisy speech feature yt by the noisy
GMM2 and the MMSE estimate of x̂t is given by,

x̂t = E(xt |yt) ≈ yt −
N∑

i=1
γ̂i(t) × (

Clog
(
1 + exp

(
C−1 (

μn − μx,i
))))

(20)

where γ̂i(t) = P(kt = i|yt , λ̂) is the posterior probabil-
ity of being in the ith Gaussian mixture at time t given
the observation yt and the noisy GMM2 parameter set λ̂.
The first-order coefficient of the clean speech feature 	x̂t
is obtained by differentiating the estimated clean static
coefficients and the computing formula is written as:

	x̂t =

H∑

τ=−H
τ x̂t+τ

H∑

τ=−H
τ 2

(21)

where H denotes the first-order differential constant. Sim-
ilarly, the second-order coefficient of the clean speech
feature 		x̂t is computed by the following formula:

		x̂t =

�∑

τ=−�

τ	x̂t+τ

�∑

τ=−�

τ 2
(22)

where � denotes the second-order differential constant.
Since the covariance matrices of all the Gaussian com-

ponents are diagonal in GMM2, we ignore the compu-
tational cost of obtaining the posterior probability γ̂i(t).
Thus, the computational complexity of the clean speech
estimation mainly depends on (20). For the N values of
γ̂i(t), only a few probability values are non-zero and the
most values are close to zero. Therefore, the following
equation is used instead of (20):

x̂ = E(xt |yt) ≈ yt −
∑

γ̂i(t)∈N∗
γ̂i(t)

(
Clog

(
1 + exp

(
C−1 (

μn − μx,i
))))

(23)

where N∗ denotes the set which is composed of the top
10% posterior probability. By taking (23) to restore the
clean speech feature, the computational expense of the
clean speech estimation can be ignored in the proposed
feature compensation algorithm.

3.3 Computational complexity analysis
When the recognizer works in the stationary or slow
time-varying noise condition, the model combination is
seldom performed in the proposed algorithm and thus
the computational cost is mainly dependent on the noise
estimation. Assuming the GMM used in the traditional
algorithm has the same Gaussian components as GMM2,
the computational complexity of the proposed algorithm
is reduced to about M

N of that of the traditional GMM-
based feature compensation, where M and N are the
Gaussian numbers of GMM1 and GMM2, respectively.
In the case of fast time-varying noise, the proposed

feature compensation employs (9) and (14) to estimate
the noise parameters, which requires about 2D3 multi-
plications. Thus, the noise estimation requires 2KMD3

multiplications, where K andM denote the iteration num-
ber and the Gaussian number of GMM1, respectively;
D is the channel number of the Mel filter bank. In the
model combination, (16) can be performed by fast DCT
technique and thereby its computational complexity is
much lower than those of (17) and (19). For all the N
Gaussian components of GMM2, the number of multipli-
cations of (17) is approximately equal to 4ND2 and that
of (19) is about N

(
D2log2D + D2). Therefore, the total

number of multiplications of the proposed algorithm is
approximately 2KMD3 +N

(
5D2 + D2log2D

)
. At each EM

iteration, the traditional GMM-based feature compensa-
tion firstly computes the noise parameters by (9) and (14),
where GMM1 is replaced by the GMM with N Gaussian
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mixtures, and the two equations require about 2D3 mul-
tiplications. Then, it modifies the parameters of GMM
using (16), (17), and (19), which take

(
5D2 + D2log2D

)

multiplications. For all the N Gaussian components of
GMM and K EM iterations, the traditional algorithm per-
forms approximately KN

(
2D3 + 5D2 + D2log2D

)
multi-

plications. For example, when D = 32, M = 20, N =
400, and K = 4, the proposed and traditional GMM-
based feature compensation methods require approxi-
mately 9,338,880 and 121,241,600 multiplications, respec-
tively. The computational complexity of the proposed
algorithm is reduced to about 1

13 of that of the traditional
algorithm.

4 Performance evaluation
4.1 Experimental conditions
To evaluate the proposed algorithm, the TIMIT speech
database [29] and NOISEX-92 noise database [30] are
employed to produce the training and testing speech in
this paper. The two dialect sentences spoken by each
speaker in the TIMIT database are segmented into 21
words for establishing the isolated word recognition sys-
tem. The 6300 utterances spoken by 300 speakers are
used to train GMM1 and GMM2. For each word, the 300
utterances spoken by the 300 speakers are employed to
train the HMM of the word. The acoustic model is com-
posed of the HMMs of all words and used for speech
recognition in the back-end. The 2100 utterances spoken
by 100 speakers are mixed with noise at different signal-
to-noise ratio (SNR) values to obtain the noisy testing
speech.
The original speech is down-sampled from 16 to 8 kHz

and then the down-sampled speech is segmented into 16
ms frames with a frame shift of 8 ms. The feature vector of
each frame is composed of 13Mel frequency cepstral coef-
ficients including the 0th coefficient, and their first-order
time differential coefficients. Each word is modeled by a
left-to-right HMM, which is composed of 6 states with
4 Gaussian components per state. The Gaussian number
of GMM1 varies from 10 to 400 for the noise estima-
tion and GMM2 consists of 400 Gaussian mixtures. For
all the GMMs and HMMs, the covariance matrix of each
Gaussian mixture is diagonal. The initial noise mean μn0
are set to the vector of all zeros and the initial noise vari-
ance σn0 is set to the vector of all ones for the first EM
iteration.
The system configuration of the computer used for

experiments is as follows: Intel Core i5-6400 Processor
(2.70 GHz), 8.00 GB Random Access Memory (RAM),
andMicrosoftWindows 10Operating System. The speech
recognition system is constructed using the GNU Octave
4.4.1, and the computation time is the running time of the
Octave software in the computational complexity mea-
surement experiment.

4.2 Average log-likelihood difference
This experiment validates the effectiveness of the aver-
age log-likelihood difference as the sign of noise variation
and the average log-likelihoods of the clean, combined,
and adapted GMMs are illustrated in Fig. 2. The adapted
GMM is obtained by modifying the parameters of GMM1
(cleanGMM) according to the noise parameters estimated
from the current noisy testing speech and the combined
GMM is produced by combining GMM1 and the single
Gaussian noise model obtained from the previous time
interval. The white noise is used to produce the testing
speech and the noise parameters are updated once per
second using (9) and (14). The initial SNR is about 5 dB
and then it is improved to 10 dB at the third second. The
SNR is also approximately constant during 4∼7 s.
As demonstrated in Fig. 2, the average log-likelihood of

the combined GMM is very close to that of the adapted
GMM in the approximately stationary conditions. The
SNR is improved from 5 to 10 dB at the third second
and thus there exists an environmental mismatch between
the combined GMM and testing condition. Therefore, the
average log-likelihood of the combined GMM degrades
drastically and is far less than that of the adapted GMM
when the average log-likelihood is updated at the fourth
second. The results show that the average log-likelihood
difference of the adapted and combined GMMs can be
used as the sign of noise variation. If the average log-
likelihood difference is less than or equal to the threshold,
it can be assumed that the noise does not vary. Thus, it
is not necessary to perform the model combination and
the noisy GMM2 of the previous time interval is used for
the clean speech estimation of the current time interval.
If the average log-likelihood difference is more than the
threshold, we consider that the noise variation occurs and
the parameters of the noisy GMM2 should be updated

Fig. 2 Average log-likelihoods of the clean, combined, and adapted
GMMs
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by model combination. The threshold of the average log-
likelihood difference is set to 0.5 in our experiments.

4.3 Number of Gaussian components
This experiment shows how to select the Gaussian num-
ber of the GMM1. Figure 3 illustrates the word error
rates of the proposed algorithm in white noise environ-
ments, where the Gaussian number of the GMM1 varies
from 10 to 400. The results indicate that the recogni-
tion performance of the proposed feature compensation
is less affected by the Gaussian number of GMM1. Fewer
Gaussian components mean less computational expense
and more Gaussian mixtures can improve the accuracy
of the noise estimation to a certain extent. Comprehen-
sively considering the recognition rate and computational
cost, the Gaussian number of GMM1 is set to 20 in the
following experiments.

4.4 Comparison of recognition results
In this experiment, the proposed algorithm (IGMM20)
is compared with the original GMM-based feature com-
pensation (GMM400, GMM20) [25, 27], where GMM400
and GMM20 employ the 400-Gaussian GMM and 20-
Gaussian GMM for feature compensation, respectively.
Figure 4 shows the word error rates with different SNR
levels for the three types of testing noise: (a) white noise,
(b) pink noise, (c) factory noise, and (d) average over the
three types of testing noise.
As shown in Fig. 4, the proposed algorithm can achieve

similar performance with the traditional GMM-based fea-
ture compensation (GMM400). For example, at 0 dB SNR,
the word error rates of GMM400 are 41.1%, 31.2%, and
36.3% for white, pink, and factory noise, respectively,
while the corresponding results of IGMM20 are 42.8%,
32.1%, and 37.2%. This shows that the GMM-based noise

Fig. 3Word error rates of the proposed algorithm with different
numbers of Gaussian components

Fig. 4 Performance comparison of the proposed algorithm (IGMM20)
and original GMM-based feature compensation (GMM400 and
GMM20) with different SNRs for the three types of testing noise
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estimation is less affected by the Gaussian number of
GMM and thus the noise parameters can be estimated
by a GMM with fewer Gaussian components, which can
significantly reduce the computational complexity of the
noise estimation in real applications. When the Gaus-
sian number of the traditional algorithm is reduced to 20,
its recognition performance degrades drastically, which
demonstrates that the clean speech estimation requires
sufficient Gaussian mixtures and the GMM for restoring
the clean speech feature should represent the PDF of the
speech feature more accurately. In summary, using differ-
ent GMMs to estimate the noise and reconstruct the clean
speech respectively, we can reduce the computational cost
without performance degradation.

4.5 Comparison of computational complexity
Finally, we discuss the computational cost of the pro-
posed algorithm. Figure 5 illustrates the average compu-
tation time per frame of the proposed noise estimation
with different Gaussian numbers at 10 dB SNR in white
noise environment. The result of 400 Gaussian mixtures
is equivalent to that of the traditional GMM-based feature
compensation (GMM400).
From Fig. 5, it can be seen that when the Gaussian

number decreases, the computational cost of the pro-
posed algorithm is further reduced and the computation
time is roughly proportional to the Gaussian number. The
average computation time of 20 Gaussian components is
4.29 ms, which is only about one seventeenth of that of
GMM400. This shows that the proposed algorithm can
make a good balance between the computational com-
plexity and recognition accuracy, and is more suitable for
resource-limited embedded systems.

Fig. 5 Average computation time of the proposed noise estimation
with different Gaussian numbers at 10 dB SNR in white noise
environment

5 Conclusions
In this paper, we propose a novel feature compensa-
tion algorithm based on the independent noise estima-
tion for robust speech recognition, which separates the
noise estimation from the feature compensation and per-
forms it using an independent GMMwith fewer Gaussian
components. Moreover, the GMM is used to monitor
the time variations of the environmental noise accord-
ing to the average log-likelihoods of the combined and
adapted noisy GMMs. In order to guarantee the accu-
racy of the feature compensation, another GMM with
sufficient Gaussian components is employed to estimate
the clean speech feature. Only when the noise vari-
ation occurs, the parameters of noisy GMM for the
clean speech estimation are updated by model com-
bination with the estimated the single Gaussian noise
model, which can save energy and improve battery run-
time for mobile devices. The experimental results show
that the proposed algorithm can achieve the recogni-
tion accuracy similar to that of the traditional GMM-
based feature compensation, but significantly reduces the
computational complexity. It can make a good balance
between the computational complexity and recognition
accuracy and thus is more suitable for resource-limited
devices.
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