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Abstract

The presence of degradations in speech signals, which causes acoustic mismatch between training and operating
conditions, deteriorates the performance of many speech-based systems. A variety of enhancement techniques have
been developed to compensate the acoustic mismatch in speech-based applications. To apply these signal
enhancement techniques, however, it is necessary to know prior information about the presence and the type of
degradations in speech signals. In this paper, we propose a new convolutional neural network (CNN)-based approach
to automatically identify the major types of degradations commonly encountered in speech-based applications,
namely additive noise, nonlinear distortion, and reverberation. In this approach, a set of parallel CNNs, each detecting
a certain degradation type, is applied to the log-mel spectrogram of audio signals. Experimental results using two
different speech types, namely pathological voice and normal running speech, show the effectiveness of the
proposed method in detecting the presence and the type of degradations in speech signals which outperforms the
state-of-the-art method. Using the score weighted class activation mapping, we provide a visual analysis of how the
network makes decision for identifying different types of degradation in speech signals by highlighting the regions of
the log-mel spectrogram which are more influential to the target degradation.

Keywords: Signal enhancement, Convolutional neural network, Identification of degradation, Quality control,
Visualization

1 Introduction
Advances in portable devices such as smartphones and
tablets, that are equipped with high-quality microphones,
facilitate capturing and processing speech signals in a
wide range of environments. However, the quality of the
recordings is not necessarily as expected, as they might
be subject to degradation. In practice, the presence of
degradation during the operating time can deteriorate
the performance of speech-based systems, such as speech
recognition [1], speaker identification [2], and pathologi-
cal voice analysis (assessment of voice signal of a speaker
with a voice disorder) [3, 4], mainly due to acoustic mis-
match between training and operating conditions. The
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most common types of degradation typically encoun-
tered in speech-based applications are background noise,
reverberation, and nonlinear distortion.
A speech signal degraded by additive noise, reverbera-

tion, and nonlinear distortion can be, respectively, mod-
eled as follows:

xn(t) = s(t) + e(t), (1)

xr(t) = s(t) ∗ h(t), (2)

xd(t) = ψ(s(t)), (3)
where t is the time index, s(t) is the clean speech sig-
nal recorded by a microphone in a noise-free and non-
reverberant environment, e(t) is an additive noise, ψ

represents a nonlinear function, h(t) is a room impulse
response (RIR), and the ∗ indicates the convolution oper-
ation. We note that in reality, these degradations are even
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more complex. For example, they may be time-dependent.
A variety of effective signal enhancement techniques have
been developed to enhance a degraded speech signal
such as noise reduction [5, 6], dereverberation [7, 8],
and restoration of some types of nonlinear distortion [9,
10]. Most of these enhancement algorithms have been
designed to deal with a specific type of degradation in a
signal, although recent research in comprehensive speech
enhancement, dealing with both additive noise and rever-
beration, is promising [11–13]. Nevertheless, to properly
compensate for the effects of degradations, it is necessary
to know or obtain information about the presence and
the type of degradations in speech signals. Since manual
inspection of the signals is very time consuming, costly,
and even impossible in many speech-based applications,
an accurate degradation detection system would be use-
ful to automatically identify the presence and type of
degradations.
There are a variety of approaches to identify different

types of degradation in speech signals. For example, Ma
et al. in [14] proposed a hidden Markov model-based
approach to distinguish different types of noise in speech
signals. In another study by Desmond et al. [15], the
reverberant signals are detected using a channel-specific
statistical model. In [16, 17], clipping in speech signals, as
an example of nonlinear distortion, is detected. Although
effective, these approaches are focused on detecting a
single, specific type of degradation. The use of a mul-
ticlass classification, on the other hand, can be used to
detect different types of degradations. In [18, 19], Poorjam
et al. proposed two generalized multiclass classification-
based approaches detecting various types of degradation,
which investigated only on pathological voice signals and
the accuracy was still inadequate. Moreover, there is no
control over the class assignment in these approaches
when a new type of degradation is observed for which
the classifier has not been trained. For example, clip-
ping, packet-loss, dynamic range compression, automatic
gain control, and distortions due to using low quality or
improperly configured equipment are considered as new
types of degradation for a multiclass classifier trained only
with noisy and reverberant signals.
To overcome the limitations of the multiclass-based

approaches, one can use a multilable classification
approach in which more than one class labels may be
assigned to each sample. Compared to the multiclass-
based methods, this approach can better deal with some
challenging cases such as the presence of a new degra-
dation type and when more than one degradation coex-
ists. In the former case, the sample may be classified
as none of the target classes. In the latter case, more
than one detector can accept a signal subject to a mix-
ture of degradations. One possible solution is to inte-
grate the existing algorithms, developed for detecting each

type of degradation, into a unified framework and con-
sider each subsystem as a detector to make a decision
about a signal. However, algorithms that are indepen-
dently developed may make very different assumptions
and may have diverse requirements that could occa-
sionally be conflicting. Thus, integrating them into a
framework is very challenging, and meeting all require-
ments at the same time might not be feasible in some
cases.
As an alternative solution, Poorjam et al. proposed a

data-driven approach which uses a set of parallel Gaus-
sian mixture models (GMMs) to detect three types of
degradation in pathological voice signals, namely back-
ground noise, reverberation, and nonlinear distortion [4].
All detectors in this approach are similar in terms of the
complexity, underlying assumptions, and the acoustic fea-
tures except that they are trained using different degraded
signals. This approach is focused on pathological voices
and, particularly, on the sustained vowels.
In this paper, we propose a more accurate convolu-

tional neural network (CNN)-based approach which can
identify degradations not only in sustained vowels, but
also in normal running speech. CNNs are computation-
ally efficient deep neural networks that are able to learn
complex patterns in the spectrogram of a speech signal.
In this approach, we apply a set of parallel CNNs to the
log-mel spectrograms of the signals. Each CNN model,
trained with signals corrupted by a specific degradation
type, is responsible for detecting the corresponding degra-
dation in a test signal. The prediction scores of an unseen
test sample can be used to associate multiple degrada-
tion labels to an observation and can be interpreted as the
degree of contribution of each degradation in a degraded
signal. Moreover, using the score class activation mapping
(score-CAM) technique [20], we visually explain on what
basis the CNN models make a specific decision in detect-
ing different types of degradation by finding the regions
in the mel-scale spectrograms of a degraded signal that
are most influential to the scores of the target class. In
this technique, different activation maps are applied to
the input spectrogram, each perturbing a region of the
spectrogram. Then, the effect of each activation map on
the prediction scores is observed. The importance of each
activation map is determined by the prediction score on
the target class. Finally, a saliency map is generated by a
weighted linear combination of all activationmaps to visu-
alize the internal representation in a CNN [20]. Since this
technique does not require any modifications to the archi-
tecture of the network, it can be applied to a wide variety
of CNN models.
The rest of this paper is organized as follows. In

Section 2, we formulate the problem of automatic degra-
dation detection, and describe the proposed approach.
The experimental setup is explained in Section 3. In
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Section 4, we present and discuss about the results. The
paper ends with conclusions in Section 5.

2 System description
2.1 Problem formulation
In the problem of degradation detection in speech sig-
nals, we are given a set of training data � = {xn, yn,d}Nn=1,
where xn ∈ R

k denotes the nth observation of k dimen-
sion. Depending on the system and the level of processing,
this could represent acoustic features of an audio signal
or a frame of a signal. For example, in the proposed sys-
tem, introduced in Section 2.2, xn represents the log-mel
spectrogram of the nth audio signal, and in the baseline
system, described in Section 2.3, it is the mel-frequency
cepstral coefficients of the nth frame of a signal. yn,d ∈
{0, 1} denotes whether the nth observation belongs to a
degradation class d. N is the total number of training
samples. The goal is to approximate a binary classifier
function gd for each degradation type d, such that for an
observation not in the training data, xtest, the probability
of the test sample classified in the correct class is max-
imized. In other words, the estimated degradation label,
ŷd = gd(xtest), for ŷd ∈[ 0, 1], is as close as possible to the
true label.

2.2 The proposedmethod
In our proposed method, we use a set of parallel CNNs
to approximate the functions gd. Each CNN, inspired by
VGGNet [21], consists of several convolutional blocks,

and each block consists of several convolutional layers
with kernel size of 3 × 3. As shown in Fig. 1, we propose
5 different CNN architectures for each detector to inves-
tigate the optimal architecture for degradation detection
problem. The numbers in front of “Conv” in each layer
show the number of feature maps. The CNN32, which has
28,807 parameters to train, consists of one convolutional
block of 3 layers. The CNN64, with 120,423 parameters,
consists of a 2-layer and a 3-layer convolutional blocks.
The CNN128 comprises two 2-layer and one 3-layer con-
volutional blocks. The number of parameters of this net-
work is 469,543. In CNN256, there are two 2-layer and
two 3-layer blocks and has 1,979,175 parameters. Finally,
the CNN512, which consists of 7,947,559 parameters, is
made of three 2-layer and two 3-layer blocks. In Fig. 2,
the architecture of CNN128 is illustrated in more detail.
To connect the convolutional layers, we employ batch
normalization (BN) and rectified linear unit (ReLU). BN
permits a deep neural network to learn with larger learn-
ing rates which facilitates quicker convergence and better
generalization [22]. The output layer consists of two dense
layers—also known as the fully connected layers—that are
connected to the last convolutional layer by a global aver-
age pooling. We use a sigmoid activation function in the
output layer to produce a score in a range [ 0, 1].
As the acoustic feature, we use the log-mel spectrogram

of size 300 frames ×40 mel bins, calculated by taking the
logarithm of the output of a mel-scale filter bank applied
to the short-time Fourier transform (STFT) of a signal.

Fig. 1 The architecture of CNN models of different number of convolutional layers
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Fig. 2 The architecture of the CNN models used in the proposed
degradation detection approach

The log-mel spectrogram is a popular signal parametriza-
tion technique in many audio applications using deep
neural networks which provides an efficient, perceptually
relevant, 2-dimensional representation of an audio signal.
Compared to the STFT, the log-mel spectrogram provides
a less redundant representation of an audio signal and
allows CNNs to learn with a smaller number of training
data. The decibel scaling is motivated by the human per-
ception of loudness [23] and has shown to provide a better
discriminability compared to the linear version [24]. The
resulting log-mel spectrogram together with the first- and

second-order derivatives is used as the input feature to the
CNN.
We use stochastic gradient descent (SGD) to minimize

the binary cross-entropy for each classifier that is defined
as:

Ld =− 1
N

N∑

n=1

(
yn,d ln(gd(xn)) + (1 − yn,d) ln(1 − gd(xn))

)
,

(4)

where gd(xn) ∈[ 0, 1] is the output score of the CNN
trained to identify a specific type of degradation, and
yn,d ∈ {0, 1} is the true degradation label.
The decision for the test observation is made by set-

ting a threshold over the output scores of each CNN. This
way, if a test sample is subject to a new type of degrada-
tion, we expect it to be rejected by all CNNs based on a
pre-defined threshold. Moreover, if an observation is sub-
ject to more than one type of degradation, we expect that
the output score of more than one CNN to be above the
threshold. It should be noted that since the selection of an
optimal decision threshold depends on the application, in
this study, we consider the soft scores and use a threshold-
independent metric, introduced in Section 3.4, to evaluate
the performance of the proposed system.

2.3 Baseline system
As a baseline system, with which we compare our pro-
posed system, we use the Gaussian mixture model-
universal background model (GMM-UBM) degradation
detection approach proposed in [4]. In this approach, a
set of parallel GMMs, fitted to the frames of the speech
signals in the mel-frequency cepstral coefficient (MFCC)
domain, is used to detect different types of degradation.
The training phase consists of two steps: (1) training a
degradation-independent GMMwith a very large amount
of training data from various degradation classes, referred
to as the UBM, and (2) training a set of degradation-
dependent GMMs by adapting the parameters of the UBM
using the corresponding training data. For evaluation, the
identification score of a certain type of degradation, d,
and time-sequence input, X = (x1, . . . , xn, . . . , xN ), is
computed by the following equation:

σd = gd(X)

= 1
N

( N∑

n=1
log p(xn|λd) −

N∑

n=1
log p(xn|λubm)

)
,

(5)

where the N is the total number of time-frames, the
λubm and the λd are the parameters of the UBM and the
degradation-dependent GMMs, respectively, and p(xn|λ)

is the Gaussian probability density function. The identifi-
cation is made by setting a threshold over the scores.
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3 Experimental setup
3.1 Data sets
Our approach can be applied to any type of speech, such
as normal running speech, whispered speech, emotional
speech, sustained vowel phonation, and singing voice. In
this study, we consider two types of speech, namely patho-
logical voice and normal running speech, to evaluate the
performance of the proposed method. For the patho-
logical voice, we used the mPower mobile Parkinson’s
disease (MMPD) data set [25] which includes more than
65,000 voice samples of 10 seconds sustained phonations
of the vowel /a/ recorded at 44.1 kHz sampling frequency
by PD patients and healthy speakers. This data set has
been selected because most PD patients suffer from some
form of vocal disorders [26]. Moreover, since sustained
vowel phonations provide a simple acoustic structure to
characterize the glottal source and resonant structure of
the vocal tract [27], they are considered as the main
voice material for analysis of pathological voice caused
by a range of medical disorders. For the normal running
speech, we used an English speech database published by
the Center for Speech Technology Research at Univer-
sity of Edinburgh [28]. The samples of this database were
recorded at 48 kHz.

3.1.1 Pathological voice
To prepare data for degradation detection experiments in
pathological voices, we randomly selected 9,000 samples
from the MMPD data set, and divided them into 5 equal
groups of 1,800 samples. The recordings of the first group
were degraded by six different types of additive noise,
namely babble, street, restaurant, office, white Gaussian,
and wind noises1 under different signal-to-noise ratio
(SNR) conditions ranging from −10 dB to 20 dB. The
noise signals were resampled to 44.1 kHz before being
added to the voice signals. To reduce the probability of
observing signals degraded by exactly the same noise seg-
ments in both training and evaluation subsets, we added a
random segment of a noise file to each clean signal.
The recordings of the second group were filtered by 46

real room impulse responses (RIRs) of the AIR database
[29], measured with a mock-up phone in hand-held and
hands-free positions in various realistic indoor environ-
ments, such as a meeting room, a corridor, a lecture room,
an office, a stairway, and a kitchen, to produce reverber-
ant samples. The reverberation time of the RIRs, RT60,
defined as the time it takes for a switched-off sound to
decay by 60 dB [30], ranges from 390 ms to 1.47 s. The

1The babble, restaurant and street noise files were taken from https://www.
soundjay.com, the office noise was taken from https://freesound.org/people/
DavidFrbr/sounds/327497, the white noise was taken from https://www.
audiocheck.net/testtones_whitenoise.php, and the wind noise was taken from
https://www.iks.rwth-aachen.de/forschung/tools-downloads/databases/wind-
noise-database.

direct to reverberant energy ratio of the RIRs ranges from
4.35 to 12.28 dB. The RIRs were resampled to 44.1 kHz
prior to convolution.
The samples of the third group were distorted by

either clipping, coding, or clipping followed by coding as
an example of nonlinear distortion. The clipping level,
defined as a proportion of the peak absolute signal ampli-
tude to which the sample values greater than this thresh-
old are limited, was set to 0.3, 0.5, or 0.7, and we used 9.6
kbps and 16 kbps code-excited linear prediction (CELP)
codecs [31].
We used the fourth group for a combination of addi-

tive noise and reverberation, in which a voice sample was
filtered by a RIR and added to a noisy signal that was
also convolved with a RIR. The noisy signals in this case
are degraded by indoor environment noises such as bab-
ble, restaurant, and office noise under 0 dB, 5 dB, or 10
dB SNR conditions. The reason for choosing this subset
is to evaluate whether a signal, in which both noise and
reverberation coexist, can be detected by both noise and
reverberant detectors. The fifth group was used without
any processing and considered as the clean class.

3.1.2 Normal running speech
To prepare samples for noisy and noisy-reverberant
classes in normal speech, we used the clean and noisy
parallel speech data set (NS) [28] and clean and noisy-
reverberant speech data set (NRS) [32], respectively.
In the NS data set, clean speech signals, recorded by

28 gender-balanced speakers, were subject to 10 different
noises obtained from the DEMAND database [33] at 0 dB,
5 dB, 10 dB, and 15 dB SNRs. From the clean subset of this
data set, we randomly selected 1,800 samples for the clean
class, and 1,800 non-overlapping samples from the noisy
subset for the noisy class.
In the NRS database, the noisy reverberant speech is

created by convolving a clean signal with a RIR and
adding it to a noisy signal that was also convolved with a
room impulse response. Thus, we randomly selected 1800
samples for the noisy-reverberant class. To prepare data
for the reverberant and nonlinear distortion classes, we
selected two disjoint subsets of 1800 samples from the
clean part of the data set, and degraded them in a similar
way as for creating reverberant and nonlinear distortion
classes for the pathological voices.

3.2 Acoustic features
We normalized the signals by subtracting the mean and
dividing by the absolute maximum amplitude. Then, for
the input to the CNNs, we segmented a signal into frames
of 30 ms with 10 ms overlap using a Hamming window.
Then, for each frame of a signal, we computed 40 channels
log-mel spectrogram together with the first and second
derivatives.

https://www.soundjay.com
https://www.soundjay.com
https://freesound.org/people/DavidFrbr/sounds/327497
https://freesound.org/people/DavidFrbr/sounds/327497
https://www.audiocheck.net/testtones_whitenoise.php
https://www.audiocheck.net/testtones_whitenoise.php
https://www.iks.rwth-aachen.de/forschung/tools-downloads/databases/wind-noise-database
https://www.iks.rwth-aachen.de/forschung/tools-downloads/databases/wind-noise-database


Saishu et al. EURASIP Journal on Audio, Speech, andMusic Processing          (2021) 2021:9 Page 6 of 10

As the input to theGMM-UBM system, we usedMFCCs
computed by using a 30 ms Hamming window with 10
ms overlap and a 27 channel mel-scale filter bank. For
each frame of a signal, 13 coefficients, including the log-
energy of the frame, along with the first and second
derivatives of the MFCCs have been calculated to form a
39-dimensional feature vector. We used the same values
for the parameters of the baseline system as were used in
[4] to reproduce their results.

3.3 Configuration parameters
All CNN networks in our experiments were trained 20
epochs by using SGD to minimize the binary-cross-
entropy loss function defined in Eq. (4). The magnitude
of the random fluctuations in the SGD dynamics is repre-
sented by the noise scale, ρ, which is proportional to the
speed of convergence and defined as [34]:

ρ = ε

1 − ν

(
N
B

− 1
)

≈ εN
B(1 − ν)

, (N � B), (6)

where N is the number of training samples, ε is the learn-
ing rate, B is the batch size, and ν is the momentum of
the SGD. In our experiments, the batch size in each epoch
and the momentum of SGDwere set to 64 and 0.9, respec-
tively. We also exponentially decreased the learning rate
from 0.01 to 0.0001 from one epoch to another.
For the baseline system, the number of mixture compo-

nents is set to 1024 according to [4].

3.4 Performance metric
To evaluate the performance of the proposed system,
we used the area under the receiver operating charac-
teristic (ROC) curve (AUC). In the ROC curve, the true
positive rate is plotted against the false positive rate for
different decision thresholds of the scores. The AUC sum-
marizes the ROC curve into a single number facilitating
an easier comparison between different systems regard-
less of the decision threshold which is an application- and
user-dependent parameter. The AUC value equals to 0.5
represents a chance level performance, while the AUC
equals to 1 means a perfect separation of the classes.

4 Results and discussion
CNN is a complex, nonlinear transformer which can pro-
vide a rich variation of expressions of the input through
the layers. By increasing the number of parameters, a bet-
ter expression of the input can typically be achieved at the
expense of increasing the risk of overfitting as the model
can memorize specific details of the training data. There-
fore, we first conduct an experiment to choose the optimal
CNN architecture for the degradation detection problem
and use it for the rest of the experiments. Then, after com-
paring the performance of the proposed method with the

baseline, we visually explain how the CNNsmake decision
for identifying a degradation in a speech signal.
In all experiments, we used 10-fold cross validation

(CV) in which the samples were randomly divided into 10
non-overlapping and equal sized subsets. Then, 9 out of 10
subsets were used for training themodels, and the remain-
ing subset was used for evaluation. This procedure was
repeated 10 times so that all subsets were used once for
training and evaluating the model. It should be noted that
for evaluation, we extended each test subset by adding 20
outlier samples, which do not contain relevant informa-
tion with respect to the context of the data sets such as the
bark of dog or a recording of whispered speech, to show
whether the detectors can reject such outlier samples.
To investigate the best architecture for the CNN mod-

els, we compare the performance of CNN32, CNN64,
CNN128, CNN256, and CNN512. These architectures are
explained in Section 2.2 and illustrated in Fig. 1. In this
experiment, we used the pathological voices. The results,
reported in Table 1, show that the difference in per-
formance between the various network architectures is
marginal, particularly for noise detection in which all net-
works perform equally well. However, having a network
of a simpler architecture which exhibits a higher perfor-
mance is more desired to reduce the risk of overfitting.
Considering the number of parameters of each model,
mentioned in Section 2.2, and since the CNN128 outper-
forms others in identification of distortion and reverbera-
tion and has the most balanced complexity and accuracy
for our application, we choose this architecture for the
remaining experiments.
Once the optimal CNN architecture is selected, we can

impartially compare the performance of the proposed sys-
tem with the baseline. As explained in Section 2.3, the
training phase in the baseline system consists of two steps,
namely training a UBM with a large number of training
samples from different degradation classes, and adapting
degradation-dependent models with the corresponding
training samples. For training the UBM, we used 8000
samples (1600 samples from each class). The remaining
1000 samples (200 samples from each class) were used
for adapting and evaluating the degradation-dependent
GMMs. To provide a fair comparison between the pro-
posed method and the baseline system in terms of how

Table 1 Comparison between the performance of different CNN
architectures on the pathological voice data set in the form
mean AUC±95% confidence interval

Detectors CNN32 CNN64 CNN128 CNN256 CNN512

Noise 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

Distortion 0.98±0.01 0.98±0.01 0.99±0.00 0.98±0.01 0.98±0.01

Reverberation 0.90±0.01 0.91±0.01 0.93±0.01 0.91±0.01 0.89±0.01

The bold-faced numbers represent the best performance
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Table 2 The performance of the CNN128 system when no
parameters were shared across detectors and when the
parameters in some layers were shared

Detectors Independent training Sharing parameters

(first approach) (second approach)

Noise 1.00±0.00 1.00±0.00

Distortion 0.99±0.00 0.98±0.01

Reverberation 0.93±0.01 0.88±0.01

The results are in the form mean AUC±95% confidence interval

the data are used, we took two different approaches. In
the first approach, we train each binary classifier from the
scratch using all the corresponding training samples. In
the second approach, on the other hand, we trained a mul-
ticlass classifier with the training samples used for train-
ing the UBM model. Then, using the samples exploited
for adapting the degradation-dependent GMMs, we fine-
tuned three binary classifiers from the trained multiclass
classifier. In the fine-tuning step, we kept the parameters
of the first and the second convolutional blocks frozen
and adapted the parameters of the last convolutional block
and the fully-connected layers. This way, similar to the
baseline system, the parameters of the first two blocks
were shared across each detector. Table 2 shows the per-
formance of the CNN128 on the pathological voice data
set when these two approaches were applied. We can
observe that the models, particularly the reverberation
detector, perform better when the classifiers were inde-
pendently trained. Therefore, we used the first approach
when comparing our proposed method with the baseline
system.
Table 3 shows the performance of the baseline and the

proposed systems. The results show that the proposed
system outperforms the baseline for both pathological
voices and running speech signals, particularly for iden-
tifying reverberation in pathological voices and additive
noise in running speech. We can observe that both sys-
tems show a common tendency that the performance of
the reverberation detector is much lower than the noise
detector, mainly due to the false recognition of recordings
in which noise and reverberation coexist, but the noise

Table 3 Comparison between the proposed method for
degradation detection and the baseline system for pathological
voice and normal running speech

Detectors Pathological voice Normal running speech

Baseline Proposed Baseline Proposed

Noise 0.96±0.00 1.00±0.00 0.71±0.00 0.95±0.01

Distortion 0.90±0.01 0.99±0.00 0.83±0.01 1.00±0.00

Reverberation 0.75±0.00 0.93±0.01 0.84±0.01 0.99±0.00

The results are in the form mean AUC ±95% confidence interval, and the
bold-faced numbers represent the best performance

is more dominant. Furthermore, the results indicate that
the identification of reverberation in pathological voices is
challenging for the baseline system. This is because unlike
running speech, the temporal envelop of a sustained vowel
is not peaky and, consequently, is not highly influenced by
reverberation. Moreover, since the pitch contour in a sus-
tained vowel remains almost the same over a short period
of time compared to the running speech, the dynamic
changes in the frequency domain are less influenced in
sustained vowels than in running speech. These make
the identification of reverberation more challenging for
the baseline system. However, the CNN model can better
distinguish these subtle differences.
On the other hand, since the frequency content and the

characteristics of some types of background noises, such
as babble, are similar to those of running speech signals,
identifying additive noise in running speech is more chal-
lenging for the baseline system, while the CNN model
could effectively detect the presence of the background
noise in running speech. Given that for each noisy sig-
nal in the data set, we selected a random segment of a
noise file and a random SNR value, and that the acoustic
characteristics of the noise files used in these experiments
vary in time (except for the white noise), the probability
of observing noisy signals degraded by exactly the same
noise segment with similar SNR value is very low. There-
fore, based on the results, we expect the proposed system

Fig. 3 Visualization of the saliency map, plotted in blue shading on
top of the gray-scale signal spectrogram, by applying the score-CAM
method to the log-mel spectrogram of a pathological voice signal
(sustained vowel /a/) degraded by three types of degradation. The
intensity of the saliency map, shown on a scale of 0 to 255 by the
colorbars, illustrates the importance of each region of the input space
to the target class
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Fig. 4 Visualization of the saliency map, plotted in blue shading on
top of the gray-scale signal spectrogram, by applying the score-CAM
method to the log-mel spectrogram of a normal running speech
signal degraded by three types of degradation. The intensity of the
saliency map, shown on a scale of 0 to 255 by the colorbars, illustrates
the importance of each region of the input space to the target class

to be able to generalize for noise types not seen during the
training phase.
Since deep learning models, such as CNNs, are associ-

ational machines which tend to learn the easiest path to
associate the input data into the labels, one might sus-
pect that a better performance of the proposed approach
compared to the baseline system might be due to pick-
ing up spurious influences from some confounders in the
data. Therefore, it is important to understand the basis
on which the CNNmodels make a specific decision about
the presence of degradation in a signal. There are a variety
of techniques for understanding the behavior of complex
deep learning models and how they make a particular
decision [35]. Score-weighted class activation mapping
(CAM) is one of these techniques which maps the inter-
nal representation in a CNN and provides a meaningful,

fine-grained visual explanation of complex CNN-based
models [20].
In this method, different masks, referred to as the acti-

vation maps, are applied to the input image, which is
the log-mel spectrogram of a speech signal in our exper-
iments. Then, the prediction scores for each activation
map is calculated and used as an indicator of the impor-
tance of that activation map. By overlaying the weighted
activation maps on the input image, the parts of an image
that are most influential to the score of the target class
in prediction by the CNN model are highlighted. Figure 3
shows the saliency maps produced by applying the score-
CAM method to a degraded pathological voice signal.
We can observe the differences between the highlighted
regions in the images depending on the type of degra-
dation. For example, in Fig. 3a, a sustained vowel /a/ is
degraded by a restaurant noise. It can be observed that
the noise detector tends to focus on the wide-range areas
in the log-mel spectrogram over the whole frequency,
namely on both the patchy regions in the log-mel spectro-
gram, corresponding to clattering sounds of the tableware
and plates, and some low-frequency regions, correspond-
ing to the babble noise in the restaurant. On the other
hand, as shown in Fig. 3b and c, the reverberation and dis-
tortion detectors tend to focus more on the continuous
area along the temporal axis in the log-mel spectrogram
andmainly in the high frequency regions. The results sug-
gest that the high frequency regions are more influential
and important in identification of distortion and rever-
beration. However, the tendency is a completely opposite
in speaker recognition, which assigns great importance to
the low frequency regions (about 200 Hz to 3 kHz) [36].
The saliency maps produced by applying the score-

CAMmethod to a degraded normal running speech signal
is shown in Fig. 4. We can observe that the tendency,
i.e., that the noise detector focuses on the areas over
the whole frequency and others focus on the high fre-
quency region, is the same as the pathological voice.
Interestingly, it can be seen that the distortion detec-
tor mainly focuses on the high frequency regions of the
voiced frames (high power area) in the log-mel spec-
trogram. That is why, it is supposed that the nonlinear
distortion appears remarkable when the original voice
becomes loud.

Table 4 The impact of changing the lower and higher cutoff frequencies of the log-mel spectrogram on the performance of each
detector for pathological voice signals

Detectors flow [Hz] fhigh [kHz]

0 300 700 2500 4.3 11 15 Nyquist

Noise 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

Distortion 0.99±0.00 0.98±0.01 0.98±0.01 0.98±0.01 0.97±0.01 0.98±0.01 0.97±0.01 0.99±0.00

Reverberation 0.93±0.01 0.93±0.01 0.91±0.01 0.86±0.02 0.83±0.02 0.88±0.01 0.92±0.01 0.93±0.01

The results are in the form mean AUC ±95% confidence interval
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Table 5 The impact of changing the lower and higher cutoff frequencies of the log-mel spectrogram on the performance of each
detector for normal running speech signals

Detectors flow [Hz] fhigh [kHz]

0 300 700 2500 4.3 11 15 Nyquist

Noise 0.95±0.01 0.92±0.01 0.94±0.00 0.91±0.01 0.99±0.00 1.00±0.00 0.99±0.00 0.95±0.01

Distortion 1.00±0.00 1.00±0.00 0.99±0.00 0.99±0.00 0.99±0.01 1.00±0.00 0.99±0.00 1.00±0.00

Reverberation 0.99±0.00 0.99±0.00 0.99±0.00 0.99±0.00 0.90±0.01 0.90±0.01 0.97±0.01 0.99±0.00

The results are in the form mean AUC ±95% confidence interval

To investigate further the importance of high frequency
regions in degradation identification, we evaluated the
performance of the proposed method using the log-mel
spectrogram of different cutoff frequencies. The log-mel
spectrogram is typically derived by applying triangular
filters aligned at even intervals in mel-scale to the nor-
malized STFT power. The linear frequency f in Hz can
be converted to the mel-scale frequency m using the
following equation [37]:

m = 	(f ) = 1000
ln(1 + 1000/700)

ln
(
1 + f

700

)
. (7)

We define the low and high cutoff frequencies for the
mel-scale filters as mlow = 	(flow) and mhigh = 	(fhigh),
respectively. The performance of each detector for patho-
logical voice and normal running speech when changing
the value of cutoff frequencies is reported in Tables 4 and
5, respectively. In these tables, the frequencies are shown
in linear Hz-scale that can be converted to the mel-scale
using the Eq. (7). It should be remarked that, in the sense
of the Eq. (7), the amount of mel frequencies included in
the frequency bands less than 300 Hz, 700 Hz, and 2.5 kHz
is equivalent to those of included in the frequency bands
of more than 15 kHz, 11 kHz, and 4.3 kHz, respectively.
Despite of this fact, the performance of the reverbera-
tion detectors become significantly worse by decreasing
the fhigh to 11 kHz. However, increasing the flow has only
a limited impact on the performance of the reverbera-
tion detector. In contrast, the performance of the noise
detector become slightly better by decreasing the fhigh,
probably due to the increase in the resolution of lower
frequency regions. Meanwhile, the performance of distor-
tion detectors stay pretty much the same even by changing
the higher and lower cutoff frequencies. These results
are well in consistent with the visual explanations in the
previous experiments, and indicate that typical 8 kHz of
sampling rate derived from telephone systems, is insuffi-
cient to identify the reverberation. We infer that a high
frequency sound tends to be easily attenuated by a wall
or other impediment objects in a room and, as a result, a
damping appears in the high frequency region.

5 Conclusion
In this paper, we have proposed a new CNN-based
approach for identifying degradation in speech signals.
In this method, a set of CNN models, each responsi-
ble for detecting a particular type of degradation, has
been used. The advantage of this method over the mul-
ticlass degradation detection methods is that parallel and
independent detectors facilitate both detecting the pres-
ence of a combination of degradations in a speech signal
and rejecting an outlier of a new type of degradation for
which the models have not been trained. The CNNs were
trained with the log-mel spectrogram of a large num-
ber of degraded speech signals. The experimental results
using two different speech types, namely pathological sus-
tained vowel sound and normal running speech show
the effectiveness of the proposed approach in detecting
degradations in signals which outperforms the state-of-
the-art system. Furthermore, using the score-CAM tech-
nique, we visually explained how the CNN models make
a specific decision in identifying degradation in signals.
It also revealed that high frequency regions in log-mel
spectrogram carry important information for identifying
reverberation. It makes the identification of reverberation
challenging when applying to telephone quality signals of
8 kHz sampling frequency.
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