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Abstract

Over the recent years, machine learning techniques have been employed to produce state-of-the-art results in several
audio related tasks. The success of these approaches has been largely due to access to large amounts of open-source
datasets and enhancement of computational resources. However, a shortcoming of these methods is that they often
fail to generalize well to tasks from real life scenarios, due to domain mismatch. One such task is foreground speech
detection from wearable audio devices. Several interfering factors such as dynamically varying environmental
conditions, including background speakers, TV, or radio audio, render foreground speech detection to be a challenging
task. Moreover, obtaining precise moment-to-moment annotations of audio streams for analysis and model training is
also time-consuming and costly. In this work, we use multiple instance learning (MIL) to facilitate development of such
models using annotations available at a lower time-resolution (coarsely labeled). We show how MIL can be applied to
localize foreground speech in coarsely labeled audio and show both bag-level and instance-level results. We also study
different pooling methods and how they can be adapted to densely distributed events as observed in our application.

Finally, we show improvements using speech activity detection embeddings as features for foreground detection.
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1 Introduction

Wearable devices are used widely in a variety of health
and lifestyle related applications, from tracking personal
fitness to monitoring patients suffering from physical
and mental ailments. Advances in wearable materials and
sensing technology have facilitated steady increase in the
use of such devices by making them unobtrusive, inexpen-
sive and more reliable [1, 2].

Audio is an essential stream of information that can be
measured in addition to the various physiological signals
(e.g., ECG, EEQ) via such devices. Audio signal can pro-
vide important cues about a person’s environment, their
speech communication, and social interaction patterns
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[3]. Quantity and quality of communication and social
interactions have been shown to be linked to a person’s
well-being, happiness, and overall sense of life satisfac-
tion [4, 5]. Moreover, it has been shown that speech
rate [6] and vocal prosody [7] are strong indicators of
depression severity in patients. As a result, multiple wear-
able technologies aimed at obtaining unobtrusive audio
recordings in natural, non-laboratory real-world condi-
tions have been proposed [8-10]. In such an egocentric
setting, we are typically interested in detecting and analyz-
ing speech uttered by the participant wearing the device,
which is commonly referred to as foreground speech [11].

One of the major challenges in processing audio from
a wearable device is dealing with the varying ambient
noise conditions. Since the participant is not restricted to
any particular audio environment, detecting audio-related
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events in varying acoustic conditions is extremely chal-
lenging [12]. A specific issue is the interference of speech
from background speakers with the foreground speech.
Typical voice activity detection systems are not designed
to distinguishing between different speaker character-
istics to make this distinction. Additionally, the ego-
centric devices across participants will rarely be identi-
cal in nature (i.e., frequency responses of these devices
vary), resulting in non-uniform channel conditions across
devices. For all of the above reasons and more, perfor-
mance of foreground detection systems designed for clean
environments deteriorates in real-world operating condi-
tions [11].

Data-driven neural network-based models have proven
to be effective for such classification tasks, given large
amounts of labeled data. With the increased deployment
of microphone recorders in mobile and other IoT devices,
including voice speakers, alongside the widespread use of
voice agents such as Siri and Alexa, collection of audio
data at scale has become inexpensive, resulting in large
amounts of audio of interaction of people in, and of, their
environments.

However, obtaining annotations for these data at scale is
often cumbersome, expensive, and can be prone to human
errors. Furthermore, since most audio systems are devel-
oped to operate at frame-level (10 ms duration typically),
annotations at that scale may be necessary in order to
train supervised models for the task at hand. One way
of bridging this gap is to obtain coarse labels at a lower
time-resolution (30 s segments in our case) and lever-
age machine learning techniques such as multiple instance
learning (MIL) to model the task at segment-level and fur-
ther interpolate the results at frame level. This particular
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concept known as localization involves finding regions
of interest within a data record. For example, finding
objects of interest in an image [13] or, more specifically
in our case, detecting occurrence of particular events in
coarsely labeled audio clips [14]. Since we focus here on
temporal localization and not spatial, it is important to
distinguish our work from audio localization techniques
involving direction of arrival estimation in multi-channel
audio signals [15].

In this work, we propose a method for localizing fore-
ground speech within audio clips using multiple instance
learning. The pipeline of our approach is shown in Fig. 1.
We use audio collected from mobile EAR devices [8],
consisting of 90K recording clips of 30 s duration, from
over 200 participants. We use non-overlapping windows
of 0.96 s duration to create instances from each 30 s
audio clip (bag). We then use time-distributed deep neu-
ral network architectures to model the MIL framework,
which also helps reduce the number of parameters and
computation cost to process long utterances (30 s dura-
tion). We test several MIL pooling methods such as max
and average pooling as well as attention-based pooling
for obtaining segment level predictions from frame-level
posteriors. Furthermore, we show further improvement
using embeddings from speech activity detection task
transfer-learned for foreground detection.

2 Related work

2.1 Foreground detection

Foreground (FG) speech detection is the task of detecting
regions in an audio recording where the person of interest
(typically wearing the recording device) is speaking. FG
detection has been studied in the literature for an array
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Fig. 1 MIL pipeline. Learning to detect and localize foreground speech in wearable-device audio
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of mobile-device applications. For example, Dehak et al.
showed that zero-frequency filtered signals (ZFFS) can
be used to reliably detect foreground speech in the pres-
ence of noise and background speech [16]. However, the
method faces challenges in cases where the background
speaker is close to the device since ZFFS exploits differ-
ence in nature of speech and noise and does not capture
foreground speech related characteristics. More recently,
convolutional neural networks have been used to train a
FG detector on an open-domain meeting dataset [11]. The
target dataset was collected during meetings from par-
ticipants with wearable recorders on their person. It was
shown that fine-tuning of the model on the target dataset
was required to obtain best FG detection results.

2.2 Multiple instance learning

MIL is a weakly supervised machine learning algorithm
wherein each individual training sample, called a bag,
is organized as a collection of samples, called instances.
Instances exhibit similar properties as a bag and can be
assigned the same set of labels as a bag. Under the stan-
dard assumption of MIL, a bag is labeled positive if at least
one of the instances belonging to the bag is positive and
negative if all of the instances are negative. For training,
it is assumed that labels are available for each bag, but
not for the individual instances of a bag, hence the term
weakly supervised.

One of the more successful applications of MIL has been
that of object detection in images [13, 17, 18]. Here, each
image is treated as a bag, and sub-regions of the image
are its instances. Naturally, the presence of an object
in a sub-region of an image implies its presence in the
image (i.e, follows standard assumption). The chief util-
ity of MIL is in being able to localize objects via positive
instances, in addition to detecting the presence/absence
of objects in an image. MIL in the context of neural net-
works has been extensively reviewed for a variety of image
applications [18].

Multiple instance learning (MIL) for the purposes of
classifying coarsely labeled audio has been primarily stud-
ied for tasks such as audio event detection [19-21]. These
approaches have been formulated as multi-class event
detection using audio data labeled at coarse segments (>
10 s). Segments are then typically split into uniform sub-
segments which are treated as instances and MIL is used
for event detection at bag level.

There are two major distinctions in the application
of MIL in our proposed work. First, the density of FG
labels is much higher compared to audio events, i.e., a
single bag consisting of 100 instances could have up to
100 positive FG samples, whereas a single audio event
being detected 100 times in a bag is much less likely due
to the sparse distribution of audio events across time.
Second, these approaches evaluate their methods only
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at the bag-level, whereas our proposed method attempts
to use MIL to localize the event at the instance level
and evaluate it as such. MIL for localization in audio
has been studied for the tasks of phoneme recognition
and sound event detection. Due to difference in nature
of occurrence, the pooling function used plays a major
role in modeling such events. For example, in [14], two
pooling methods were used: max pooling and noisy-or
pooling. The authors found that max pooling was better
suited for localization since noisy or pooling resulted in
spiky and low-amplitude posteriors for positive instance
samples due to multiplicative nature of the pooling
function.

2.3 Transfer learning

Transfer learning is a machine learning concept that is
used to learn rich feature representations from a source
task and subsequently apply them to a target task, with
the constraint that both the tasks be strongly related [22].
This approach is usually adopted primarily for its relative
ease of training source task as against target task owing to
larger dataset size, ease of procuring labels, etc. Addition-
ally, compressed representations are more light-weight as
compared to raw features and can reduce training com-
plexity.

A few examples of transfer learning applications include
transferring knowledge from speech recognition system
trained on one language to another (e.g., English to
German) [23] and using embeddings from a large-scale
audio event classification task (over 1 million 10 s audio
clips) to improve gender identification [24]. In the con-
text of this work, we aim to use feature embeddings
learnt from speech activity detection task for foreground
detection.

In our approach, we leverage benefits of the aforemen-
tioned aspect of having larger amounts of labeled data
available to train speech activity detection systems and
hence get richer embeddings for foreground detection.
Furthermore, since we deal with long audio segments,
using raw frame-level features can prove to be compu-
tationally expensive as compared to using highly com-
pressed feature-embeddings.

3 Multiple instance learning

In this section, we discuss the MIL formulation as it is
applied to detect foreground speech in coarsely labeled
audio. We also describe the methodology to localize fore-
ground speech at frame level.

3.1 MiL formulation

In the context of this work, MIL can be formulated as
learning to detect regions of foreground speech within
an audio segment. In this case, a single segment (bag) of
duration T is split into N consecutive non-overlapping
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sub-segments (instances) of duration ¢ = 7/N. Specif-
ically, consider an audio segment x constructed in this
fashion: ® =[x1,x2,..,xn] and its corresponding label
yx = {0,1} to indicate absence/presence of foreground
speech in the duration of x. Then, instance-label pairs (x1,
y1), (%2, ¥2), ... (xn, ) can be constructed, where y; corre-
spond to sub-segments x; respectively. In our application
of MIL, the label y that corresponds to segment x is y = 1
if at least one of the y;,i = 1,2, ..., N is one.

y=yVyVv...vyn; yi=1{0,1}, i=12,...N (1)

where V stands for the logic operator OR. Whenever the
instance labels y; can be expressed as posterior probabili-
ties (e.g. they are the outputs of probabilistic models), we
get the typical MIL formulation:

y =max (y); yi =[0,1], i=1,2,...N (2)

3.2 Pooling methods
A pooling layer is implemented to aggregate the poste-
riors from instances. Several pooling methods have been
proposed for neural network-based MIL approaches [14,
18]. These can be broadly classified into two categories,
namely, embedding and instance-based pooling. For the
purposes of interpretability and localization, we focus
only on instance based pooling methods. Due to the
nature of the MIL framework (eqn 2), max pooling is an
obvious choice as a pooling function. Average pooling has
also been shown to work well in such a framework [18].
Although traditional attention-based pooling is
designed for the embedding scenario [18], they can be
generalized to the instance based approach (Table 1).
Additionally, the attention-weight activation can be mod-
ified to account for more densely distributed labels such
as FG. Since softmax activation constrains the sum of
the weights to 1, it is not necessarily appropriate in the
scenario where the model needs to attend on a large por-
tion of the audio segment. Hence, a sigmoid-activation
attention layer is introduced in order to be able to attend
to each of the instances independently, while maintaining
the dot-product attention. Note that in this case, we
would need an additional scaling factor for computing the
bag-label. Finally, a hybrid attention + max-pool model is
proposed wherein the dot-product pooling operation is
replaced by max pooling, but the attention mechanism is
maintained.

4 Dataset

For the purpose of audio collection, we use the mobile-
EAR device [8]. We analyze data collected from two broad
categories of participants, which we call EAR Aging Study
(AS) and Ear Divorce Study (DS).
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Table 1 Different MIL pooling methods for FG localization

where, ¥y =[y1,y2, ... ynl

Pooling method

Pooling operation

Instance label

Max pooling y = max(y;) Vi

Average pooling y=1/NY,yi Vi

Attention (softmax) y=ay ayi
a; = softmax(w'f (7))
f(7) = tanh(Vy") ©
sigmoid(Uy")

Attention (sigmoid) y=1/NY;ay aiy;
a; = sigmoid(w' f(7))

Hybrid (attention + y = max(aiy;) aiyi

max pooling) ai = sigmoid(w’ f(7))

AS data were collected over a period of 2 years, from
93 participants in the age group of 65-90 years [25]. DS,
on the other hand, consists of data from 122 individuals
who have been through a divorce [26]. These data were
collected over a 5-year period (Table 2).

The audio signal for each participant was split into 30 s
chunks for the purposes of annotation. Each of these 30
s clips was then annotated for a broad number of cate-
gories that describe the ambient setting, presence of social
group, nature of interaction, and other audio cues such
as emotional state of the participant. The Aging Study
was annotated by a single human coder, while the Divorce
Study was annotated by two different coders (for all clips).

In this work, we focus on the foreground speech label.
This binary label is annotated as 1 if the person wearing
the device speaks at any point during the 30 s dura-
tion of the file. In the case of the Divorce Study with 2
annotations per clip, disagreement (< 1000 clips) between
annotators was resolved by randomly picking one of the
two annotations.

Each of the AS/DS datasets are split into train, vali-
dation, and test splits in the ratio of 80:10:10. For fair
evaluation of our proposed methods, we ensure that the
participants are non-overlapping across the splits, i.e., any
participant’s device audio in the test set will not be seen
in either of the training or validation sets. We use the
training set to update model parameters, validation set to
determine early stopping, and finally the test set to show
the performance of our method.

Table 2 Dataset description

Dataset Number of Number % with Train/Val/Test
participants of samples foreground (speakers)

AS 93 33363 21.5 75/9/9

DS 122 56091 29.7 98/12/12
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Fig. 2 MIL model. Multiple instance learning framework for foreground detection

5 Experiments

In this section, we discuss the setup for the experi-
ments conducted, such as the neural network architec-
tures and features used for the task of foreground detec-
tion/localization. For each of the experiments, we choose
the value of ¢t = 0.64s (T = 30s) for convenience.

5.1 Neural network architectures
We performed both architecture search as well as hyper-
parameter tuning for determining the best-performing
model architecture and the number of convolutional
blocks and hidden layer dimensions for recurrent and fully
connected layers therein.

The CNN-based architectures include standard CNN,
CNN-GAP, CLDNN, and CNN-TD models [27]. The

difference in these architectures is in the handling of the
final output of the convolutional layers. In the standard
CNN, the output is flattened and fed into a dense layer,
while in CNN-GAP, a 2D global average pooling layer is
used to condense the output of the convolutional block.
For the CLDNN and CNN-TD architectures, the tem-
poral dimension of the convolutional output is retained.
The frequency and filter-channel dimensions are merged
and fed into each of these, the outputs of which are then
pooled temporally. CNN-TD uses two time-distributed
fully connected layers which share their weights across the
pseudo-temporal dimension, while CLDNN uses LSTM
and bi-LSTM layers to process the temporal embeddings.

We also implement one and two layer LSTM and bi-
LSTM architectures. We exclude some of the heavier

Table 3 Foreground detection results on utterance (bag) level approaches

Divorce study Aging study

Precision Recall F1 score AUC Precision Recall F1 score AUC
VGGish slimmer [11] 0.34 0.96 0.5 0.71 0.38 0.94 0.54 0.66
Log-Mels 0.78 0.68 0.72 038 0.67 0.73 0.7 0.81
SAD embeddings 0.82 0.82 0.82 0.87 0.77 0.81 0.79 0.87
MIL (Log-Mels) 0.71 0.7 0.7 0.79 0.64 0.66 0.65 0.77
MIL (SAD emb) 0.83* 0.79 0.81 0.86 0.66 0.83 0.73 0.85

*McNemar's Test, p< 0.01
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Table 4 Foreground localization results on frame (instance) level
approaches on DS

MIL model % speech Bag-level F1 score
detected at 1%
FAR

Max pooling 93.7 0.76

Average pooling 88.0 0.74

Attention (softmax) 12.7 0.78

Attention (sigmoid) 68.5 0.78

Hybrid 90.1 0.73

architectures from our search for the baseline models,
due to resource constraints and high input dimension
of our features (3000 x 64 in the case of log-Mel-based
approach). We picked the best performing model on the
validation set and report results on the held-out test set.

5.2 Features for foreground detection
We develop neural-network models for the binary task
of foreground speech detection in a 30 s segment. As
baseline features, we use 64-dimensional log-Mel filter-
banks extracted at 10 ms duration using Kaldi'. The
3000 x 64-dimensional features are then reduced to binary
class posteriors for foreground classification.
Embeddings from a speech activity detection model
trained on movie data [27] are used for the purposes of
transfer learning for foreground detection task. Convolu-
tional neural network models were trained on 0.64 s dura-
tion audio segments for a two class speech/non-speech
classification problem. In this work, we use the 256-
dimensional global average pooling layer outputs from the
CNN-GAP flavor of the models since it has been shown
to attend to speech regions in the log-Mel spectrogram.
Extracting these embeddings from non-overlapping seg-
ments results in 45 x 256-dimensional features as inputs
to our models.

5.3 Foreground localization

We then trained MIL models following the framework
described in Section 3. Time-distributed fully connected
models were trained using SAD embeddings as shown in
Fig. 2. Five different pooling methods (Section 3.2) were
evaluated at both segment and frame level.

For the purposes of evaluating the localization
approaches, we use gentle? to obtain frame-level labels
for foreground speaker. Gentle is an open-source robust
forced-alignment tool which can be used to robustly align
a text transcript with its corresponding audio. Since we
have manually transcribed text for foreground speech,

http://kaldi-asr.org/
Zhttps://github.com/lowerquality/gentle
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we use these to gentle-align to raw audio at word-level
within the test set. We only perform gentle-alignment
on utterances without any identifying information about
the participant. Post alignment, we pick utterances with
at least 90% successfully aligned words, in order to have
high confidence in our evaluation labels. We use these
words as the positive class (FG) labels for our evaluation.
For the negative class, we retain the original negative-
samples (no FG) for the segment-level evaluation, since a
negative-labeled bag implies that each the sub-segments
are also negative. Due to high class imbalance, we report
the percentage speech detected at a fixed false alarm rate
of 1%.

6 Results and discussion

As abaseline for the bag-level approaches, we show results
using the CNN-based Vggish slimmer [11] model trained
on ICSI meeting data (Table 3). Since this model is trained
on frame-level (10 ms duration) features, we use the max
operation to aggregate frame-level posteriors to obtain
utterance predictions.

While the baseline model detects most foreground
utterances (high recall), it predicts high number of false
positives resulting in low precision. One reason for this
could be domain mismatch between training data and the
EAR data. Due to resource constraints and large number
of parameters of the model, we do not perform domain
adaptation.

For the log-Mels based models, CLDNN architectures
give best results on both the datasets. However, mod-
els trained on SAD embeddings significantly outperform
the log-Mel approaches. The best-performing models on
both datasets are bidirectional LSTM models, achieving
F1 scores of 0.82 and 0.79 on DS and AS, respectively. For
both sets of features, the results of the non-MIL models
are not significantly® better than MIL models.

It is important to note that the MIL-based models are
under-parametrized in comparison to non-MIL models.
Also, the non-MIL based methods can leverage 30 s con-
text to make a binary decision while MIL models only
have access to instance-level posteriors to make a bag-
level decision. For these reasons, we expect the non-MIL
models to be an empirical upper-bound to the bag-level
performance of the MIL models.

The results of the foreground localization using dif-
ferent MIL-based pooling techniques are tabulated in
Table 4. Among the non-parametric pooling methods,
max pooling outperforms average pooling as expected.
Even though average pooling shows good results, from
Fig. 3, we can clearly see that it fails to localize the fore-
ground speech effectively. Since the two class labels for the

3McNemar’s test, p <0.01
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localization are from positive and negative bags respec-
tively, the performance can be explained by the fact that
average pooling is learning to predict bag-level labels for
each of the instances.

While the softmax-based attention model results in
good bag-level performance, it fails miserably in the local-
ization task. This is to be expected since softmax activa-
tion is not well-suited to our case where FG labels are
densely distributed. The sigmoid-based attention model,
however, significantly outperforms the softmax-attention
model. This can be attributed to the fact that sigmoid
attention treats the instances independently, allowing the
network to attend to possibly multiple instances within
a segment. Finally, the hybrid model performs signif-
icantly better than the purely attention-based pooling
approaches. However, it performs only slightly worse than
simple max pooling, suggesting that learning of atten-
tion weights does not improve performance of localization
task.

7 Conclusion

In this work, we used multiple instance learning to local-
ize densely distributed events of foreground speech in
a coarsely labeled setting. We evaluated MIL models
trained at bag-level and showed comparable to results
to the best performing neural network architecture. We
studied the performance of different pooling methods and
introduced two new pooling approaches to improve per-
formance of parametric methods. Future work includes

obtaining frame-level annotations for better evaluation of
localization experiments as well as detailed error analysis.
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