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Abstract

In this paper, we use empirical mode decomposition and Hurst-based mode selection (EMDH) along with deep
learning architecture using a convolutional neural network (CNN) to improve the recognition of dysarthric speech. The
EMDH speech enhancement technique is used as a preprocessing step to improve the quality of dysarthric speech.
Then, the Mel-frequency cepstral coefficients are extracted from the speech processed by EMDH to be used as input
features to a CNN-based recognizer. The effectiveness of the proposed EMDH-CNN approach is demonstrated by the
results obtained on the Nemours corpus of dysarthric speech. Compared to baseline systems that use Hidden Markov
with Gaussian Mixture Models (HMM-GMMs) and a CNN without an enhancement module, the EMDH-CNN system
increases the overall accuracy by 20.72% and 9.95%, respectively, using a k-fold cross-validation experimental setup.
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1 Introduction
Dysarthria is a motor speech disorder resulting from
diverse impairments afflicting the control and execu-
tion of speech movements. A lack of coordination or
a weakness of the muscles required for speech is then
noticed. The main consequence of dysarthria is the degra-
dation of speech intelligibility caused by poor articula-
tion of consonants and, in the most severe cases, by the
distortion of vowels [1]. Due to these important varia-
tions, a speech recognition system specifically tailored to
dysarthric speakers would be more suitable than a generic
system [2–4].

1.1 Related work
Most conventional dysarthric speech recognition systems
are based on structured approaches. For instance, HMM-
GMM-based approaches [5] use Hidden Markov Models
(HMMs) to model the sequential structure of the speech
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signal and Gaussian Mixture Models (GMMs) to model
the distribution of the spectral representation of a wave-
form. However, HMM-GMM-based systems require a
large amount of data to be trained, which is not efficient in
the case of dysarthric speech where the corpora used for
training are always small [6]. Therefore, these approaches
cannot be applied with ease in the context of dysarthric
speech.
In recent years, the field of pathological speech pro-

cessing has seen major breakthroughs in effective alterna-
tives to HMM-GMM that can better recognize dysarthric
speech thanks to the development of deep neural net-
work (DNN) architectures. For instance, the work by Kim
et al. [4] adopts convolutional long short-term memory
recurrent neural networks to model dysarthric speech in
a speaker-independent way, taking advantage of convolu-
tional neural networks to extract effective local features.
The approach in Vachhani et al. [7] uses healthy speech
augmented with simulated dysarthric speech to train a
DNN-HMM-based automatic speech recognition. Bhat et al.
[8] proposed using a time-delay neural network-based
denoising autoencoder to enhance dysarthric speech fea-
tures before performing DNN-HMM–based recognition.
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Liu et al. [9] investigated the use of pitch features for
disordered speech recognition. They attempt to use gated
neural network and Bayesian gated neural network mod-
els to explore the robust integration of pitch features
to improve the recognition performance for disordered
speech. The authors in [10] used a multilayer perceptron
(MLP) artificial neural network for diagnostic testing of
speech affected by Parkinson’s disease. He used a relatively
large dataset of speech sample features compiled from
Parkinson’s disease patients and healthy individuals to
train the MLP system to accurately classify between these
two speech types. The dysarthric speech recognition sys-
tem proposed by Hu et al. [11] is based on a gated neural
network (GNN) and allows robust integration of acoustic
features with visual features as well as, optionally, prosody
features based on pitch. They designed two systems
for English and Cantonese languages where a speaker-
independent GNN acoustic model was trained for the
mixed training set using a concatenated 86-dimension log
filter bank plus pitch features.
The authors in [12] investigated the potential correla-

tion between noisy speech and dysarthric speech in terms
of intelligibility. They specifically examined whether there
is a relationship between the ability of an individual to deal
with noisy speech uttered in severely degraded environ-
ments and his/her ability to understand dysarthric speech.
The metrics used revealed that listeners who were able to
understand speech in noise also succeeded in understand-
ing dysarthric speech. Although the origin of the degra-
dation differs, we can reasonably consider that the speech
in noise results from the degradation of the environment,
while dysarthric speech results from the degradation of
the source.

1.2 Motivation and objective of the study
In this paper, dysarthric speech is viewed as noisy speech,
and therefore, we recommend the use of speech enhance-
ment techniques to improve its quality and thus its
intelligibility. A combination of a robust variant of empiri-
cal mode decomposition (EMD) with a convolutional neu-
ral network is proposed to perform an accurate phonemic
recognition of dysarthric speech.
The motivation underlying the use of EMD is its abil-

ity to produce a time-frequency representation of non-
stationary signals using an adaptive decomposition of the
signals in the sum of oscillating components called intrin-
sic mode functions (IMFs). This decomposition has the
appearance of a generalized Fourier analysis with vari-
able amplitudes and frequencies. The frequency resolu-
tion of EMD for any point is uniformly defined by the
stationary phase or local derivative of the phase, which
makes this method appropriate for the effective extraction
of low-frequency oscillations that are often observed in
dysarthric speech.

The rest of this paper is organized as follows. Section 2
presents the Hurst exponent, the empirical mode decom-
position, and the Hurst-based mode selection (EMDH)
used to enhance the quality of dysarthric speech. The
architecture of the proposed system and the HMM-
GMM- and CNN-based recognizers are depicted in this
section. Section 3 describes the experimental setup, the
data in the Nemours corpus used in the experiments, and
the obtained results. Section 4 concludes the paper and
provides an overview of future work.

2 Proposedmethod
2.1 Hurst exponent estimation
TheHurst exponentH was named after the British hydrol-
ogist Harold Edwin Hurst, who studied the long-term
storage capacity of reservoirs [13] and discovered the
presence of long-term dependence in hydrology. Many
years later, the mathematician Benoit Mandelbrot [14]
generalized the Hurst exponent as a measure of the long-
term memory of a time series, i.e., the tendency of a time
series to strongly regress towards its mean or to cluster in
one direction.
Since then, the Hurst exponent has been widely used

as a measure of time dependence in various time series.
The estimate of its value gives a hint on the persis-
tence/autocorrelation in the related time series: if 0 <

H < 0.5, the series is antipersistent or has a negative auto-
correlation; if H = 0.5, there is no autocorrelation in the
series; and if 0.5 < H < 1, the series is persistent and has
a positive autocorrelation.
In the spectral domain, the Hurst exponent is related

to the spectral characteristics of the time series [15]. For
H = 0.5, the time series has equal intensity at different
frequencies, and the power spectral density S(f ) of the
signal is constant, e.g., white noise; on the other hand, if
0.5 < H < 1, low frequencies are prominent, especially
when H is closer to 1, i.e., S(f ) is inversely proportional to
the frequency of the signal (pink noise).
Due to the characteristics above, the Hurst exponent

estimation has been applied in different areas ranging
from hydrology to speech processing. For instance, the
authors in [16] composed speech vectors based on the
Hurst exponent to perform speaker recognition, and the
authors in [15] used the Hurst exponent to estimate noise
and enhance speech signals.
Different Hurst exponent estimation methods exist, but

this work uses discrete wavelet transforms (DWT) as in
[15]. Each IMF is split into non-overlapping frames, and
the steps below briefly describe how the discrete wavelet
transform is used to estimate the Hurst exponent:

1 Apply the discrete wavelet transform:
A time domain signal is decomposed successively by
the DWT into approximation aj(n) and detail dj(n)
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coefficients, where j is the decomposition scale and n
is the coefficient index of each scale.

2 Estimate the variance σ j2:
Denoising techniques based on DWT exploit the
detail coefficients to produce a smoother signal.
Hence, the variance is estimated from those
coefficients as:

σ j2 = (1/Nj)
∑

ndj(n)2

where Nj is the number of available coefficients for
each scale j.

3 Calculate the Hurst exponent:
The Hurst exponent is estimated as H = (1 + θ)/2,
where θ is the slope of the plot of

yj = log2(σ j2)

versus j. The slope θ is obtained with a weighted
linear regression.

2.2 EMDH for enhancing dysarthric speech
The principle of the EMDH speech enhancement tech-
nique consists of identifying and selecting the intrinsic
mode functions (IMFs) that are less distorted and using
them to reconstruct the enhanced speech signal [15].
First, EMDH starts with the decomposition of a

dysarthric speech signal into a set of IMFs. Then, each
IMF is windowed into non-overlapping short-time frames
to determine the most distorted IMF by calculating the
Hurst exponent for each IMF and using the wavelet-based
method to generate Daubechies filters [15]. This frame-
by-frame analysis is performed to avoid the incorrect
selection of IMFi due to the extreme variability and non-
stationarity of the signal. Finally, the frames with Hurst
exponent values greater than a given threshold Hth are
dropped, and the remaining frames are used to recon-
struct the enhanced dysarthric speech. The EMDH steps
are as follows:

1 Use the EMD algorithm to decompose a dysarthric
speech signal x(t) into a finite number of IMFs. IfM
IMFs are extracted and themth is denoted as IMFm,
then

[
x(t) =

M∑

m=1
IMFm(t) + r(t)

]
(1)

where r(t) is the residual signal remaining after the
decomposition.

2 Split each IMFm into Q non-overlapping short-time
frames. We obtain the following window IMFm
(wIMFm):

wIMFm,q(t) =
{
IMFm(t + qTd), t ∈[0,Td]
0, elsewhere

}

(2)

where q ∈ {0, . . . ,Q − 1} is the frame index and Td is
the fixed time duration of the frames.

3 Apply wavelet decomposition to all wIMFm.
Estimate their Hurst exponents and store them in a
vector of Hurst values Hq(m) with M components
(m ∈ {1, . . . ,M}) calculated for each index q.

4 Determine for each frame the index Nq of the last
wIMFm whose Hurst value is below a given
threshold: Hq(Nq) < Hth.

5 Reconstruct the enhanced speech signal x̂(t) as

x̂(t) =
∑Q−1

q=0
x̂q(t − qTd) (3)

and

x̂q(t) =
∑Nq

m=1
wIMFm,q(t) (4)

q ∈ {0, . . . ,Q − 1}.
We setM to 10 and Hth to 0.90 in the experiments.
To show the effect of the EMDH technique, we con-

ducted enhancement experiments on dysarthric speech
using spectral subtraction, Wiener filtering, and EMDH
techniques. The analysis of the obtained results showed
that EMDH always gives the higher segmental signal-
to-noise ratio (SNRseg). The perceptual evaluation of
speech quality (PESQ) metric also illustrated the superi-
ority of EMDH over the two other techniques. Therefore,
we adopted EMDH as a preprocessing step in our pro-
posed system. Table 1 gives the results of the enhancement
experiment using a sentence from dysarthric speaker JF.

2.3 HMM-GMM system
HMMs model the sequential structure of the speech
signal, and GMMs model the distribution of the spec-
tral representation of the signal using different Gaussian
distributions.
The HMM-GMM speech recognition system is built

using HTK tools [5], where each phoneme is modeled by a
5-state HMM model with 2 non-emitting states (the first
and fifth states) and a mixture of 2, 4, 8, or 16 Gaussian
distributions. Mel-frequency cepstral coefficients
(MFCCs), delta coefficients, and the cepstral
pseudo-energy are calculated for all utterances and
used as parameters to train and test the system.

Table 1 Results of enhancement techniques using a sentence
from dysarthric speaker JF extracted from the Nemours corpus

Speech enhancement technique

Metrics Spectral subtraction Wiener filtering EMDH

SNRseg 2.4146 11.1018 15.8155

PESQ 2.1160 3.2983 4.3640
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Figure 1 depicts the training and test phases of this
system.
We used this HMM-GMM system as a baseline for

comparison with the EMDH-CNN system.

2.4 CNN system
Convolutional neural networks (CNNs) perform the
mathematical operation called convolution instead of gen-
eral matrixmultiplication to produce filtered feature cards
stacked on the top of each other. A CNN has the following
components [17]:

1 Convolutional layer:
This layer extracts characteristics from the input
features, and its output feature maps are given by
C(xu,v) = ∑ n

2
i=− n

2

∑m
2
i=−m

2
fk(i, j) xu−i,v−j where fk is

the filter with kernel size n × m applied to the input
x, and n × m is the number of input connections to
each CNN neuron.

2 Pooling layer:
The pooling layer is a downsampling strategy applied
to the output feature maps of the convolutional layer
to reduce their number and make them more
invariant to changes in scale and orientation. Two
common pooling functions are used to reduce the
number of sub-regions: average pooling and max
pooling. We use the max pooling function.
M(xi) = max{xi+k,i+l| |k| ≤ m

2 , |l| ≤ m
2 , k, l ∈ N}

where x is the input and m is the size of the max filter.

3 ReLU (rectified linear unit):
This activation function replaces all negative values
in the feature map with zero. The main goal of ReLU
is to introduce non-linearity into the CNN system
because most of the data we would like the system to
learn would be non-linear. ReLU is defined by the
equation R(x) = max(0, x), where x is the input.
Other functions are used, such as tanh or sigmoid,
but ReLU has been shown to be more efficient.

4 Fully connected layer:
Adding a fully connected layer to a CNN system is
another good way to learn non-linear combinations
of the features coming from the previous layer.
However, the fully connected layer takes all the
neurons from the previous layer and connects them
to each neuron it has. The output of this layer is
given by F(x) = σ(Wl×k × x) where k is the size of
the input x, l is the number of neurons in the fully
connected layer, and σ is the activation function.
This results in a matrix W.

5 Output layer:
This layer is a hot vector representing the class of the
given input vector x and has a dimensionality equal
to the number of classes. In this work, we have 44
classes. The resulting class is represented by
C(x) = {i | ∃i ∀ j �= i : xj ≤ xi}

6 Softmax layer:
The error is propagated back over a Softmax layer.
For an input vector x of dimension N, the Softmax

Fig. 1 HMM-GMM system architecture
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layer calculates a mapping such that
S(x) : RN → [0, 1]N , and for each component
1 ≤ j ≤ N , the output is calculated as follows:
S(x)j = exj∑n

i=1 exi

In general, a CNN consists of several iterations of this
succession of layers where the output of one layer is the
input to the next layer. One of the advantages of CNNs is
that they are trained quickly. The architecture of our CNN
system is depicted in Fig. 2.
We used this CNN system as a baseline for comparison

with the EMDH-CNN system.

2.5 EMDH-CNN system for performing dysarthric speech
recognition

The proposed EMDH-CNN system is depicted in Fig. 2.
The dysarthric speech is first processed using the EMDH
technique with the expected goal of enhancing its quality.
In the second step, theMel-frequency cepstral coefficients
(MFCCs) are extracted from the enhanced speech and
used as the input features to a deep learning-based system
using a convolutional neural network (CNN). The CNN
performs the recognition of 44 dysarthric phonemes.
The classification of dysarthric phonemes is performed

by a CNN composed of a convolutional layer using a 39 ×

Fig. 2 EMDH-CNN system architecture
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39 filter and 64maps followed by a pooling layer with a 2×
2 filter. A dropout of 0.2 is applied followed by a flattening
layer and two fully connected layers of 500 neurons each.
The last layer is the output layer with a size of 44, which
corresponds to the number of phonemes to be recognized.

3 Experiments and results
The Nemours corpus was used throughout the experi-
ments. This database is composed of 814 short non-sense
sentences: 74 sentences each uttered by 11 Americanmale
speakers with different degrees of dysarthria [18]. This
corpus was used to train the HMM-GMM and CNN base-
line systems. The enhanced dysarthric speech utterances
were obtained after processing the original Nemours cor-
pus with the EMDH technique. This new corpus was used
to train the EMDH-CNN system. Both the original cor-
pus and the enhanced corpus were split into 70% and 30%
to form training and test sets, respectively. We have also
carried out experiments using 10-fold cross-validation
to train and test speaker-dependent systems and global
systems.

3.1 Experimental setup
The CNN- and HMM-GMM-based systems were used
as baseline references. Their input features are MFCCs
extracted from the dysarthric speech without any pre-
processing. For the EMDH-CNN system, the MFCC fea-
tures were extracted after preprocessing the corpus with
the EMDH technique. Only the preprocessed MFCCs
were used to train and test the EMDH-CNN system.
Python programming language andKeras library [19] with
TensorFlow were used to carry out the experiments.
The systems were tested using input vectors composed

of 26 MFCCs and their first derivatives (13 + 13 deltas),
which was found to be the best configuration for this
application. Prior cross-validation experiments showed
that the second derivatives do not improve the accuracy.
Due to the difficulty of understanding dysarthric speech
and the extreme variability observed between dysarthric
speakers, the three systems were designed as speaker-
dependent. The best parameters of the CNN and EMDH-
CNN systems are depicted in Fig. 2.
The speaker-dependent HMM-GMM baseline system

uses a monophone left-to-right model with Gaussian mix-
ture output densities. Each phoneme is modeled by a
5-state HMM model where the first and last states are
non-emitting. The best HMM-GMM system results were
obtained with 4 Gaussian mixtures.
The use of a speaker-dependent monophone model is

justified by the lack of exhaustive training data. Indeed,
in the context of dysarthria, there is a huge variability in
the pronunciation of a single phoneme, and therefore, a
large amount of training data is required to train a robust
model. Numerous studies, such as one conducted to

adapt dysarthric speech, suggest using speaker-dependent
monophone models as a baseline system [20].

3.2 Results and discussion
The accuracy of each system by speaker and the global
accuracy of the three systems are shown in Tables 2
and 3, respectively. Table 2 clearly shows that the EMDH
technique improves the accuracy of the CNN system for
almost all speakers by an average of 2.07% and 4.90% using
70/30 split and 10-fold, respectively. The same conclusion
can be drawn for the overall accuracy, which is improved
by 2.63% and 9.95% using 70/30 split and 10-fold, respec-
tively, as shown in Table 3.
The low performance obtained by the HMM-GMM sys-

tem was predictable because of the extreme variability
of dysarthric speech and the relatively small amount of
data available for training. In this context, the assumption
made by the GMM, that the input occurrences conform to
a Gaussian distribution, is probably not valid. It is impor-
tant to mention that dysarthric speech is characterized by
phonetic articulatory errors and other diverse and unfa-
vorable artifacts, such as stuttering, accidental pauses, and
involuntary breathing.
The obtained results show that the CNNhas a good abil-

ity to extract latent features of dysarthric speech and can
be trained more easily with a limited amount of data.

4 Conclusion and future work
In this paper, a new approach has been proposed to
improve dysarthric speech recognition. We used empiri-
cal mode decomposition and Hurst-based mode selection
to enhance dysarthric speech as a preprocessing step. The
robust dysarthric speech recognition systemwas designed
by coupling the EMDH-based enhancement process with
a convolutional neural network. The obtained results
show that the EMDH-CNN system performed better than

Table 2 Speaker accuracies of the HMM-GMM, CNN, and
EMDH-CNN dysarthric speech recognizers

Systems

Speaker HMM-GMM (%) CNN (%) EMDH-CNN
(70/30) (%)

EMDH-CNN
10-fold (%)

BB 50.00 69.43 72.59 74.54

BK 31.39 45.54 47.10 49.01

BV 46.00 54.50 54.62 59.67

FB 49.31 80.28 80.89 83.22

JF 45.14 58.69 61.57 63.47

LL 46.00 60.43 62.31 69.91

MH 34.67 73.00 75.37 77.93

RK 45.33 47.17 50.95 53.73

RL 42.00 67.14 67.73 69.60

SC 42.67 51.64 55.41 55.84
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Table 3 Global accuracies of the HMM-GMM-, CNN-, and
EMDH-CNN-based dysarthric speech recognition systems

Systems

All speakers HMM-GMM CNN EMDH-CNN
(70/30)

EMDH-CNN
10-fold

Accuracy (%) 44.13% 54.91% 57.54% 64.86%

the HMM-GMM and CNN baseline systems. While the
results obtained are encouraging, it is still challenging
to find accurate models because of the extreme variabil-
ity and complexity of dysarthric speech. Future work will
investigate the use of other robust acoustic features and a
long-term, memory-based deep learning architecture.
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