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Abstract

Substantial amounts of resources are usually required to robustly develop a language model for an open vocabulary
speech recognition system as out-of-vocabulary (OOV) words can hurt recognition accuracy. In this work, we applied
a hybrid lexicon of word and sub-word units to resolve the problem of OOV words in a resource-efficient way. As
sub-lexical units can be combined to form new words, a compact set of hybrid vocabulary can be used while still
maintaining a low OOV rate. For Thai, a syllable-based unit called pseudo-morpheme (PM) was chosen as a sub-word
unit. To also benefit from different levels of linguistic information embedded in different input types, a hybrid
recurrent neural network language model (RNNLM) framework is proposed. An RNNLM can model not only
information frommultiple-type input units through a hybrid input vector of words and PMs, but can also capture long
context history through recurrent connections. Several hybrid input representations were also explored to optimize
both recognition accuracy and computational time. The hybrid LM has shown to be both resource-efficient and
well-performed on two Thai LVCSR tasks: broadcast news transcription and speech-to-speech translation. The
proposed hybrid lexicon can constitute an open vocabulary for Thai LVCSR as it can greatly reduce the OOV rate to
less than 1 % while using only 42 % of the vocabulary size of the word-based lexicon. In terms of recognition
performance, the best proposed hybrid RNNLM, which uses a mixed word-PM input, obtained 1.54 % relative WER
reduction when compared with a conventional word-based RNNLM. In terms of computational time, the best hybrid
RNNLM has the lowest training and decoding time among all RNNLMs including the word-based RNNLM. The overall
relative reduction on WER of the proposed hybrid RNNLM over a traditional n-gram model is 6.91 %.
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1 Introduction
The vocabulary of any active language continues to grow
as new words, such as person names, place names, and
new technical terms, are introduced everyday. This poses
a challenge on building a language model (LM) for a large
vocabulary continuous speech recognition (LVCSR) sys-
tem. Substantial amount of resources, e.g., memory and
computational time, for both training and decoding are
required to handle an open vocabulary LM; otherwise, the
performance of an LVCSR system could be hurt by a high
out-of-vocabulary (OOV) rate. A hybrid LM of word and
sub-word units has been shown to be resource-efficient
for an LVSCR system in various languages [1–5] as sub-
lexical units can be combined to form new words; thus,

*Correspondence: vataya.chunwijitra@nectec.or.th
NECTEC, National Science and Technology Development Agency (NSTDA),
112 Pahonyothin Road, Pathumthani 12120, Thailand

a compact set of vocabulary can be used while still main-
taining a lowOOV rate. On another aspect, different types
of lexical units in a hybrid LM provide different levels of
linguistic information which can be combined to better
predict word probability. In [6, 7], characters were com-
bined with words to add another type of constraint in
Chinese hybrid LMs.
In this paper, we apply a hybrid LM of word and sub-

word units to a Thai LVCSR system with two goals in
mind, to alleviate the problem of OOV words and to
improve recognition accuracy, both in a resource-efficient
way. A suitable sub-lexical unit depends largely on the
characteristic of each language. In Thai, since there is nei-
ther inflection nor derivative, a syllable-based unit called
pseudo-morpheme (PM) is used as a sub-lexical unit in
the proposed hybrid LM instead of a morpheme-based
unit as in morphologically rich languages. According to
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Thai writing rules, PM is more deterministic when com-
pared with word and has been shown to alleviate a word
segmentation problem [8].
To benefit from different levels of linguistic informa-

tion embedded in word and sub-word units, an approach
which can naturally model multiple-type input units is
considered. In this work, a recurrent neural network
(RNN) is used to model a hybrid word-PM LM as there
is no restriction on the RNN input types. Moreover, RNN
is chosen from its ability to model longer history not
only n− 1 previous words through recurrent connections
between its hidden layer and input layer as detailed in [9].
As a result, RNN can capture long context patterns instead
of fixed-length contexts as in a traditional neural network
(NN) LM [7].
In our proposed hybrid RNNLM, a hybrid vector of

words and PMs is used as an input vector. Unlike the
hybrid NNLM in [7], the output from our hybrid RNNLM
can contain both words and PMs in order to handle OOV
words. In the first-pass decoding, a hybrid n-gram LM
similar to [4] is utilized to create a hybrid n-best list where
OOV words could be recognized as a sequence of PMs.
A hybrid RNNLM, which can consider information from
different types of input units together, is then applied in
the second-pass to re-score the hybrid n-best list for bet-
ter recognition accuracy. Besides the application of RNN,
we also explore several hybrid input representations to
optimize both recognition accuracy and computational
time. In addition to a full-hybrid RNNLM which takes
both a word sequence and a PM sequence as its input,
two variations of reduced-hybrid RNNLMs are proposed
to decrease computational complexity. By using two types
of units, the vocabulary size of the full-hybrid RNNLM
could be twice the size of the word-based RNNLM. In
the first reduced-hybrid RNNLM variation, the size of the
hybrid vocabulary is reduced to be equal to the size of the
word-based RNNLM vocabulary by including only fre-
quent words and PMs. In the other variation, a mix of
word and PM sequence is used as an input instead.
This paper is organized as follows: Section 2 explains

the characteristics of Thai text together with a pseudo-
morpheme (PM), a sub-lexical unit in Thai. Section 3
describes our proposed hybrid RNNLM framework for
combining different input unit types. Section 4 describes
the recognition process of the hybrid RNNLM. Recogni-
tion results on two Thai LVCSR tasks are then discussed
in Section 5. We finally conclude our work and discuss
future directions in Section 6.

2 Thai lexical
2.1 Lexical structure and vocabulary growth
Thai is a non-segmented script language, i.e., there is no
boundary marker between words. Furthermore, there is
no capital letter to indicate the beginning of a sentence

or a proper noun. The definition of word unit is often
ambiguous due to the presence of compound words.
These characteristics become a challenge when process-
ing Thai text.
The vocabulary growth of Thai text is illustrated by a

type-token curve in Fig. 1. This curve is plotted from
5 million words randomly selected from three text and
speech corpora: BEST [10], LOTUS-BN [11], and HIT-
BTEC [12]. To balance the amount of data from differ-
ent corpora and domains, 500K words are selected from
each of the eight genres in BEST and 500 K words each
are selected from LOTUS-BN and HIT-BTEC. The total
becomes 5 millions words from ten different genres. We
can see from the type-token curve that even with 5million
words, the vocabulary continues to grow. New names are
the main cause of the vocabulary growth. In LOTUS-BN,
where named entities were annotated with specific tags,
the type-token ratio for named-entity alone is 0.357 while
the type-token ratio for all words is 0.044. New words also
arise from transliterated words and abbreviations. Since
many named-entities are a compound word, this type of
OOV word should be able to be modeled by sub-lexical
units.

2.2 Pseudo-morpheme
The design of a sub-lexical unit depends largely on the
characteristics of each language. In Thai, there is neither
inflection nor derivative; hence, another type of sub-
lexical unit should be used instead of morpheme. As a
letter in Thai is a phonogram which roughly represents a
phoneme or combination of phonemes, Thai word could
be segmented into a sequence of syllable-like units.
A basic Thai textual syllable composes of four com-

ponents, represented in the form of {Ci, V, Cf, T}, where
Ci, V, Cf and T denote an initial consonant, a vowel, a
final consonant, and a tone, respectively, as shown in
Fig. 2. The corresponding phoneme (or phonemes) of each
component in IPA is also illustrated.
The word /bâ:n - phrá:w/, which is a village name, in

Fig. 2 consists of two syllables: /bâ:n/ and /phrá:w/. The

Fig. 1 Type-token. Type-token curve of Thai text
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Fig. 2 Thai-syllable. An example of Thai word and sub-word units

first syllable /bâ:n/ has a basic syllable pattern with all four
components { b, a:, n , ˆ }. Some textual syllables may have
multiple initial consonants, vowel forms or final conso-
nants while some syllables may have components omitted.
The second syllable /phrá:w/ has two initial consonants;
/ph/ and /r/. Nevertheless, patterns of syllables can be
defined and are known to be finite. Thai writing rules can
be used to identify syllables and their components in a
given text.
A pseudo-morpheme (PM) defined as a syllable-like unit

in a written form is used as a sub-lexical unit for Thai [8].
The example word in Fig. 2 consists of two PMs /bâ:n/
and /phrá:w/. According to Thai writing rules, PM is more
deterministic when compared with word. Given a word or
a string of text, PMs can be determined quite accurately
with an automatic segmentation tool [13]. More exam-
ples of words and theirs corresponding PMs are given
in Fig. 3 where PMs are separated by “|”. A PM must
not be confused with a phonetic syllable in word pro-
nunciation as a PM may correspond to multiple phonetic
syllables. For example the first word /júp - pháP | râ:t/
in Fig. 3, its first PM corresponds to two phonetic syl-
lables /júp - pháP/. Phonetic syllables are separated by

‘-’ in the third column. Words in Fig. 3 are examples of
OOV words found in our test sets. The first and sec-
ond words are proper names while the last word is a
loan word from the word “poll result”. Named-entities and
loan words are known to be the main causes of OOV.
By modeling an OOV word with a sequence of PMs,
these OOV words could be correctly recognized by our
hybrid LM.

3 Hybrid recurrent neural network language
model

The purpose of a language model (LM) employed in an
ASR system is to provide the probability of a word given
the history of its preceding words. For an LM to effi-
ciently predict the next word, it is well-known that long
word history should be utilized to capture long context
patterns, syntactic and semantic dependencies. A recur-
rent neural network (RNN) [9] can learn an effective
representation of history from the training data through
recurrent connections between a hidden layer and an
input layer as shown in Fig. 4. With a recurrent con-
nection through s(t − 1), the hidden layer or context
layer s of RNNLM can capture longer word history than

Fig. 3 Thai-PMs. Examples of words, their corresponding PMs, and their pronunciations
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Fig. 4 Hybrid-RNNLM. Hybrid RNNLM architecture

fixed-length context in an NNLM or an n-gram LM. To
be able to model multiple-type input units in the pro-
posed hybrid RNNLM, some modifications are made to
a conventional RNNLM framework. The model struc-
ture of the hybrid RNNLM is illustrated in Section 3.1.
The input vector of our proposed hybrid RNNLM is a
concatenated vector of word and PM vectors. A hybrid
input representation and its variations are described in
Section 3.2.

3.1 Amodel framework
The architecture of the proposed RNNLM is demon-
strated in Fig. 4. The network is represented by three
layers (input layer, hidden layer and output layer) and
corresponding weight matrices (matrix U between the
input layer and the hidden layer, and matrices V and
Z between the hidden layer and the output layer). In
this work, we employ a standard class-based RNNLM
[14], where word classes are introduced in the output
layer to reduce the computational bottleneck between
the hidden layer and the output layer. Each word is
assigned to exactly one class based on its frequency in
training data. A class can be considered as a frequency
bin.
Unlike a conventional word-based RNNLM, the input

vector x(t) of the hybrid RNNLM is formed by concate-
nating a hybrid vector h(t), instead of a word vector w(t),

with a vector s(t − 1) as represented by the following
equations:

x(t) =
[
h(t)T s (t − 1)T

]T
(1)

h(t) =
[
w(t)T p(t)T

]T
, (2)

where h(t) is a concatenated vector of a word vector w(t)
and a PM vector p(t), and s(t − 1) is the output from the
hidden layer at time t − 1. By using the hybrid vector,
the hybrid RNNLM can simultaneously integrate multiple
input types in its input layer.
The hidden layer compresses the information from two

sources, h(t) and s(t−1) and computes a new context rep-
resentation s(t)which will be an input of the next iteration
through recurrent connections. The hidden layer employs
a sigmoid activation function:

sj(t) = f
(∑

i
xi(t)uji

)
, f (a) = 1

1 + e−a , (3)

where uji is an element in matrix U, i is an index to hybrid
units in the the input vector x(t) and j is an index to hidden
neurons in the hidden layers s(t).
In a class-based RNNLM, the output probability is fac-

torized into two parts, the first part is the probability
distribution over all classes, c(t), and the second part is
the probability distribution over all hybrid units, b(t), in
a single class, the one that contains the predicted hybrid
unit:

cm(t) = g

⎛
⎝∑

j
sj(t)zmj

⎞
⎠ (4)

bk(t) = g

⎛
⎝∑

j
sj(t)vkj

⎞
⎠ , (5)

where zmj and vkj are an element in matrix Z and V,
respectively. To ensure that all output values are between
0 and 1, and their summation is equal to 1, the output layer
employs a softmax activation function:

g(aq) = eaq∑
p eap

(6)

After the probability distribution over all classes and the
probability distribution of hybrid units within the class are
obtained, the probability of the predicted hybrid unit hi is
then computed as

P(hi|history) = P(hi|ci, s(t)) P(ci|s(t)), (7)

where i is an index of the predicted hybrid unit hi and ci is
its class.



Chunwijitra et al. EURASIP Journal on Audio, Speech, andMusic Processing  (2016) 2016:15 Page 5 of 12

3.2 Input features for model training
In this section, we discuss a representation of RNNLM
input features and a vocabulary list. As a hybrid RNNLM
can take two types of input units, the training text consists
of two sets: a word sequence set and a PM sequence set.
Both data sets share the same content, but have different
segmentations. Figure 5 illustrates various segmentation
types of the same text utterance /phōn - thō: - sùP - wít
- thā:n - ráP - rû:p/. The same text is segmented into a
sequence of words in (a) and a sequence of PMs in (b).
After specifying training data, a vocabulary list is con-

structed. Typically, not every word found in the training
data is included in the vocabulary list as low frequency
words could be typos. In practice, only the top-N most fre-
quent words are included. In a hybrid RNNLM, each input
type has its own set of vocabulary. Let N be the size of
word vocabulary andM be the size of PM vocabulary. The
vocabulary size of a hybrid word-PM RNNLM is N + M
which could be twice the size of the word-based RNNLM
as shown in Fig. 6a. The size of the vector h(t) in Eq. 1 is
equal the vocabulary size. The hybrid RNNLMwhich uses
a full vocabulary of both word and PM similar to [7], or a
full-hybrid RNNLM, may suffer from the cost of compu-
tational complexity. Moreover, as our hybrid RNNLM also
has a hybrid output, the output layer b(t) has the same
dimensionality as h(t). As the output layer contains one
neuron for each word or PM in the vocabulary, it may be
infeasible to train the model with large vocabulary size.
To decrease computational complexity of the full-

hybrid RNNLM (H-F), two variations of reduced-hybrid
RNNLMs are proposed. In the first variation (H-R1), the
vocabulary size is reduced to be equal to the size of the
word-based RNNLM vocabulary (N) by including only
frequent words and PMs as shown in Fig. 6a. Let N’ and
M’ be the size of the top-N’ most frequent words and the
top-M’ most frequent PMs, respectively, N ′ + M′ = N in
H-R1. In the second variation (H-R2), a hybrid word-PM
sequence is used as an input instead of two separate word
and PM sequences as shown in Fig. 6b. Its vocabulary size

is also limited to N. The difference from H-R1 is the com-
position of the vocabulary. Since the input text of H-R2 is
a mix of words and PMs, the top-N” most frequent words
are determined first and kept as word units in the vocab-
ulary. Next, the less frequent words are segmented into
PMs. The top-M” most frequent PMs from this list are
then added into the vocabulary where N ′′ + M′′ = N .
Figure 5c illustrates a hybrid sequence where the first
word /phōn - thō:/ (lieutenant general), which is a fre-
quent word, is kept as a word while the second and third
word /sùP - wít/ (first name) and /thā:n - ráP - rû:p/ (last
name), which are infrequent words, are segmented into
a set of PMs { /sùP/, /wít/ } and { /thā:n - ráP/, /rû:p/ },
respectively. If N ′ = N ′′ then word units in H-R1 and H-
R2 are the same. However, PM units are different as the
list of PMs and their frequency in H-R2 come from the
less frequent words not all words in the training data as
in H-R1. In both H-R1 and H-R2, the size of the vector
h(t) is decreased. The reduction in computational time
comparing with the full-hybrid RNNLM is discussed in
Section 5.5.

4 Lattice decoding and re-scoring
To perform automatic speech recognition with the pro-
posed hybrid RNNLM, we employ a two-pass decoding
scheme. In the first-pass decoding, a hybrid n-gram LM
similar to [4] is utilized to create a hybrid n-best list where
OOV words could be recognized as a sequence of PMs.
In the second-pass, a hybrid RNNLM which can consider
different levels of linguistic information from different
types of input units, i.e., word and PM, together is then
applied to re-score the hybrid n-best list to improve recog-
nition accuracy. The two recognition steps are discussed
in detail below.

4.1 First-pass decoding with a hybrid n-gram LM
Conventionally, in the first pass, a decoder uses an acous-
tic model and a word-based n-gram language model to
generate multiple recognition hypotheses which can be

(a)

(b)

(c)

Fig. 5 Thai-segmentation. An illustration of different unit segmentations (a) word, (b) PM, and (c) hybrid
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(a)

(b)

Fig. 6 Input-RNNLM. Input feature representations of 3 hybrid RNNLM variations (a) hybrid input representation for H-F and H-R1, and (b) hybrid
input representation for H-R2

compactly represented in a data structure called word lat-
tice as illustrated in Fig. 7a. In this paper, a hybrid n-gram
LM is used instead in order to handle OOV words. To
train a hybrid n-gram LM, a hybrid sequence of words and
PMs similar to the one in Fig. 5c is used as LM training
data. The vocabulary of our hybrid LM consists of fre-
quent words and PMs from less frequent words. Words
that occur more frequently than a threshold are kept as

word units in the vocabulary while words that occur less
often are segmented into PMs. All unique PMs are then
added to the hybrid vocabulary. We note that some PMs
could be similar to short words in the vocabulary. To avoid
redundancy, these PMs are excluded.
In Fig. 7a, the utterance /phōn - thō: - sùP - wít - thā:n -

ráP - rû:p/ cannot be recognized by the word-based lattice
as the word /thā:n - ráP - rû:p/ is an OOV word. When a

(a)

(b)

Fig. 7 Lattice. Word and hybrid lattices in the first-pass decoding (a) word lattice, and (b) hybrid word-PM lattice
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hybrid n-gram LM is used to generate a hybrid lattice as
illustrated in Fig. 7b, the OOV word /thā:n - ráP - rû:p/
can be recognized as a sequence of PMs /thā:n - ráP/ and
/rû:p/.

4.2 Second-pass re-scoring with an RNNLM
In multi-pass decoding, an LM trained with higher order
knowledge sources is used to re-score the lattice generated
by an LM trained with simpler or lower order knowl-
edge sources from the preceding pass. In this work, an
RNNLM which is considered more complex is applied
to re-score a hybrid lattice generated by the hybrid n-
gram LM described in the previous section. Since the
hybrid RNNLMs described in Section 3.2 use different
input feature representations, the lattice generated from
the first-pass decoding has to be converted accordingly.
An n-best hypothesis list is first extracted from the lat-
tice, then converted into a suitable representation for each
hybrid RNNLM as shown in Fig. 8. A conventional n-best
list extracted from a word-based lattice is also presented
in Fig. 8a for comparison. For the full-hybrid RNNLM
which takes both a word sequence and a PM sequence
as its input, a PM sequence is obtained by splitting all
words in the hypotheses into PMs as shown in Fig. 8b. The

acoustic score and LM score of each PM are calculated by
a uniform distribution of the corresponding word scores.
When the hypotheses are extracted from a hybrid lat-
tice, a word sequence may contain some PMs similar to
a hybrid sequence in Fig. 8c. The reduced-hybrid H-R1
which takes the same input representation as H-F but use
a reduced vocabulary set also uses the word-PM n-best
list shown in Fig. 8b. For the reduced-hybrid H-R2 where
frequent words are represented as word units while infre-
quent words are represented as PM units, a hybrid n-best
list illustrated in Fig. 8c is used in the second-pass re-
scoring. In this case, it can be seen that only an infrequent
word /nâ: - tìt - tā:m/ is segmented to PMs as /nâ:/, /tìt/
and /tā:m/.
In the second-pass re-scoring, a new LM score is

obtained by interpolating the probability from RNNLM
with the first-pass n-gram LM score. Then, the hybrid n-
best list with the new LM scores is reconstructed into
a hybrid lattice. Finally, the new best hypothesis is cho-
sen based on the re-scored score. For instance, after
re-scoring with the hybrid RNNLM (H-R2), the 2-best
hypothesis in Fig. 8c, which is the correct one, becomes
the 1-best hypothesis and is chosen as a recognition
result.

(a)

(b)

(c)

Fig. 8 N-best. N-best list representations in the second-pass re-scoring of different types (a) conventional N-best list, (b) word-PM N-best list, and
(c) hybrid N-best list
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5 Experiments
We evaluated the performance of the proposed hybrid
RNNLMs on both recognition accuracy and computa-
tional efficiency. Training and test data along with the
experimental conditions are described in Section 5.1.
Recognition accuracy of the first-pass decoding, the
second-pass re-scoring together with the experimental
analysis are reported in Sections 5.2, 5.3, and 5.4, respec-
tively, while the model run-time efficiency is discussed in
Section 5.5.

5.1 Experimental conditions
We evaluated our approach with two different recog-
nition tasks: broadcast news transcription and speech-
to-speech translation. Acoustic model training data of
our speech recognizer composes of 224 hours of speech
from LOTUS [15], LOTUS-BN [11], and VoiceTra4U-
M. VoiceTra4U-M is a speech translation application
in sport and travel domains developed under the
Universal Speech Translation Advanced Research (U-
STAR) project (http://www.ustar-consortium.com/qws/
slot/u50227/index.html). Twenty-two hours of speech
were recorded on mobile devices in real environment.
We used the Kaldi Speech Recognition Toolkit [16] to
first train a conventional GMM-based acoustic model.
We then applied the minimum phone error (MPE) dis-
criminative training technique described in [17]. Each
frame of speech data was converted into a sequence of
39 dimensional feature vectors of 12 MFCCs augmented
with log energy, their first and second derivatives.We used
a 25 millisecond frame length with 10 millisecond win-
dow shift each time. Features from a context window of
3 frames to the left and right were also included. A linear
discriminate analysis (LDA) was also applied to the feature
space to reduce feature dimensions to 40.
LM training data contain 9.4M words from three cor-

pora, BEST [10], LOTUS-BN [11], and HIT-BTEC [12].
As these corpora cover variety of domains, e.g. law, news,
and travel, with the vocabulary size of 121K, they are good
resources for training a hybrid LM for an open-domain
LVCSR system.
The test set of the broadcast news transcription task

(BN) consists of 3140 utterances of two male speakers and
one female speaker taken from the LOTUS-BN evaluation
set. For the speech-to-speech translation task (VT), the
test set consists of 1916 utterances of VoiceTra4U-M data
not included in the training set.

5.2 Recognition performance of the first-pass decoding
Three 3-gram LMs were experimented to investigate the
effect of different lexical units on the first-pass decoding
performance of a Thai LVCSR system. A word-based LM
(f-W) is a baseline LM which includes all word units in
the training data in its lexicon. A PM-based LM (f-PM)

uses PM as a lexicon unit instead of word. The training
data were segmented into PMs and then used to train an
n-gram model in the same way as a word-based LM. All
PM units were included in the f-PM lexicon. A hybrid LM
(f-H) uses a hybrid lexicon which includes only the words
that occur more than three times in the training data and
the PMs from less frequent words. The amounts of word
and PM units used in each LM are shown in the second
and third row, respectively, in Table 1. All 3-gram LMs
were trained using Kaldi LM toolkit [16] with modified
Kneser-Ney smoothing.
The performance of the 3-gram LMs in the first-pass

decoding is measured in terms of accuracy and OOV rate.
Since mixed types of units are used in the LMs, we report
both PM Error Rate (PER) and Word Error Rate (WER)
in all experiments. To recover word units from a hybrid
output, we concatenate multiple-type output units into
a string of text and then re-segment it into words using
a word segmentation tool. OOV rate (OOV) is used to
measure the coverage of a given lexicon over a test set.
OOV reported in this section is an effective OOV rate
which accounts for the percentage of words that are not in
the full-word lexicon and cannot be constructed from the
PMs.
From the results shown in Table 1, we can clearly see

that the hybrid LM, f-H, can greatly reduce the OOV rates
when compared with f-W in both test sets by using only
42 % of the vocabulary size (51 K vs. 121 K). In terms of
PER and WER, among the 3 LMs, f-H achieved the best
results on both test sets. On average, the hybrid LM can
reduce PER by 0.21 % absolute and 1.02 % relative while
reduce WER by 0.16 % absolute and 0.69 % relative when
compared with the word-based LM, f-W. The PM-based,
f-PM, has the lowest OOV rates on both test sets. How-
ever, it produced the highest error rates, both PER and
WER. From the result, we can say that PM units are too
small to capture context history and language dependen-
cies especially with the fixed context length in an n-gram

Table 1 Recognition results of first-pass decoding

Tasks

LMs f-W f-PM f-H

#Word 121 K 0 K 30 K

#PM 0 K 25 K 21 K

BN PER (%) 20.64 23.76 20.54

WER (%) 24.05 27.30 24.01

OOV (%) 2.08 0.41 0.54

VT PER (%) 19.71 20.99 19.40

WER (%) 22.56 23.94 22.28

OOV (%) 0.85 0.11 0.15

AVG PER (%) 20.18 22.38 19.97

WER (%) 23.31 25.62 23.15

OOV (%) 1.96 0.39 0.51

http://www.ustar-consortium.com/qws/slot/u50227/index.html
http://www.ustar-consortium.com/qws/slot/u50227/index.html
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model. This experiment shows that the hybrid lexicon
of words and PMs is a resource-efficient representation
that not only can greatly reduces the OOV rate but also
improves recognition accuracy. Examples of correctly rec-
ognized OOVwords, such as proper name and loan word,
are shown in Fig. 3.

5.3 Recognition performance of the second-pass
re-scoring

Five variations of RNNLMswere investigated: word-based
(W), PM-based (PM), full-hybrid (H-F), and two vari-
ations of reduced-hybrid (H-R1 and H-R2). The PM
RNNLM was trained in the same fashion as the con-
ventional word RNNLM except that the input unit is
PM instead of word. In all experiments, the class-based
RNNLMs were trained by the RNNLM toolkit [18] with
five iterations of Back-propagation through time (BPTT)
[19], 400 hidden neurons, and 400 classes. In the training,
1 % or 10K words were excluded from the training set for
validation testing. The size of the n-best list obtained from
the first-pass decoding is set to be at most 100 hypothe-
ses for each utterance. In the second-pass re-scoring,
RNNLMs were interpolated with the 3-gram LM using a
weight of 0.25 for RNNLMS.
We first examined the appropriate hybrid vocabulary

for H-R1 and H-R2, namely the number of word units
(N ′ and N ′′) and the number of PM units (M′ and
M′′). In the first-pass decoding experiment discussed
in Section 5.2, all PMs from less frequent words were
included in the hybrid 3-gram model. Since an RNNLM
requires much larger training resources, only frequent
PMs should be included in the vocabulary. Three hybrid
lexicons with different amounts of words and PMs were
experimented. For fair comparison, the sizes of the lex-
icons are kept the same at 35 K units. The hybrid lex-
icons include words that occur more than three, four,
and seven times and PMs that occur more than five,
three, and two times, respectively. The amounts of cor-
responding words and PMs in each hybrid lexicon are
shown in the second and third rows in Table 2. The
effect of different word/PM ratios in the hybrid lexicons in

Table 2 Recognition performance with various hybrid lexicons

Tasks

LM H-R1 H-R2

#Word 30 K 25 K 20 K 30 K 25 K 20 K
#PM 5 K 10 K 15 K 5 K 10 K 15 K

BN PER (%) 18.84 18.85 18.89 18.84 18.81 18.86

WER (%) 22.16 22.19 22.24 22.15 22.13 22.18

VT PER (%) 18.79 18.86 18.76 18.41 18.41 18.56

WER (%) 21.57 21.66 21.57 21.27 21.27 21.47

AVG. PER (%) 18.82 18.86 18.83 18.63 18.61 18.71

WER (%) 21.87 21.93 21.91 21.71 21.70 21.83

terms of PER and WER in the second-pass re-scoring are
reported.
For H-R1, on average, the best result was obtained from

the vocabulary which contains 30 K words and 5 K PMs.
For H-R2, the best result was obtained from the vocabu-
lary which contains 25 K words and 10 K PMs. We note
that both PER and WER do not change much with dif-
ferent word/PM ratios. Nevertheless, we chose the ratio
that yields the best recognition performance for the next
experiment. For comparison, the vocabulary size of the
word-based RNNLM (N) is set to 35 K while the vocab-
ulary size of the PM-based RNNLM (M) is set to 25 K,
the amount of all PM units. For H-F, the vocabulary size is
N + M which is 60 K as detailed in Section 3.2.
Table 3 shows recognition results of the second-pass

re-scoring using a hybrid 4-gram LM (s-H) and five vari-
ations of RNNLMs. As expected, all the second-pass
re-scoring results were better than the first-pass result
which used a hybrid 3-gram LM (f-H). When compared
RNNLMs with a hybrid 4-gram LM in the second-pass re-
scoring, all RNNLMs obtained better recognition results
as they can capture longer context history than the 4-gram
model. Among various RNNLMs, H-F achieved the low-
est error rate in the BN test set while H-R2 gave the best
recognition result in the VT test set and also on average.
H-R2 is preferable as it is more computational efficient as
discussed in Section 5.5. When compared with a conven-
tional word-based RNNLM (W), the best proposed hybrid
RNNLM, H-R2, obtained 2.41 % relative PER reduction
and 1.54 % relative WER reduction on average. The per-
formance improvements of the proposed hybrid input
RNNLMover the traditional word-based RNNLM are sta-
tistically significant at the 0.01 (1 %) level for PER and at
the 0.05 (5 %) level for WER.
From result analysis, we found that the word-based

RNNLM sometimes made mistake by choosing a long
word or a compound word when its can be acoustically
confused with correct words in an input utterance. A
hybrid word-PM RNNLM, on the other hand, has more

Table 3 Recognition performance of second-pass re-scoring

Tasks

LM
4gr RNNLMs

s-H W PM H-F H-R1 H-R2
#Word 30 K 35 K 0 K 35 K 30 K 25 K
#PM 21 K 0 K 25 K 25 K 5 K 10 K

BN PER (%) 19.60 19.11 19.12 18.73 18.84 18.81

WER (%) 22.92 22.22 22.23 22.05 22.16 22.13

VT PER (%) 19.02 19.02 19.26 18.89 18.79 18.41

WER (%) 21.75 21.85 22.17 21.69 21.57 21.27

AVG. PER (%) 19.31 19.07 19.19 18.81 18.82 18.61

WER (%) 22.34 22.04 22.20 21.87 21.87 21.70
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Table 4 Positive and negative effects on recognition results

Tasks LM
RNNLMs

W H-R2

BN COOV (%) - 21.38

MIV (%) 21.87 21.84

VT COOV (%) - 35.14

MIV (%) 21.62 21.03

AVG. COOV (%) - 21.81

MIV (%) 21.85 21.77

flexible unit choices as it can output both word and sub-
word units, and thus can avoid this kind of mistakes. With
the use of RNN for combining information from different
types of units, 6.81 % relative improvement on PER and
6.26 % onWER can be obtained compared with the hybrid
n-gram LM (f-H).

5.4 Experimental analysis
To further analyze the recognition improvement achieved
by the proposed hybrid framework, we also reported
COOV (correctly recognized OOVs) andMIV (misrecog-
nized in-vocabulary words) in Table 4. The best proposed
hybrid RNNLM (H-R2), reported in Section 5.3, is com-
pared against the conventional word-based RNNLM (W).
In this experiment, a word is considered an OOV word if
it is not found in the 121K full-vocabulary of the training
data. The OOV rates of the BN task and the VT task are
2.08 and 0.85 %, respectively, while the average OOV rate
is 1.96 % as shown in Table 1. The COOVs in Table 4 show
that the proposed hybrid framework of word and PMunits
can alleviate the problem of OOV words by correctly rec-
ognized 21.38 % of them in the BN task and 35.14 %
of them in the VT task while the traditional word-based
RNNLM cannot. We also show examples of recognition
results of the word-based system against the hybrid sys-
tem in Fig. 9. Words and PMs are separated by “-” and “|”,
respectively. Words in the Fig. 9 are OOV words found in
the test sets. These words could correctly be recognized
by the proposed hybrid framework, but could not be rec-
ognized by the word-based RNNLM framework and thus
introduce recognition errors. The first and second rows

are person names while the last row is a Thai transliterated
word of the word “alliance”. Named-entities and translit-
erated words are known to be the main causes of OOV.
By modeling an OOV word with a sequence of PMs, these
OOV words could be correctly recognized by our hybrid
RNNLM.
When consider in-vocabulary words, we found that the

MIV of our proposed hybrid RNNLM is not higher than
that of the word-based one, thus there is no negative
effect due to lexical confusion from including PMs in
the language model. Furthermore, the misrecognition of
in-vocabulary words was reduced by 0.35 % relatively in
the hybrid framework (H-R2) over the word-based frame-
work (W). The improvement in in-vocabulary recognition
could come from different levels of linguistic information
embedded in multiple-type input units which can be uti-
lized by the proposed hybrid RNNLM framework. From
the analysis of results shown in Table 4, we could say that
the improvement in WER and PER of the hybrid RNNLM
(H-R2) over the word-based RNNLM (W) comes from
both better COOV and MIV.

5.5 Computational efficiency
In this section, we analyzed the computational time of the
RNNLMs. Table 5 shows the amount of training time and
the second-pass decoding time on a PC with 98 GB of
memory and 24 cores 2.67 GHz CPU.
Since H-F and H-R1 used both word and PM sequences

as an input when trained the models, they used much
longer training time than other types of RNNLMs. Their
decoding times are also almost twice when compared with
other models. H-R2 which takes a single hybrid sequence
of words and PMs as its input has the lowest training and
decoding time among all RNNLM variations. When com-
pared among three hybrid RNNLM variations, both the
training and decoding time can be saved bymore than half
in H-R2 without affecting recognition accuracy. When
compared with the 4-gram LM, which has about 6 min
training time and 17min decoding time, all RNNLMs have
much longer training time but have faster decoding time
while also achieve better recognition results. The 4-gram
LM has longer decoding time due to its larger vocabulary
size.

Fig. 9 Recog Results. Recognized results samples of OOVs from word-based and hybrid RNNLM
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Table 5 Training and decoding time (h=hour, m=minute,
s=second)

RNNLMs W PM H-F H-R1 H-R2

#Word 35 K 0 K 35 K 30 K 25 K

#PM 0 K 25 K 25 K 5 K 10 K

Training 36 h 35 m 38 h 13 m 67 h 19 m 63 h 12 m 28 h 20 m

Decoding 08 m 25 s 10 m 22 s 17 m 47 s 15 m 48 s 08 m 15 s

6 Conclusions
We proposed a hybrid RNNLM framework for model-
ing multiple-type input units, namely word and sub-word.
A hybrid lexicon was utilized to alleviate the problem of
OOVwords and to improve recognition accuracy through
additional linguistic information frommultiple unit types.
Pseudo-morpheme (PM), a syllable-based unit, was cho-
sen as an appropriate sub-word unit for Thai. A concate-
nated vector of word and PM vectors, or a hybrid vector,
is used as an input vector instead of a word vector in
the proposed hybrid RNNLM framework. Several hybrid
input representations were also explored to optimize both
recognition accuracy and computational time.
The hybrid LM has shown to be both resource-efficient

and well-performed on two Thai LVCSR tasks: broadcast
news transcription and speech-to-speech translation. The
proposed hybrid lexicon can constitute an open vocab-
ulary for Thai LVCSR as it can greatly reduce the OOV
rate to less than 1 % while using only 42 % of the vocab-
ulary size of the word-based lexicon. In terms of recog-
nition performance, the best proposed hybrid RNNLM,
a reduced-hybrid which uses a mixed input sequence of
words and PMs, obtained 1.54 % relative WER reduction
when compared with a conventional word-based RNNLM
as hybrid input types provide more flexible unit choices
for LM re-scoring. The improvement obtained with the
proposed hybrid input RNNLM is statistically significant
at the 0.05 level. Furthermore, the hybrid RNNLM frame-
work has shown to be able to alleviate the problem of
OOVwords by correctly recognize 21.81 % of OOVwords
compared to the word-based system on the evaluation
corpora. When only frequent words and PMs from less
frequent words are used, the size of the input vector
of the reduced-hybrid RNNLM can be reduced by half
when compared with the full-hybrid RNNLMwhich takes
two input streams, both word and PM sequences. The
hybrid input representation can considerably save both
training and decoding time while still achieving slightly
better recognition accuracy. In the future, we plan to
apply more complex lattice re-scoring algorithms, such
as the one described in [20], to the hybrid RNNLM to
further improve recognition performance. A cache-based
RNNLM which can be used straightaway in the first-pass
decoding [21] will also be considered.
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