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Abstract

Today, a large amount of audio data is available on the web in the form of audiobooks, podcasts, video lectures, video
blogs, news bulletins, etc. In addition, we can effortlessly record and store audio data such as a read, lecture, or
impromptu speech on handheld devices. These data are rich in prosody and provide a plethora of voices to choose
from, and their availability can significantly reduce the overhead of data preparation and help rapid building of
synthetic voices. But, a few problems are associated with readily using this data such as (1) these audio files are
generally long, and audio-transcription alignment is memory intensive; (2) precise corresponding transcriptions are
unavailable, (3) many times, no transcriptions are available at all; (4) the audio may contain dis-fluencies and
non-speech noises, since they are not specifically recorded for building synthetic voices; and (5) if we obtain automatic
transcripts, they will not be error free. Earlier works on long audio alignment addressing the first and second issue
generally preferred reasonable transcripts and mainly focused on (1) less manual intervention, (2) mispronunciation
detection, and (3) segmentation error recovery. In this work, we use a large vocabulary public domain automatic
speech recognition (ASR) system to obtain transcripts, followed by confidence measure-based data pruning which
together address the five issues with the found data and also ensure the above three points. For proof of concept, we
build voices in the English language using an audiobook (read speech) in a female voice from LibriVox and a lecture
(spontaneous speech) in a male voice from Coursera, using both reference and hypotheses transcriptions, and evaluate
them in terms of intelligibility and naturalness with the help of a perceptual listening test on the Blizzard 2013 corpus.
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1 Introduction

1.1 Motivation

Unit selection speech synthesis is one of the techniques
for synthesizing speech, where appropriate units from
a database of natural speech are selected and concate-
nated [1-3]. Unit selection synthesis can produce natural-
sounding and expressive speech output given a large
amount of data containing various prosodic and spectral
characteristics. As a result, it is used in several commercial
text-to-speech (TTS) applications today.

1.1.1 Overhead of data preparation for building
general-purpose synthetic voices
Building a new general-purpose (non-limited domain)

unit selection voice in a new language from scratch
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includes a huge overhead of data preparation, which
includes preparing phonetically balanced sentences,
recording them from a professional speaker in various
speaking styles and emotions in a noise-free environment,
and manually segmenting or correcting the automatic
segmentation errors. All of it is time consuming, labo-
rious, and expensive, and it restricts rapid building of
synthetic voices. A free database such as CMU ARCTIC
[4] has largely helped to rapidly build synthetic voices
in the English language. But CMU ARCTIC is a small
database, contains only a few speakers data, and is not
prosodically rich (contains short declarative utterances
only). Today, (1) a large amount of audio data has become
available on the web in the form of audiobooks, pod-
casts, video lectures, video blogs, news bulletins, etc,
and (2) thanks to technology, we can effortlessly record
and store large amounts of high-quality single speaker
audio such as lecture, impromptu, or read speech. Unlike
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CMU ARCTIC, these data are rich in prosody and pro-
vide a plethora of voices to choose from, and their use
can significantly ease the overhead of data preparation
thus allowing to rapidly build general-purpose natural-
sounding synthetic voices.

1.1.2 Problems with using found data for building synthetic
voices

Now, the questions to be asked are whether we can readily
use such data to build expressive unit selection synthetic
voices [5] and will the synthesis be good? In this paper,
we try to answer these questions. There are a few prob-
lems related to it such as the following: (1) the audio
files are generally long and audio-text alignment becomes
memory intensive; (2) precise corresponding transcrip-
tions are unavailable; (3) often, no transcriptions are avail-
able, and manually transcribing the data from scratch or
even correcting the imprecise transcriptions is laborious,
time consuming, and expensive; (4) the audio may contain
bad acoustic (poorly articulated, dis-fluent, unintelligible,
inaudible, clipped, noisy) regions as the audio is not par-
ticularly recorded for building TTS systems; and (5) if we
obtain automatic transcripts using a speech recognition
system, the transcripts will not be error free.

1.1.3 Previous works on long audio alignment

Earlier works have addressed the abovementioned first
and second issues of long audio alignment in the follow-
ing three ways: (1) audio-to-audio alignment, (2) acoustic
model-to-audio alignment, and (3) text to text alignment.
Each method has its advantages and limitations.

1. Audio-to-audio alignment: Here, the text is
converted to speech using a TTS system, and the
synthesized speech is aligned with the audio [6, 7].
This method requires the existence of a TTS system.

2. Acoustic model-to-audio alignment: Here, acoustic
models are aligned with the audio. In [8], a modified
Viterbi algorithm to segment monologues was used.
Their method assumed a good (at least 99 %)
correspondence between speech and text, required
manual intervention to insert text at the beginnings
and endings of monologues, did not handle
mispronunciations, and propagated an error in one
segment to subsequent segments. In [9], a Java-based
GUI to align speech and text was released. They also
used acoustic models, assumed good correspondence
between audio and text, and required manual
intervention.

3. Text-to-text alignment: Here, a full-fledged
automatic speech recognition (ASR) system
including an acoustic and language model is used.
Basically, long files are chunked into smaller
segments based on silence. Hypothesis transcriptions
are obtained for these smaller segments. In [10], they
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proposed a method where a search is made to see
where the sequence of words in the reference and
hypothesis transcriptions match. The stretch where
they match is aligned with the audio using the Viterbi
algorithm. This process is repeated until a forced
alignment is done for each audio chunk. The process
is practically difficult to implement and relies on
correctness of the reference and hypothesis
transcriptions. In [11], a finite state transducer-based
language model instead of N-grams was used. In
[12], they used a phone-level acoustic decoder
without any phonotactic or language model and then
found the best match within the phonetic transcripts.
This approach was inspired by the fact that the data
to be aligned could have a mixture of languages. But
phonetic alignment is less robust than that at the
word level. In [13], they quantified the number of
insertions, substitutions, and deletions made by the
volunteer who read the book “A Tramp Abroad” by
Mark Twain and proposed a lightly supervised
approach that accounts for these differences between
the audio and text. Their method, unlike the
forced-alignment approach in [11] which uses beam
pruning to identify erroneous matches, could find
also the correct sequence and not only the best
match in terms of the state sequence between the
text and audio chunk. In [14], a dynamic alignment
method to align speech at the sentence level in the
presence of imperfect text data was proposed. The
drawback of this method is that it cannot handle
phrase reordering within the transcripts.

The above works on long audio alignment addressing
the first and second problems with found data gener-
ally prefer reasonable transcripts and mainly focus on
(1) less manual intervention, (2) mispronunciation detec-
tion, and (3) segmentation error recovery. In this work,
we used a large vocabulary public domain ASR system
to obtain transcripts, followed by confidence measure-
based data pruning which together address the five issues
with the found data and also ensure the above three
points. We used posterior probability obtained from the
ASR system and unit duration as confidence measures
for data pruning. Posterior probability helps detecting
mislabeled and bad acoustic regions while unit dura-
tional measure helps detect unnaturally short or long
units which may have high posterior probability values
but they can make words unintelligible or sound hyper-
articulated, respectively. Thus, both these confidence
features are directly related to the intelligibility and nat-
uralness of speech. For proof of concept, we built voices
in English language using an audiobook (read speech)
in a female voice from LibriVox and a lecture (sponta-
neous speech) in a male voice from Coursera, using both
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the reference and hypotheses transcriptions, and evaluate
them in terms of intelligibility and naturalness with the
help of a perceptual listening test on the Blizzard 2013
corpus.

1.2 System overview

Figure 1 shows the architecture of the entire system. Each
module in Fig. 1 is explained in detail in the succeeding
sections. First, the ASR system accepts the audio data and
produces corresponding labels. Then, data pruning using
confidence measures takes place. The pruned audio and
label data form the unit inventory for the TTS system.
During synthesis time, the TTS system accepts normal-
ized text, takes into account the duration and phrase
break information predicted by a statistical parametric
speech synthesizer trained using the same audio data and
hypothesized transcriptions, and chooses an appropriate
sequence of units that minimizes the total of the target
and concatenation costs. The output of the TTS system is
an audio file.

1.3 Experiments and evaluation

In the first experiment, we compare the recognition per-
formance of an ASR system trained on LibriSpeech data
against those trained on TTS data (Olive and lecture
speech). In the second experiment, we check the effec-
tiveness of posterior probability as a confidence measure
to prune bad data. In the third experiment, we check the
effect of pruning using a combination of posterior prob-
ability and unit duration on intelligibility and naturalness
of the synthesized voice.

The rest of the paper is organized as follows. Section 2
describes data preparation. Section 3 gives ASR and TTS
system development details. Section 4 discusses data
pruning using confidence measures. Section 5 explains the
experiments and evaluation. We conclude the paper in the
Section 6.

2 Data preparation
2.1 Data used for building the ASR system
In this paper, we built three ASR systems, one of which
was built using LibriSpeech data [15]. LibriSpeech is a
fairly recently made available continuous speech corpus
in English language, which is prepared by collating parts
of several audiobooks available at the LibriVox website.
It contains two parts: 460 h of clean speech and 500 h of
speech data containing artificially added noise. We used
460 h of clean speech! to build acoustic models, a 3-gram
language model? pruned with a threshold of 3 x 1077 to
generate the lattices, and a higher order 4-gram language
model® to rescore the lattices and find the 1-best Viterbi
path for the ASR system.

The other two ASR systems (both the acoustic and lan-
guage models) were built using the TTS data described in
the next subsection.

2.2 Data preparation for building the TTS system

Details of the audio used for building voices are given in
Tables 1 and 2. One is an audiobook (read speech) in a
female voice downloaded from LibriVox, and the other
is a lecture (spontaneous speech) in a male voice down-
loaded from Coursera. The audio files were converted
to 16-kHz WAV format and power normalized. Before
downloading the audio, we checked that the voice quality
and speech intelligibility of the speakers are good and that
the audio has not been recorded in a noisy background.
For the audiobook, we also made sure that it is not a part
of the 460-h clean speech LibriSpeech corpus which was
used for training the ASR system so that we can simu-
late the situation that the found audiobook data is unseen
by the ASR system. For the lecture speech, a few lectures
contained TED talks and voices from other speakers, both
of which were removed. The audiobook and lecture audio
files were long and could not be directly used for decod-
ing as memory shortage problems can arise while running
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—
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Fig. 1 Architectural block diagram of the complete system
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Table 1 Details of the audiobook used for building the unit
selection voice

Name of the Author Read by Running time

audiobook

Olive (voice 1) Dinah  Maria Arielle 14:03:13
Mulock CRAIK Lipshaw

the Viterbi algorithm. So, silence-based chunking of the
long audio files is usually performed. In this work, how-
ever, we obtained audio chunks using the open source
tool Interslice [8] as we also wanted to obtain chunks of
corresponding reference transcripts for building the TTS
system using reference transcripts for comparing it with
the TTS system built using the hypothesis transcripts. The
start and end of each spoken chapter of the audiobooks
generally contain metadata such as “This is a LibriVox
recording” and the reader’s name which are not present
in the text chapters downloaded from Project Gutenberg.
Since Interslice requires an agreement between the text
and speech, we manually checked and added/deleted text
at the start and end of each chapter. The same process was
carried out even for the lecture speech. Since Interslice
does not have a mechanism to prevent the propagation of
segmentation error to subsequent segments, we also man-
ually verified the agreement between the start and end of
the resulting speech and text chunks before using them for
building the TTS systems.

3 ASRandTTS systems

3.1 ASR system development details

Lately, ASR systems have become much more accu-
rate and robust thanks to deep neural networks (DNNs)
[16—18]. We used scripts provided with the Kaldi toolkit
[19] for training DNN-based ASR systems and the
IRSTLM tool [20] for building language models. Kaldi is
based upon finite-state transducers, and it is compiled
against the OpenFst toolkit [21].

3.1.1 Acoustic modeling
Figure 2 shows the flow of the steps followed for training
acoustic models.

1. Feature extraction: First, 13 dimensional Mel
frequency cepstral coefficients (MFCCs) [22] are
extracted. A Hamming window of 25-ms frame size
and 10-ms frame shift was used. Then, cepstral mean
subtraction is applied on a per-speaker basis. Then,

Table 2 Details of the lecture speech used for building the unit
selection voice

Instructor

Dr. Matt McGarrity

Name of the course Running time

Introduction to Public ~ 12h

Speaking (voice 2)
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MECCs are appended with the velocity and
acceleration coefficients.

2. Training monophone system: A set of context-
independent or monophone Gaussian mixture
model-hidden Markov model (GMM-HMM)
acoustic models were trained on the above features.

3. Training triphone system with LDA + MLLT:
MEFCCs without the deltas and acceleration
coefficients were spliced in time taking a context size
of seven frames (i.e., =3). These features were
de-correlated, and their dimensionality was reduced
to 40 using linear discriminant analysis (LDA) [23].
Further de-correlation was applied on resulting
features using maximum likelihood linear transform
(MLLT) [24] which is also known as global semi-tied
covariance (STC) [25]. The resulting features were
used to train triphone acoustic models.

4. Training triphone system with LDA + MLLT + SAT:
Then, speaker normalization was applied on above
features using feature-space maximum likelihood
linear regression (fMLLR), also known as constrained
MLLR (CMLLR) [26]. The fMLLR was estimated
using the GMM-based system applying speaker-
adaptive training (SAT) [26, 27]. A triphone system
was again trained with these resulting features.

5. Training DNN system: A DNN-HMM system with
p-norm non-linearities [28] was trained on top of the
SAT features. Here, GMM likelihoods are replaced
with the quasi-likelihoods obtained from DNN
posteriors by dividing them by the priors of the
triphone HMM states.

3.1.2 Lexicon

A lexicon was prepared from the most frequent 200,000
words in the LibriSpeech corpus. Pronunciations for
around one third of them were obtained from CMU-
dict. The pronunciations for the remaining words were
generated using the Sequitur G2P toolkit [29].

3.1.3 Language modeling
We used the IRSTLM toolkit [20] for training language
models. A modified Kneser-Ney smoothing was used [30, 31].

3.1.4 Decoding
First, hypothesis transcriptions were produced using the
spliced MFCC features. These transcriptions were then
used to estimate the fMLLR transforms as explained
above. The accuracy of the hypothesis transcriptions
obtained after SAT was much better than that before SAT.
Decoding of the audiobooks was done in two passes.
In the first pass, lattices containing competing alterna-
tive hypothesis were generated, while in the second pass,
Viterbi decoding was applied to find the 1-best hypothesis.
While decoding the Olive and lecture data with the ASR
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Fig. 2 Steps followed for acoustic modeling

systems trained on themselves, the same 3-gram language
model was used for both lattice generation and 1-best
Viterbi decoding. In contrast, while decoding the Olive
and lecture data with the LibriSpeech ASR system, a
3-gram inexpensive language model pruned with a thresh-
old of 3 x 10~7 was used for lattice generation and a higher
order 4-gram language model was used to re-score the
language model likelihoods in the lattice, re-rank the set
of alternative hypotheses, and find the 1-best hypothesis.

Even though we required phone labels for the audio for
building the TTS system, direct phone decoding was not
performed as it normally leads to high errors. Rather, word
decoding was performed first, and then, word lattices
were converted to phone lattices using the lexicon lookup.

3.2 TTS system development details
For synthesis, we made modifications to the TTS system
submitted to the Blizzard challenge 2015 [32].

3.2.1 Feature extraction and unit inventory preparation

1. Unit size: Units of different sizes ranging from
frame-sized units [33, 34], HMM-state sized [35, 36],
half-phones [1], and diphones [37] to syllables [38]
and to much larger and non-uniform units [39] have
been investigated in the literature. We used a
quinphone as a context to select appropriate
phone-level units. While earlier works mostly used
diphone units, where only the previous phone was
used as context, the current use of a quinphone is a
superset of such selection. Thus, the quinphone
context is quite powerful than the regular diphone
context. The actual unit used in synthesis is a
context-sensitive “phone.” This is quite a standard
process in unit selection now. Please refer to [2]
where the units are called as phones, although
sufficient context is used in choosing them. A backoff
context (triphone and diphone) is used when a
quinphone context is not met. This not only ensures
fewer joins and consequently fewer signal processing
artifacts, this also leads to good prosody.

2. Acoustic feature extraction: Log-energy, 13
dimensional MFCCs, and fundamental frequency
(Fo) were extracted for every wave file. A frame size
of 20- and 5-ms frame shift was used. The Fy were
extracted using the STRAIGHT tool [40]. The
durations and posterior probabilities of the phones
which we use as the confidence measure were
obtained from the Kaldi decoder.

3. Preparing the catalog file: A catalog or dictionary file
(which is basically a text file) was prepared which
contained the list of all units (including monphone to
quinphone) and the attributes of each unit such as
duration, start and end times, the duration zscore of
each unit type, Fo, log-energy, MFCC values of
boundary frames, and posterior probability scores
(computed as the minimum of posterior probabilities
of phones in that unit). This file was used during
synthesis time to compute the target and join costs
explained below.

4. Pre-clustering units: Pre-clustering is a method that
allows the target cost to be effectively pre-calculated.
Typically, units of the same type (phones, diphones,
etc.) are clustered based on acoustic differences using
decision trees [37]. In this work, we clustered units of
a type (i.e., units containing the same sequence of
phones) on the basis of their positions in words (such
as beginning, internal, ending, and singleton), as such
clustering implicitly considers acoustic similarity.
Units in a cluster are typically called as “candidate”
units.

3.2.2 Steps followed at synthesis time
Figure 3 shows the flow of the steps described below.

1. Text normalization: A test sentence was first
tokenized, punctuations were removed,
non-standard words such as time and date were
normalized, and abbreviations and acronyms were
converted to full forms.

2. Phonetic analysis: Each word was broken into a
sequence of phones using lexicon. A
grapheme-to-phoneme converter [29] was used to
convert out-of-vocabulary words and proper names
into a phone sequence.

3. Prediction of phrase-break locations: Using the audio
and automatic transcriptions obtained from the ASR
systems, we built statistical parametric voices using
the Clustergen synthesizer [41] in the Festival
framework [42, 43]. In the current implementation,
we took help of the phrase-break locations predicted
using classification and regression trees (CART) [44]
in Clustergen. For each text input, we first
synthesized a statistical parametric voice. A pause
unit of appropriate duration was placed at the
predicted phrase-break locations during
concatenation.



Godambe et al. EURASIP Journal on Audio, Speech, and Music Processing (2016) 2016:6 Page 6 of 11

Unit
inventory

Raw Text Phonetic Determination Duration Selection of Viterbi

Text analysis analysis of units prediction units | search || WSOLA [~ Concatenation [~ Speech

] Phrase-break T
prediction
Fig. 3 Steps followed at synthesis time

4.

6.

Determination of units: For every word in the test
sentence, we first searched for units of maximum
length which are quinphones or units of length equal
to the length of the word if the word is comprised of
fewer than five phones. If units of maximum length
were not found, then we searched for units of length
which is one less than the maximum length, and so
on. In short, we joined units of maximum length
when they were available in the database or used
backoff units of shorter lengths. This approach resulted
in fewer joins and a more natural and faster synthesis.
Predicting the durations of units: In the current
implementation, we used the CART-based duration
prediction module in Clustergen. For each text input,
we first synthesized a statistical parametric voice and
used the predicted phone/word durations to select
units close to the predicted durations.

Selection of units:

e Target cost computation: Target cost indicates
how close a database unit is to the desired unit.
The difference between duration predicted by
the CART module in Clustergen [41] and
duration of candidate units in the database was
used as the target cost.

e Join cost computation: Join cost indicates how
well the two adjacently selected units join
together. The join cost between two adjacent
units ;1 and u; was calculated using the
following equation, which is a linear weighted
combination of the distance between log energy,
fundamental frequency Fy (extracted using
STRAIGHT tool), and MFCCs of frames near
the joining of u#;_; and u;. In the following
equation, the symbols «, B, and y respectively
denote the weights for log energy, Fo, and
MECC.

Join_cost = aCr, (#;—1, u;) + ,Bclog_energy(ui—ly u;)
+ v Cnvircc (i1, ui)
1

Following [32, 45], we used four context frames
while computing the distance between the log

energies and Fy of ;1 and u;, as it helped
minimize perceived discontinuities.

e Viterbi search: The Eq. 2 below explains the
way the total cost is computed. The term
Taist (#;) is the difference between the duration
of unit u; and the predicted duration, and the
term Jgist (4, u;—1) is the join cost of the optimal
coupling point between candidate unit #; and
the previous candidate unit it is to be joined to.
W1 and W3 denote the weights given to target
and join costs, respectively. N denotes the
number of units to be concatenated to
synthesize the sentence in question. We then
used a Viterbi search to find the optimal path
through candidate units that minimized the
total cost which is the sum total of target and
concatenation costs.

N
Total cost = » W Taist (i) + Walaise (i, i 1)
i=1

(2)

7. Waveform similarity overlap addition (WSOLA): We

used an overlap addition-based approach for
smoothing the join at the boundaries. Specifically, the
cross-correlation formulation of WSOLA [46] was
used. The algorithm was reformulated in order to
first find a suitable temporal point for concatenating
the units at the boundary. This ensured that the
concatenation is performed at a point where maximal
similarity exists between the units. In different words,
this ensured that sufficient signal continuity exists at
the concatenation point. For this, cross-correlation
between the units was used as a measure of similarity
between the units. Next, the units were joined at the
point of maximal correlation using a cross-fade
technique [33] which further helped remove the
phase discontinuities. The number of frames used to
calculate the correlation was limited by the duration
of the available subword unit. In the current
framework, we used the two boundary frames of the
individual units to calculate the cross-correlation.
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4 Data pruning using confidence measures

In the context of TTS systems, data pruning involves the
removal of spurious units (which may be a result of mis-
labeling or bad acoustics) and units that are redundant in
terms of prosodic and phonetic features. Pruning spurious
units improves the TTS output [37, 47-51] while prun-
ing redundant units reduces database size thus enabling
portability [52—54] and real-time concatenative synthesis
[2, 55, 56]. In this work, we focus on removing spurious
units and not redundant units.

4.1 Previous works to prune spurious units

In [37], each unit is represented as a sequence of MFCC
vectors, and clustering using decision tree proceeds based
on questions related to prosodic and phonetic context;
each unit is then assessed for its frame-based distance
to the cluster center. Units which lie far from their clus-
ter centers are termed as outliers and hence pruned. In
[47], this evaluation is done on the basis of an HMM
framework: only instances which have the highest HMM
scores are retained to represent a cluster of similar units.
Confidence features such as log-likelihood ratio [48], tran-
scription confidence ratio [49], and generalized posterior
probability [50] have also been used for pruning. We
used posterior probability [50, 57] and unit duration [51]
obtained from the ASR system as confidence measures.

4.2 Relevance of posterior probability and unit duration
as confidence features

Posterior probability helps detecting mislabeled and bad
acoustic regions while unit durational measure helps
detecting unnaturally short or long units (which may
have high posterior probability values), but they can make
words unintelligible or sound hyper-articulated, respec-
tively. Thus, both these confidence features are directly
related to the intelligibility and naturalness of speech.

4.3 Other advantages of posterior probability

Other motivations to use posterior probability as confi-
dence feature are (1) posterior probability, by definition,
tells the correctness or confidence of a classification; (2)
it has been shown to work consistently better than the
other two formulations of confidence measures, which are
the confidence measure as a combination of predictor fea-
tures and the confidence measures posed as an utterance
verification problem [58]; and (3) posterior probability
becomes more reliable when robust acoustic [28] and
language models are used (as in this case) [59].

4.4 Computation of posterior probability and unit
durational zscore

In an ASR system, the posterior probability of a phone or

a word hypothesis w given a sequence of acoustic feature

vectors OIT = 070,..07 is computed (as given in Eq. 3)
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as the sum of posterior probabilities of all paths passing
through w (in around the same time region) in the lattice.
It is computed using a forward-backward algorithm over
the lattice. In the equation below, W and W, respectively
indicate the sequence of words preceding and succeeding
w in a path in the lattice.

pw|O]) =

= ZZp (Wste|o{)

Y, T [p(051w:) p (Ok1w) p(OL1W) p (W)]

- r(0])

X X [p (081w p (0kw)p (OFWe) p (W)]

 Yw[TwXw[p(0 1w )p (01w (0F1W) p ()]
3)

Normally, the phone hypotheses in the neighborhood
of a low confidence phone are also affected. Hence, we
discard all units containing even a single phone below
a specified threshold. The posterior probability of a unit
is calculated as the minimum of posterior probability of
phones in that unit.

The unit durational zscore for every unit class is com-
puted as in the following equation.

duration — mean 4
zscore =
standard deviation

5 Experiments and evaluation
5.1 Experiment 1: checking the performance of ASR
systems
We trained a p-norm DNN-HMM acoustic model for
all three ASR systems trained on the Olive, lecture, and
LibriSpeech data. In the first pass, lattices containing a
competing alternative hypothesis were generated, while in
the second pass, Viterbi decoding was applied to find the
1-best hypothesis. While decoding the Olive and lecture
data with ASR systems trained on themselves, the same 3-
gram language model was used for both lattice generation
and 1-best Viterbi decoding. In contrast, while decoding
the Olive and lecture data with the LibriSpeech ASR sys-
tem, a 3-gram inexpensive language model pruned with
a threshold of 3 x 10~7 was used for lattice generation
and a higher order 4-gram language model was used to
re-score the language model likelihoods in the lattice, re-
rank the set of alternative hypotheses, and find the 1-best
hypothesis.

Table 3 shows the word error rates (WERs) and phone
error rates (PERs) given by the ASR systems trained
on the Olive and lecture data and tested on the Olive
and lecture data (TTS data), respectively. It also shows
the WER and PER of the ASR system trained with the
LibriSpeech data and tested on the Olive and lecture
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Table 3 WERs and PERs of ASR systems trained on TTS data and
LibriSpeech data

Training data for ASR Test data to ASR WER (%) PER (%)
Olive Olive 2.54 1.02
LibriSpeech Olive 374 1.57
Lecture Lecture 591 5.19
LibriSpeech Lecture 21.93 10.20

data. Note, for computing WERs for both the Olive and
lecture data, we respectively used the word-level tran-
scriptions available at the Project Gutenberg website and
those available at Coursera, as reference transcriptions.
These transcriptions are reliable, but not gold standard.
For computing the PERs, phone-level reference transcrip-
tions were obtained by converting word-level reference
transcriptions to phones using a lexicon lookup. A lexicon
containing 200,000 words provided with the Kaldi setup
was used for that purpose. We can observe the following
things in Table 3:

1. As expected, the performance of the ASR system
trained with LibriSpeech data is relatively poor, but it
is still quite decent.

2. The performance gap between the ASR system
trained on lecture data and LibriSpeech is big as
compared to that between the ASR system trained on
Olive and LibriSpeech data because LibriSpeech is a
read speech corpus just like Olive, while lecture data
is spontaneous data.

3. The performance of the ASR system trained on
lecture data and tested on lecture data is slightly
poorer than the ASR system trained on Olive data
and tested on Olive data. The reason could be that
there is relatively more uniformity in the Olive data
(read speech) compared to lecture speech. Lecture
speech is more spontaneous and contains a lot of
filled pauses, dis-fluencies, fast spoken (at times
unintelligible words), and also emphasized words.

5.2 Experiment 2: checking the effectiveness of posterior
probability as a confidence measure

We saw that the ASR system trained with LibriSpeech

data produces more accurate and reasonably accurate

transcripts for Olive and lecture data, respectively. The

incorrect phone hypotheses should not be a part of the

(2016) 2016:6
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unit inventory and need to be automatically removed to
prevent them from corrupting a synthesized voice. We
used the posterior probability given by the ASR system
as a confidence measure to prune the erroneous data,
where all phones below an optimal posterior probabil-
ity threshold were pruned. In this experiment, we see to
what extent our confidence measure is useful to auto-
matically detect bad acoustics and incorrect hypothe-
ses of the ASR system. Table 4 shows the PER as in
Table 3 and its breakup in terms of percentage substi-
tution, insertion, and deletion errors. Note that we can
have posterior probabilities only for a hypothesis pro-
duced by the ASR system. The phone hypotheses could
not be correct phones, substitutions, or insertions. So,
deletions could not be detected by the confidence mea-
sure, but as their amount was small, we ignored them.
The confidence measure is expected to truly reject (TR)
as many substitution and insertion errors. Table 4 also
shows the percentage of true acceptances (TA), false rejec-
tions (FR), true rejections (TR), and false acceptances (FA)
obtained at the maximum and optimal posterior proba-
bility threshold value equal to 1.0 for all the four cases
in Table 3. This threshold value is optimal in the sense
that it yields the least number of false acceptances (which
are the ASR system’s erroneous phone hypotheses termed
as correct and hence left unpruned by the confidence
measure). We would want the least number of erroneous
hypotheses/spurious phones, and hence, we prefer the
least number of false acceptances. We observe that the
posterior probability does a decent job to harness most
of the correct data (as can be seen from the percentage
of TAs) leaving just a small amount of erroneous data
behind (as can be seen from the amount of false accep-
tances). Specifically, in the case of the lecture speech
recognized by the ASR system trained with Librispeech
data, we can see that 10.20 %PER is effectively reduced
to 2.77 + 1.63 = 4.4% (percentage of FAs) with the use
of a confidence measure. There is also a sizeable amount
of false rejections that we can see, but we could afford to lose
that data since we were using large data for synthesis.

5.3 Experiment 3: checking the effect of pruning based
on the posterior probability and unit duration on
WER and MOS

There are several examples of fast unintelligible speech (in

the case of common and short words such as “to,” “the;

Table 4 Performance of ASR systems and posterior probability confidence measure

Training data for ASR Test data to ASR %PER %sub %ins %del %FA %TR %FR %TA

Olive Olive 1.02 0.20 0.66 0.16 0.74 0.12 0.54 98.60
LibriSpeech Olive 1.57 0.58 0.69 030 1.00 0.27 4.94 93.79
Lecture Lecture 5.19 0.96 3.52 0.71 3.09 1.39 3.28 92.24
LibriSpeech Lecture 10.20 3.27 5.30 1.63 277 5.80 19.61 71.82
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Table 5 Posterior probability and duration zscore thresholds used to achieve different amounts of data pruning, for all four voices

Percent units used

Posterior probability and duration zscore thresholds

Test data = Olive

Test data = Intro. to Public Speaking

ASR trained on Olive data

ASR trained on LibriSpeech

ASR trained on lecture data ASR trained on LibriSpeech

100 - -

1.00,~ 97 % 1.00, ~ 92 %
50 1.00, £ 0.51 1.00,4+0.70
30 1.00,+£0.35 1.00, & 0.45

1.00, ~ 93 % 1.00, ~ 65 %
1.00,+ 0.57 1.00, +0.98
1.00,+ 0.39 1.00, + 0.60

“for; and “and” plus other short words) and unnaturally
long or emphasized/hyper-articulated words particularly
in lecture speech. Several instances of such words have
a posterior probability value equal to 1.0, and are left
unpruned. Hence, we also prune the units which are much
deviant from their mean duration. In addition, pruning
units based on duration allows us to prune many more
units than is possible using posterior probability alone.

Table 5 shows, for all four voices, the different poste-
rior probability and duration zscore thresholds used to
achieve different amounts of unit pruning. The first num-
ber in every cell is the posterior probability threshold
which is 1.0. The second entry in the second row indi-
cates the percentage of units retained when only posterior
probability based pruning is applied. This value is differ-
ent (97 %, 92 %, 93 %, 65 %) in case of all four systems. No
duration threshold was applied in this case. The second
entry in third and fourth rows indicates the duration
thresholds applied for performing duration based pruning
in addition to posterior probability based pruning.

We used the hypotheses and the time stamps given
by the ASR systems trained with Olive, lecture, and
Librispeech data for synthesis. Even in the case of Olive
and lecture, respectively, we used hypotheses of the ASR
system instead of force-aligned reference transcriptions
from Project Gutenberg and Coursera because the refer-
ence transcriptions are reliable, but not gold standard, and
the ASR system trained and adapted to a single speaker
generally gives better transcriptions and is able to detect
the inconsistencies in the reference speech and text.

Table 5 contains 16 different combinations of posterior
probability and duration zscore thresholds. We synthe-
sized (for each combination in the table) 10 semantically

unpredictable sentences (SUS) [60] and 10 news sentences
from the Blizzard 2013 test corpus. So, 20 sentences were
synthesized for each combination. In all, 320 sentences
were synthesized. A few of the samples used for this exper-
iment can be listened to at https://researchweb.iiit.ac.
in/~tejas.godambe/EURASIP/. These sentences were ran-
domly distributed among 16 listeners for perceptual test.
So, each listener transcribed 10 SUS (from which we com-
puted the WER indicating the speech intelligibility) and
rated the naturalness of the news utterances on a scale of
1 (worst) to 5 (best) from which we calculated the mean
opinion score (MOS).

Tables 6 and 7 respectively show the WER and MOS
for all four voices synthesized using different amounts of
pruned data. We can see that the WERs and MOS are
quite good for all the four voices. We can observe the
following things in Table 6.

1. The WERSs are high for lecture speech than
audiobook speech.

2. The WERs are high for unpruned data (as can be
seen in the first row). They become slightly better in
the second row when we use only units having a
posterior probability value equal to 1.0 to synthesize
the sentences. The improvement is maximum in the
last column where the amount of pruned data having
posterior probability less than 1.0 is the highest.

3. Selecting units close to mean duration (as in the third
row) decreases WER even further, as short units
which are much deviant from the mean duration are
pruned.

4. The improvement in WER observed with duration
pruning (difference in WERs of the second and third

Table 6 Word error rates for all four voices for different amounts of data pruning

Percentage units used

Word error rate (%)

Test data = Olive

Test data = lecture

ASR trained on Olive

ASR trained on LibriSpeech

ASR trained on lecture ASR trained on LibriSpeech

100 14.25 17.21
13.50 15.95

50 8.11 9.56

30 6.26 6.28

22.13 2817
20.56 23.90
16.25 17.15
13.25 13.87



https://researchweb.iiit.ac.in/~tejas.godambe/EURASIP/
https://researchweb.iiit.ac.in/~tejas.godambe/EURASIP/

Godambe et al. EURASIP Journal on Audio, Speech, and Music Processing (2016) 2016:6

Page 10 of 11

Table 7 MOS scores for all four voices for different amounts of data pruning

Percentage units used

Mean opinion score

Test data = Olive

Test data = lecture

ASR trained on Olive

ASR trained on LibriSpeech

ASR trained on lecture ASR trained on LibriSpeech

100 349 352

351 347
50 3.28 3.22
30 3.08 3.00

318 291
3.21 322
299 3.05
2.90 293

rows) is more than the difference in the WERs of first
and second rows observed with pruning units having
a posterior probability less than 1.0. This difference is
more evident in the case of the lecture speech (which
contains more units corresponding to fast speech
than audiobook contributing to less intelligible
speech). The WER further reduces when more units
based on duration are pruned (even when only 30 %
units are retained).

In the case of naturalness of speech in Table 7, we can
observe the following things.

1. Voices built using an audiobook seem to be more
natural than those built using lecture speech.

2. The MOS is almost the same for the first and second
rows except the case of the last column where a
noticeable improvement is observed in MOS.

3. The MOS decreases as we move down rows as it
becomes difficult to find units having a duration close
to predicted duration and which can also maintain
continuity in terms of energy, Fo, and MFCCs.

6 Conclusions

Today, a large amount of audio data has become avail-
able to us via the web, and also, we can easily record
and store a huge amount of audio data on handheld
devices, etc. These data are rich in prosody and pro-
vide many voices to choose from, and their availability
can help to rapidly build general-purpose unit selec-
tion voices. But, there are a few hurdles such as the
unavailability of transcriptions or availability of impre-
cise transcriptions and the presence of speech and
non-speech noises. In this paper, we built voices for
an audiobook (read speech) in a female voice and a
lecture (spontaneous speech) in a male voice using ref-
erence transcripts and a combination of automatic tran-
scripts and confidence measure-based data pruning and
showed that voices of comparable quality as that using
reference transcripts can be rapidly built using found
data.

Endnotes
'http://www.openslr.org/12/.

2http://www.openslr.org/resources/11/3-gram.pruned.
3e-7.arpa.gz.
Shttp://www.openslr.org/resources/11/4-gram.arpa.gz.
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