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Abstract

Model-based speech enhancement algorithms that employ trained models, such as codebooks, hidden Markov
models, Gaussian mixture models, etc., containing representations of speech such as linear predictive coefficients,
mel-frequency cepstrum coefficients, etc., have been found to be successful in enhancing noisy speech corrupted by
nonstationary noise. However, these models are typically trained on speech data from multiple speakers under
controlled acoustic conditions. In this paper, we introduce the notion of context-dependent models that are trained
on speech data with one or more aspects of context, such as speaker, acoustic environment, speaking style, etc. In
scenarios where the modeled and observed contexts match, context-dependent models can be expected to result in
better performance, whereas context-independent models are preferred otherwise. In this paper, we present a
Bayesian framework that automatically provides the benefits of both models under varying contexts. As several
aspects of the context remain constant over an extended period during usage, a memory-based approach that
exploits information from past data is employed. We use a codebook-based speech enhancement technique that
employs trained models of speech and noise linear predictive coefficients as an example model-based approach.
Using speaker, acoustic environment, and speaking style as aspects of context, we demonstrate the robustness of the
proposed framework for different context scenarios, input signal-to-noise ratios, and number of contexts modeled.
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1 Introduction
Speech enhancement pertains to the processing of speech
corrupted by noise, echo, reverberation, etc. to improve its
quality and intelligibility. In this paper, by speech enhance-
ment, we refer to the problem of noise reduction. It is
relevant in several scenarios, for example, mobile tele-
phony in noisy environments, such as restaurants and
busy traffic, suffers from unclear communication. Also,
speech recognition units [1] and hearing aids [2] require
speech enhancement as a preprocessing algorithm.
Speech enhancement algorithms can be broadly classi-

fied into single- and multi-channel algorithms based on
the number of microphones used to acquire the input
noisy speech. Multi-channel algorithms exhibit superior
performance because of the additional spatial information
available about the noise and speech sources. However,
the need for single-channel speech enhancement cannot
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be ignored. For example, single microphone systems are
preferred in low-cost mobile units. In addition, multi-
channel methods include a single-channel algorithm as
a post-processing step to suppress diffuse noise. In this
paper, we focus on single-channel speech enhancement.
Single-channel speech enhancement has been a chal-

lenging research problem for the last four decades. Sev-
eral techniques have been devised to arrive at efficient
solutions for the problem. Among these, spectral sub-
traction is one of the earliest and simplest techniques
[3]. Herein, an estimate of the noise magnitude spectrum
is subtracted from the observed noisy magnitude spec-
trum to obtain an estimate of the clean speech magnitude
spectrum. Several variations of this technique have been
developed over the years [4-7]. Methods based on a sta-
tistical model of speech to estimate the speech spectral
amplitude such as the minimummean square error short-
time spectral amplitude estimator (MMSE-STSA) method
have been found to be successful [8-10]. The statistical
approach explicitly uses the probability density function
(pdf) of the speech and noise DFT coefficients. Also, it
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allows consideration of non-Gaussian prior distributions
[11] and different ways of modeling the spectral data
[12,13]. Subspace-based algorithms [14] assume the clean
speech to be confined to a subspace of the noisy space.
The noisy vector space is decomposed into noise-only and
speech-plus-noise subspaces. The noise subspace compo-
nents are suppressed, and the speech-plus-noise subspace
components are further processed. A comprehensive sur-
vey of these techniques is provided in [15]. However,
most of these methods depend on an accurate estimate
of the noise power spectrum, for example, estimation of
the noise magnitude spectrum during silent segments in
[3], or a priori signal-to-noise ratio (SNR) estimation in
[9], or estimation of the noise covariance matrix in the
subspace-based methods.
Noise estimation algorithms mainly include voice activ-

ity detector (VAD) [16,17] and buffer-based methods
[18-20]. While VADs are unreliable at low SNRs, the
buffer-based methods are not fast enough to track the
quickly varying noise in nonstationary noise conditions.
Thus, while these algorithms perform well in station-
ary noise, their accuracy deteriorates under nonstationary
conditions. An improvement over these algorithms is pro-
vided in [21] wherein a recursive approach is employed
for online noise power spectral density (PSD) tracking by
analytically retrieving the prior and posterior probabilities
of speech absence, and noise statistics, using a maximum
likelihood-based criterion. A low-complexity, fast noise
tracking algorithm is proposed in [22,23].
Speech enhancement algorithms which employ trained

models, such as codebooks [24-28], hidden Markov mod-
els (HMM) [29-31], Gaussian mixture models (GMM)
[32], non-negative matrix factorization (NMF) models
[33], dictionaries [34], etc., for speech and noise data
are able to process noisy speech with sufficient accuracy
even under nonstationary noise conditions. For example,
codebook-based speech enhancement (CBSE) algorithms
[25,26] estimate the noise power spectrum for short
segments of noisy speech, thus tracking nonstationary
noise better than the buffer-basedmethods [18]. However,
model-based methods typically employ a priori speech
models which are trained on speech data from multiple
speakers. For applications where the input noisy speech is
more frequent from a particular speaker, such as in mobile
telephony, it is desirable to exploit the speaker depen-
dency for better speech enhancement. Similarly, it might
be beneficial to consider models trained on or adapted
to a specific acoustic environment or language. In this
paper, we introduce the notion of context-dependent (CD)
models, where by the word ‘context’, we refer to one or
more aspects such as the speaker, acoustic environment,
emotion, language, speaking style, etc. of the input noisy
speech. By employing CD models, improved enhance-
ment of noisy speech can be expected. These models can

be adapted online from a context-independent (CI) model
during high SNR regions of the input signal. In this paper,
we assume the availability of such adapted CDmodels and
focus on the enhancement using the converged models.
When the context of the noisy input matches the con-

text of the data used to train the model, CD models are
expected to result in better speech enhancement than CI
models. We refer to such scenarios as context match sce-
narios. However, in practice, the modeled and observed
contexts may not always match, leading to a context mis-
match. In such scenarios, a CD model may lead to poorer
results, and so the CI model would be preferred. Thus,
what is required is a method that retains the benefits of
both the CD and CI models and provides robust results
irrespective of the scenario at hand.
In this paper, we introduce a Bayesian framework to

optimally combine the estimates from the CD and CI
models to achieve robust speech enhancement under
varying contexts. As different aspects of context can be
expected to remain constant for an extended duration in
the input noisy signal, the framework considers past infor-
mation to improve the estimation process. Also, in prac-
tice, different aspects of context may occur at the same
time. So, the framework is designed to include several
codebooks at the same time.
As an example of the model-based algorithm, we use the

CBSE technique that employs trained models of speech
and noise linear predictive (LP) coefficients as priors [26].
A part of this work has been presented in [35]. This papers
extends [35] by incorporating memory-based estimation,
considers the use of multiple CD models, and presents
a detailed experimental analysis for different noise types,
input SNRs, and aspects of context. The framework devel-
oped is general and can be used for other representations
such as mel-frequency cepstrum coefficients, higher res-
olution PSDs, as well as other models such as GMMs,
HMMs, and NMF.
The remainder of the paper is organized as follows.

In the next section, a brief outline of the CBSE tech-
niques [25,26] is provided. Following this, we derive the
memory-based Bayesian framework to optimally combine
estimates from several codebooks (CD/CI). Thereafter, we
present the experimental results for the proposed frame-
work under varying contexts, noise types, and input SNRs.
Finally, we summarize the conclusions.

2 Codebook-based speech enhancement
Consider an additive noise model of the observed noisy
speech y(n):

y(n) = x(n) + w(n), (1)

where n is the time index, x(n) is the clean speech signal,
and w(n) is the noise signal.
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We assume that speech and noise are statistically inde-
pendent and follow zero-mean Gaussian distribution.
Under these assumptions, Equation 1 leads to the follow-
ing relation in the frequency domain:

Py(ω) = Px(ω) + Pw(ω), (2)

where Py(ω), Px(ω), and Pw(ω) are PSDs of the observed
noisy speech, clean speech, and noise respectively, and ω

is the angular frequency.
Consider a short-time segment of the observed noisy

speech given by a vector y = [
y(1), . . . , y(N)

]T , where
N is the size of the segment. Let the vectors x and w be
defined analogously. Let ax = (

ax0 , . . . , axp
)
denote the

vector of LP coefficients for the short-time speech seg-
ment x corresponding to y, with ax0 = 1 and p the speech
LP model order. Similarly, let aw = (

aw0 , . . . , awq

)
denote

the LP coefficient vector for the short-time noise segment
w corresponding to y, with aw0 = 1 and q being the noise
LP model order. Then, the speech and noise PSDs can be
written as:

Px(ω) = gx
|Ax(ω)|2 and Pw(ω) = gw

|Aw(ω)|2 , (3)

where gx and gw denote the variance of the predic-
tion error for speech and noise, respectively; Ax(ω) =∑p

k=0 axk e
−jωk ; and Aw(ω) = ∑q

k=0 awk e−jωk . Let

mx = [
ax, gx

]
,

mw = [
aw, gw

]
. (4)

mx is a model describing the speech PSD, and mw
describes the noise PSD. Codebook-driven speech
enhancement techniques [25,26] estimate mx and mw for
each short-time segment: ax and aw are selected from
trained codebooks of vectors of speech and noise LP coef-
ficients, Cx and Cw, respectively, and the gain terms gx and
gw are computed online, resulting in good performance in
nonstationary noise. A maximum likelihood approach is
adopted in [25] and a Bayesian minimum mean squared
error (MMSE) approach in [26].
The estimates m̂x and m̂w are used to construct a

Wiener filter to enhance the noisy speech in the frequency
domain:

H(ω) = P̂x(ω)

P̂x(ω) + P̂w(ω)
, (5)

where P̂x(ω) and P̂w(ω) are estimates of the speech and
noise PSDs, respectively, described by m̂x and m̂w. The
Wiener filter is one example of a gain function, and any
other gain function can be employed using the obtained
speech and noise PSD estimates.

3 Bayesian estimation under varying contexts
In this section, we develop a Bayesian framework to
obtain estimates of the speech and noise LP parameters,

mx and mw, using one or more CD codebooks and a
CI speech codebook. The CD codebooks improve esti-
mation accuracy in the event of a context match, and
the CI codebook provides robustness in the event of a
context mismatch. The Bayesian framework needs to opti-
mally combine the estimates from the various codebooks
with no prior knowledge on whether or not the observed
context matches the context modeled by the codebooks.
Consider K speech codebooks

[
C1
x , . . . ,CK

x
]
, which

include one or more CD codebooks and a CI codebook,
depending on the contexts modeled. We consider a sin-
gle noise codebook,Cw, corresponding to the encountered
noise type. Robustness to different noise types can be pro-
vided by extending the notion of context dependency to
the noise codebooks as well. Tomaintain the focus on con-
text dependency in speech, we only consider a single noise
codebook.
As mx is a model for the speech PSD and mw is a

model for the noise PSD, m = [mx,mw] is a model for
the noisy PSD, given by the sum of the corresponding
speech and noise PSDs. We consider m to be a random
variable and seek its MMSE estimate, given the noisy
observation, the speech codebooks, and the noise code-
book. Let M1 denote the collection of all models of the
noisy PSD corresponding to the speech codebook C1

x and
the noise codebook Cw. The set M1 consists of quadru-
plets

[
a1ix , gx, a

j
w, gw

]
, where a1ix is the ith vector from the

speech codebook C1
x , a

j
w is the jth vector from the noise

codebook Cw, and the gain terms gx and gw are computed
online for each combination of a1ix and ajw. Thus,M1 con-
tains N1

x ×Nw vectors, where N1
x is the number of vectors

in C1
x and Nw is the number of vectors in Cw. The sets

M2, . . . ,MK are similarly defined, corresponding to the
speech codebooks C2

x , . . . ,CK
x . Let M be a collection of

all the modelsm contained in all the K speech codebooks
and the noise codebook, i.e.,

M = M1 ∪ M2 ∪ . . . ∪ MK . (6)

We consider the following K hypotheses:

• Hk : speech codebook Ck best models the speech
context for the current segment, 1 ≤ k ≤ K .

At a given time T, one of the K hypotheses is valid. This
corresponds to a state, and we write ST = Hk to denote
that at time T, the most appropriate speech codebook for
the observed noisy segment is Ck .
As mentioned in the introductory section, various

aspects of context such as speaker, language, etc. can
be expected to remain constant over multiple short-time
segments, which can be exploited to improve estimation
accuracy. TheMMSE estimate ofm for the Tth short-time
segment is thus obtained using not just the current noisy
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segment yT but a sequence that includes the current as
well as past noisy segments, [y1, . . . , yT ], where t is the
segment index and yt , 1 ≤ t ≤ T is a vector containing
N noisy speech samples. The MMSE estimate ofm can be
written as

m̂ = E
[
m|y1, y2 . . . , yT

]
=

K∑
k=1

p (ST = Hk|y1, y2, . . . , yT )

× E
[
m|y1, y2 . . . , yT , ST = Hk

]
.

(7)

The two terms in the last line of (7) lend them-
selves to an intuitive representation. The second term
E

[
m|y1, y2 . . . , yT , ST = Hk

]
corresponds to an MMSE

estimate of m assuming that the context is best described
by Hk . The first term provides a relative importance score
to this estimate, based on the likelihood that Ck

x is indeed
the most appropriate speech codebook. The weighted
summation corresponds to a soft estimation, which allows
the coexistence of multiple contexts, e.g., speaker and lan-
guage, each being modeled by a separate codebook. Next,
we derive expressions for both these terms.
First, we consider the term p (ST = Hk|y1, y2, . . . , yT ) .
Let

αT (k) = p (y1, y2 . . . , yT , ST = Hk) , k = 1, 2, . . . ,K
(8)

represent the forward probability as in standard HMM
theory [36]. It can be recursively obtained as follows:
Basis step:

α1(k) = p (Hk) p (y1|Hk) , k = 1, 2, . . . ,K . (9)

The prior probabilities in the absence of any observation
can be assumed to be equal in Equation 9. Thus, p (Hk) =
1
K , i.e., all hypotheses are equally likely.
Induction step: The state ST of the current noisy obser-

vation yT could have been reached from any of the states
from the previous frame with a particular transition prob-
ability. This can be modeled as

αt+1(k) =
[ K∑
l=1

αt(l)alk

]
p (yt+1|Hk) , (10)

where 1 ≤ t ≤ T − 1 and l, k = 1, 2, . . . ,K , and alk rep-
resent the transition probability of reaching state k from
state l. We assume the a priori transition probabilities to
be known beforehand for a given set of speech codebooks.
In this paper, we assume them to be fixed such that alk
takes higher values when l = k than otherwise, to capture

the intuition that we typically do not rapidly switch
between contexts such as speaker and language. Note that
only the a priori transition probabilities are assumed to be
fixed. The data-dependent part in Equation 10 is captured
by the term p(yt+1|Hk), whose computation is addressed
in the following. Using Equation 8,

p (ST = Hk|y1, y2, . . . , yT ) = p (y1, y2, . . . , yT , ST = Hk)

p (y1, y2, . . . , yT )

= αT (k)∑K
k=1 αT (k)

. (11)

Next, we consider the term E
[
m|y1, y2 . . . , yT , ST = Hk

]
in Equation 7. In this section, we are interested in exploit-
ing memory to ensure that the codebook that is most
relevant to the current context at hand receives a high
likelihood, and this is captured by Equation 11. For a
given codebook, E

[
m|y1, y2 . . . , yT , ST = Hk

]
provides an

improved estimate ofm by exploiting not only the current
noisy observation yT but also the past noisy segments. An
expression for this term can be derived as in [26], where
memory was restricted to the previous frame in view of
the signal nonstationarity. Here, to retain the focus on
selecting the appropriate context, we assume

E
[
m|y1, y2 . . . , yT , ST = Hk

] = E
[
m|yT , ST = Hk

]
.
(12)

In the following, we ignore the term ST and write
E[m|yT , ST = Hk] as E[m|yT ,Hk] for brevity. For a given
hypothesis Hk , we have

E
[
m|yT ,Hk

] =
∑
m∈M

m p (m|yT ,Hk)

=
∑
m∈M

m
p (yT |m,Hk) p (m|Hk)

p (yT |Hk)
. (13)

Under a Gaussian LP model,m corresponds to an auto-
correlation matrix Ry for yT , which fully characterizes the
pdf p (yT |m) as in

p (yT |m) = 1
(2π)N/2|Rx + Rw|1/2

× exp
(

−y†T (Rx + Rw)−1 yT
2

)
, (14)

where † represents transpose, Ry = Rx + Rw, Rx =
gx(B†

xBx)−1, Rw = gw
(
B†
wBw

)−1
, Bx is an N × N lower

triangular Toeplitz matrix with [ax, 0, . . . , 0]† as the first
column, and Bw is an N × N lower triangular Toeplitz
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matrix with [aw, 0, . . . , 0]† as the first column. Thus, given
a modelm, yT is conditionally independent of Hk , and we
have

p (yT |m,Hk) = p (yT |m) , k = 1, 2, . . . ,K . (15)

The logarithm of the likelihood p (yT |m) in the
Equation 14 can be efficiently computed in the frequency
domain following the approach of [26]. The gain terms
that maximize the likelihood can be computed as in [26].
Next, we consider the term p (m|Hk) in Equation 13.

Under hypothesis Hk , the speech signal in the observed
segment is best described by the codebookCk

x . We assume
all the models resulting from a given codebook are equally
likely. This assumption is valid, in general, if the codebook
size is large and derived from a phonetically balanced large
training set.
Thus, assuming all the models resulting from Ck

x are
equally likely, we have

p (m|Hk) = 1
|Mk| , ∀m ∈ Mk

= 0, otherwise, (16)

where |Mk| is the cardinality of Mk . From Equations 13
and 16, we have

E
[
m|yT ,Hk

] = 1
|Mk|

∑
m∈Mk

m
p (yT |m)

p (yT |Hk)
, (17)

where

p (yT |Hk) = 1
|Mk|

∑
m∈Mk

p (yT |m) (18)

and p (yT |m) is given by Equation 14. Equation 18 is used
in Equations 9 and 10 to obtain the forward probabili-
ties. Finally, the required MMSE estimate m̂ is obtained
by using Equations 11 and 17 in Equation 7. The speech
and noise PSDs corresponding to m̂ can be obtained
using Equation 3 and the Wiener filter from Equation 5.
To ensure stability of the estimated LP parameters, the
weighted sum in Equation 7 can be performed in the
line spectral frequency domain. Note that the weights
are non-negative and add up to unity as is evident from
Equation 11. Alternatively, as we are finally interested in
the speech and noise PSDs to be used in a Wiener filter,
the weighted sum can be performed in the power spectral
domain.
We conclude this section with some remarks on the

calculation of the forward probabilities αT which for a
codebook captures how well that codebook matches the
context of the Tth input segment. As mentioned earlier,
the proposed framework can be used to model context
in speech as well as noise. When context is modeled by
the speech codebooks, it was found to be beneficial to

calculate αT during speech-dominated segments, and
during noise-dominated segments when modeling the
noise context. The goal in computing αT is to assess how
well a given speech codebook matches the underlying
context for a given input segment. If this computation is
performed during speech-dominated frames, we obtain
accurate values for αT . However, inaccurate weight values
may result when the computation is based on segments
that lack sufficient information about the speech, such
as silence or low-energy segments dominated by noise.
In such situations, it is preferable to use the value of
αT computed in the last speech-dominated segment.
This, in other words, assumes that the context of the
current segment is the same as that of the past seg-
ment. This assumption is valid in general as the context
of speech is not expected to rapidly change from one
speech burst to another. Thus, updating αT only during
speech-dominated segments does not affect performance.
However, estimating αT only during speech-dominated
segments suffers from the disadvantage that there may
not be a sufficient number of such segments in highly
noisy conditions. Introducing a preliminary noise reduc-
tion step, e.g., using the long-term noise estimate from
[18], and estimating αT from the enhanced signal was
seen to address this problem. Importantly, the estimation
of the speech and noise PSDs and the resulting Wiener
filter occurs for each short-time segment, providing good
performance under nonstationary noise conditions.

4 Experimental results
Experiments were performed to verify the robustness of
the proposed framework under varying contexts. The
contexts modeled by a trained CD codebook may or may
not match with that of the observed noisy input signal,
leading to two scenarios:

• Context match: the best-case scenario for a CD
codebook

• Context mismatch: the worst-case scenario for a CD
codebook

The robustness of the proposed framework, employ-
ing both CD and CI codebooks, was tested under both
scenarios. Two different sets of experiments were per-
formed, which differed in terms of number of codebooks
employed and the aspects of contexts modeled. The first
set consisted of experiments with two speech codebooks,
a CI speech codebook and a CD speech codebook, mod-
eling the speaker and acoustic environment as aspects of
context. The second set consisted of experiments with
three speech codebooks: a CI speech codebook and two
CD speech codebooks to study the performance of the
proposed framework with an increase in the number
of codebooks employed. This set modeled, apart from
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speaker and acoustic environment, the speech type (nor-
mal, whisper, loud, etc.) of the input speech as aspects of
context.
In the following, we first describe the experimental

setup and, thereafter, the various experiments along with
the corresponding results.

4.1 Experimental setup
In all the experiments, the input noisy test utterances
were enhanced under different context scenarios, using
the CBSE technique [26] applied using the CD codebook
alone, the CBSE technique applied using the CI codebook
alone, and the proposed Bayesian scheme. We expect that
in the context match scenarios, employing the CD code-
book alone should lead to the best results. On the other
hand, in the context mismatch scenarios, employing the
CI codebook alone should lead to results better than those
obtained using the CD codebook. The proposed method,
however, is expected to provide robust results under vary-
ing contexts, i.e., results close to the best results in all
scenarios. To serve as a reference for comparisons, we also
include results when applying the Wiener filter (5) with
a noise estimate obtained from a state-of-the-art noise
estimation scheme [37].
The performance of these four processing schemes was

compared using two measures: the improvement in seg-
mental SNR (SSNR) referred to as �SSNR (in dB) and
the improvement in the perceptual evaluation of speech
quality (PESQ) [38] measure, referred to as �PESQ, aver-
aged over all the enhanced utterances considered under a
particular experiment.
The speech codebooks used in the experiments were

trained using the Linde-Buzo-Gray (LBG) algorithm [39].
First, the clean speech training utterances, resampled
at 8 kHz, were segmented into 50% overlapped Hann
windowed frames of size 256 samples each, correspond-
ing to a duration of 32 ms wherein the speech signal
can be assumed stationary. Then, LP coefficient vec-
tors of dimension 10, extracted using these frames, were
clustered using the LBG algorithm to generate speech
codebooks of size 256 each using the Itakura-Saito (IS)
distortion [40] as the error criterion.
For training the CI speech codebook, 180 English lan-

guage utterances of duration 3 to 4 seconds each were
used, from 25 male and 25 female speakers from the WSJ
speech database [41]. This codebook served as the CI
codebook for all the experiments described in this section.
The speakers whose utterances were used to train the CI
codebook were not used in the test utterances. The dif-
ferent experiments use different CD codebooks and input
noisy test data, which are discussed later along with the
description of each experiment.
The different CD and CI speech codebooks considered

in the experiments are of large size (256) and are derived

from a large number of phonetically balanced sentences
from the WSJ database. Moreover, the LBG algorithm
used to generate the speech codebooks computes cluster
centroids in an optimal fashion. All these factors ensure
the validity of the assumption about equal probability of
models in Equation 16.
Two noise codebooks for two different noise types,

traffic and babble, with eight entries each were trained
similarly using LP coefficient vectors. For the traffic noise
codebook, LP coefficient vectors of order 6 extracted from
2 min of nonstationary traffic noise were used. Since bab-
ble noise is speech-like, a higher LP model order of 10
was used while extracting LP coefficient training vectors
from approximately 3 min of nonstationary babble noise.
The same noise types were also used in the creation of
test utterances at 0, 5, and 10 dB SNR for all the experi-
ments. The actual samples were different from those used
in training. The active speech level was computed using
ITU-T P.56 method B in [42], and noise was scaled and
added to obtain a desired SNR.
When processing the noisy files for a particular noise

type, the appropriate noise codebook was used. In prac-
tice, a classified noise codebook scheme as discussed in
[25] can be used. This scheme employs multiple noise
codebook, each trained for a particular noise type. Amax-
imum likelihood scheme is used to select the appropriate
noise codebook for each short-time frame. This method
was shown in [25] to perform as well as the case when the
ideal noise codebook was used.We choose to use the ideal
noise codebook to retain the focus on the performance of
the proposed framework with regard to various aspects of
the speech context.

4.2 Experiments with a single CD codebook
In this experiment, we test the proposed framework when
two speech codebooks are employed, a CI and a CD code-
book. The CD codebook models two aspects of context,
‘speaker’ and ‘acoustic environment’.

4.2.1 CD codebook training
For training the CD codebook, 180 English language utter-
ances from a single speaker, of 3 to 4 s duration each,
were used from the WSJ speech database. These utter-
ances were convolved with an impulse response recorded
at a distance of 50 cm from the microphone, in a reverber-
ant room (T60 = 800 ms). This corresponds, for example,
to hands-free mode on a mobile phone. In practice, this
codebook is adapted during hands-free usage, making it
dependent on both the speaker and acoustic environment.

4.2.2 Test utterances for the experiment
Two sets of ten clean speech utterances each were used
to generate the noisy test data. Utterances for the first set
were from the same speaker and acoustic environment as
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the data used to train the CD codebook, corresponding to
the context match scenario and thus the best case for the
CD codebook. The utterances themselves were different
from those used in the training set.
The second set of clean utterances were from a speaker

different from the one involved in training the CD code-
book. These utterances were not convolved with the
recorded impulse response (e.g., corresponding to hand-
set mode in a mobile phone). Thus, both the speaker
and acoustic environment were different from those used
to train the CD codebook, corresponding to the context
mismatch scenario and thus the worst case for the CD
codebook.

4.2.3 Enhancement results
The test utterances were enhanced using the four
schemes, mentioned in Section 4.1. The transition proba-
bilities alk were set to 0.99 when l = k and to 0.01 when
l �= k, with l, k = 1, 2. Tables 1 and 2 provide the results for
the best- and worst-case scenarios, respectively, in babble
noise.
As can be observed from Table 1, the best results are

obtained for the CD codebook, as expected in a context
match scenario. There is a significant difference between
the results corresponding to the CD and CI codebooks,
e.g., 0.19 for �PESQ and 1.3 dB for �SSNR, at 5 dB
input SNR. Moreover, the standard deviation values indi-
cate that the observed differences between the CD and
CI results are statistically significant. This illustrates the
benefit of employing CD codebooks. On the other hand,
Table 2 demonstrates poorer performance when using
the CD codebook compared to using the CI codebook,
in a context mismatch scenario. The difference between
their results is significant for �SSNR at all input SNRs,
e.g., 1 dB at 0 dB input SNR, and for �PESQ at higher
SNR, e.g., 0.22 at 10 dB input SNR. These results demon-
strate the need for a scheme that appropriately combines
the estimates obtained from the CD and CI codebooks,
depending on the context at hand.
In Table 1, with increasing input SSNR, there is

an increase in �PESQ but a decrease in �SSNR for
all schemes except the reference method. This can be
explained by considering the trade-off between speech
distortion and noise reduction.

In general, enhancement using a Wiener filter involves
applying a gain (also called attenuation) function. When
applying this gain function to the noisy speech, both
speech and noise components are attenuated. At lower
input SNRs, the SSNR measure is dominated by the ben-
efit of noise reduction while ignoring the penalty due to
speech distortion. So in these scenarios, applying a greater
attenuation than is optimal can increase the output SSNR
values as it results inmore noise attenuation (it also results
in more speech attenuation but that is not captured by
the SSNR measure). This situation occurs when using a
mismatched codebook, where the clean speech PSD is
underestimated, resulting in more severe attenuation of
the noisy speech. PESQ is more closer to human percep-
tion, and we believe that the effect of speech distortion
is better captured by PESQ, resulting in negative delta
PESQ values for these scenarios. At higher input SNRs,
the SSNR measure also captures the effect of speech dis-
tortion. Since�PESQ captures well the decrease in speech
distortion with increasing input SSNR, there is an increase
in �PESQ with increasing input SSNR in Table 1. On
the other hand, SSNR measure is dominated at lower
input SNRs by the benefit of noise reduction ignoring the
penalty due to speech distortion. As a result, there is larger
�SSNR at lower input SNRs than at higher input SNRs.
In contrast to the results obtained when using the

CD and CI codebooks alone, the proposed framework
achieves robust performance regardless of the observed
context. For the best-case scenario (Table 1), its results
are close to the CD results. For the worst-case scenario
(Table 2), its results are close to the CI results. Thus,
the proposed framework achieves results close to the best
results for a given scenario, as desired. The reference
scheme performs poorly due to the nonstationary nature
of the noise. It may be noted that even using a mismatched
codebook outperforms the reference scheme, highlight-
ing the benefit of using a priori information for speech
enhancement in nonstationary noise.
Tables 3 and 4 provide the results for the best- and

worst-case scenarios, respectively, for the traffic noise
case. Similar observations can be made as from the
Tables 1 and 2 regarding the need for both the CI and
CD codebooks for better performance and the robust
performance of the proposed framework under varying

Table 1 Best-case scenario for a single CD codebook under babble noise

�PESQ �SSNR (in dB)

Input SSNR 0 dB 5 dB 10 dB 0 dB 5 dB 10 dB

CBSE with CD 0.12 ± 0.06 0.18 ± 0.06 0.20 ± 0.07 6.44 ± 0.72 6.01 ± 0.70 4.50 ± 0.88

CBSE with CI −0.04 ± 0.07 −0.01 ± 0.06 −0.02 ± 0.09 5.59 ± 0.97 4.76 ± 0.92 2.82 ± 1.09

Proposed 0.12 ± 0.06 0.18 ± 0.06 0.20 ± 0.07 6.44 ± 0.72 6.00 ± 0.70 4.49 ± 0.88

Reference −0.11 ± 0.02 −0.11 ± 0.02 −0.10 ± 0.04 2.08 ± 0.46 2.42 ± 0.47 2.17 ± 0.53

The CD codebook is modeling two aspects of context, speaker and acoustic environment. Both mean and standard deviation values are reported.
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Table 2 Worst-case scenario for a single CD codebook under babble noise

�PESQ �SSNR (in dB)

Input SSNR 0 dB 5 dB 10 dB 0 dB 5 dB 10 dB

CBSE with CD 0.14 ± 0.09 0.12 ± 0.05 0.07 ± 0.05 4.52 ± 0.90 3.72 ± 0.69 1.75 ± 0.68

CBSE with CI 0.17 ± 0.07 0.20 ± 0.06 0.23 ± 0.05 5.51 ± 0.78 5.01 ± 0.74 3.53 ± 0.63

Proposed 0.17 ± 0.07 0.20 ± 0.06 0.21 ± 0.06 5.52 ± 0.79 4.98 ± 0.73 3.47 ± 0.62

Reference 0.09 ± 0.02 0.12 ± 0.03 0.15 ± 0.05 2.40 ± 0.40 2.99 ± 0.40 3.09 ± 0.44

The CD codebook is modeling two aspects of context, speaker and acoustic environment. Both mean and standard deviation values are reported.

contexts. Again, the reference method performs poorly
due to the nonstationary nature of noise.
Comparing �PESQ values for the best-case scenarios in

Tables 1 and 3 for the two noise types shows that there
is a sharper drop in values from 5 to 0 dB input SNR in
the case of traffic noise results (0.2) compared to babble
noise results (0.06). A similar observation can be made for
the �PESQ values for the worst-case scenarios in Tables 2
and 4 for the two noise types. These observations indicate
that the traffic noise case is more difficult to handle than
babble noise at 0 dB input SNR. This occurred because
the traffic noise considered for the experiments is highly
nonstationary compared to the babble noise used for the
experiments.

4.2.4 Comparison of the proposedmethodwith the
MMSE-STSAmethod

In the above experiments, the reference method cho-
sen for comparison with the proposed method uses the
Wiener gain, as described by (5), computed using a state-
of-the-art noise estimator [37]. This choice provides an
even comparison as the proposedmethod too employs the
Wiener gain function. The two approaches, however, dif-
fer in the computation of the speech and noise PSDs for
computing the Wiener gain.
Also of interest is a comparison of the proposed method

with a popular statistical approach such as the MMSE-
STSA method [9], the results of which are provided in
Tables 5 and 6 for the Babble noise case. Table 5 corre-
sponds to the context match scenario wherein the context
of the CD codebook matches with that of the input noisy
speech. Here, the performance of the proposed method
is superior, especially for the PESQ values, to that of

the MMSE-STSA technique. The advantage with the pro-
posed approach is higher at lower SNR values. For the
mismatch scenario, the performance of both the methods
is comparable as shown in Table 6. Note that the Wiener
filter is just one example of a gain function that can use
the speech and noise PSDs estimated using the proposed
method. The estimated speech and noise PSDs can also
be used to compute the a priori and a posteriori SNRs for
use in the MMSE-STSA gain function. This is however
beyond the scope of this paper and is a topic for future
work.

4.3 Experiments with multiple CD codebooks
In the previous subsection, we tested the proposed frame-
work under conditions when a single CD codebook was
employed along with a CI codebook. Multiple aspects of
context weremodeled by the single CD codebook. In prac-
tice, different contexts will be modeled by different CD
codebooks. In this subsection, we experiment with the
case of two CD codebooks along with one CI codebook.

4.3.1 CD codebook training
The first CD codebook, referred to as CD-1, models a
particular speaker and a speech type. The speech type
considered is ‘whisper’ speech. The speech produced in
the case of certain speech disorders (dysphonic speech)
is similar to whispered speech. CD-1 was trained using
around 10 min of whispered speech data from a single
speaker from the CHAINS database [43].
The second CD codebook employed, referred to as CD-

2, models normal speech in reverberant conditions for
the same speaker as modeled by CD-1. CD-2 was trained
using training utterances of duration around 10 min,

Table 3 Best-case scenario for a single CD codebook under traffic noise

�PESQ �SSNR (in dB)

Input SSNR 0 dB 5 dB 10 dB 0 dB 5 dB 10 dB

CBSE with CD 0.00 ± 0.30 0.19 ± 0.06 0.25 ± 0.11 7.84 ± 1.08 6.97 ± 1.11 5.40 ± 1.35

CBSE with CI −0.21 ± 0.29 −0.05 ± 0.10 0.00 ± 0.14 6.67 ± 1.37 5.57 ± 1.29 3.64 ± 1.49

Proposed 0.01 ± 0.30 0.19 ± 0.06 0.26 ± 0.11 7.83 ± 1.09 6.96 ± 1.11 5.39 ± 1.35

Reference −0.04 ± 0.31 0.08 ± 0.05 0.08 ± 0.06 2.75 ± 0.49 2.82 ± 0.54 2.21 ± 0.79

The CD codebook is modeling two aspects of context, speaker and acoustic environment. Both mean and standard deviation values are reported.
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Table 4 Worst-case scenario for a single CD codebook under traffic noise

�PESQ �SSNR (in dB)

Input SSNR 0 dB 5 dB 10 dB 0 dB 5 dB 10 dB

CBSE with CD −0.13 ± 0.10 −0.02 ± 0.11 −0.01 ± 0.07 5.98 ± 1.78 5.28 ± 1.65 3.45 ± 1.63

CBSE with CI 0.09 ± 0.09 0.32 ± 0.09 0.42 ± 0.09 7.35 ± 1.25 7.12 ± 1.25 5.81 ± 1.07

Proposed 0.08 ± 0.09 0.29 ± 0.07 0.39 ± 0.08 7.34 ± 1.24 7.05 ± 1.22 5.75 ± 1.07

Reference 0.21 ± 0.08 0.28 ± 0.10 0.34 ± 0.09 3.21 ± 0.65 3.65 ± 0.65 3.35 ± 0.58

The CD codebook is modeling two aspects of context, speaker and acoustic environment. Both mean and standard deviation values are reported.

convolved with the same impulse response as used in
the previous experiments (corresponding to a distance of
50 cm from the microphone, in a reverberant room with
T60 = 800 ms).
The two codebooks differ in terms of speaking style,

whispered and normal, and also the acoustic environ-
ment. The separation in terms of acoustic environment is
useful, e.g., to have different CD models for a particular
user of the mobile phone to cater to hand-set and hands-
free modes of operation. Note that the CI codebook is
speaker-independent and corresponds to hand-set mode.

4.3.2 Test utterances for the experiment
Two sets of experiments were performed pertaining to
the matching codebook being CD-1 or CD-2. The first
set consisted of test utterances generated by adding noise
to ten clean ‘whispered’ speech utterances from the same
speaker as in generation of the CD-1 codebook. Similarly,
the second set of experiments had test utterances gen-
erated using ten clean ‘normal’ speech utterances from
the same speaker as in CD-2, convolved with the same
recorded impulse response as used in training CD-2 to
constitute the context match scenario for CD-2. In both
sets of experiments, the test utterances considered were
different from those used in the training of the codebooks.
The noisy test utterances were generated as described in
the beginning of the section.

4.3.3 Enhancement results
Enhancement using multiple CD codebooks was per-
formed by setting transition probabilities alk to 0.9 when
l = k and to 0.05 when l �= k, with l, k = 1 to 3. Tables 7
and 8 present the matching scenario results for CD-1 and
CD-2, respectively, for the babble noise case. Similarly,

Tables 9 and 10 present the matching scenario results for
CD-1 and CD-2, respectively, for traffic noise case. As can
be observed from these tables, the best results for all the
scenarios occur for the matching CD codebook. The dif-
ference between context match and mismatch (between
CD-1 and CD-2/CI, and between CD-2 and CD-1/CI)
is significant, especially in the �PESQ scores. The dif-
ferences in �SSNR values are significant at higher input
SNRs. As the number of codebooks employed by the
proposed framework increases, there is a possibility of a
negative influence from the inappropriate codebooks in
the estimation of the model estimate. But from Tables 7,
8, 9, and 10, we observe that for the case of two CD code-
books and one CI codebook, the results for the proposed
framework are close to those of the matched codebook
at all input SNRs and for both noise types, confirming
the robustness of the proposed framework under varying
contexts.

5 Conclusions
In this paper, we have introduced the notion of context-
dependent (CD) models for speech enhancement meth-
ods that use trained models of speech and noise
parameters. CD speech models can be trained on one or
more aspects of speech context such as speaker, acoustic
environment, speaking style, etc., and CD noise models
can be trained for specific noise types. Using CD models
results in better speech enhancement performance com-
pared to using context-independent (CI) models when
the noisy speech shares the same context as the trained
codebook. The risk, however, is degraded performance in
the event of a context mismatch. Thus, the CD and CI
models need to co-exist in a practical implementation.
The Bayesian speech enhancement framework proposed

Table 5 Comparison of the proposedmethod with theMMSE-STSA technique for context match scenario corresponding
to Table 1

�PESQ �SSNR (in dB)

Input SSNR 0 dB 5 dB 10 dB 0 dB 5 dB 10 dB

Proposed 0.12 ± 0.06 0.18 ± 0.06 0.20 ± 0.07 6.44 ± 0.72 6.00 ± 0.70 4.49 ± 0.88

MMSE-STSA −0.14 ± 0.06 −0.06 ± 0.08 0.04 ± 0.05 5.21 ± 1.28 5.01 ± 0.96 4.21 ± 0.62
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Table 6 Comparison of the proposedmethod with theMMSE-STSA technique for context mismatch scenario
corresponding to Table 2

�PESQ �SSNR (in dB)

Input SSNR 0 dB 5 dB 10 dB 0 dB 5 dB 10 dB

Proposed 0.17 ± 0.07 0.20 ± 0.06 0.21 ± 0.06 5.52 ± 0.79 4.98 ± 0.73 3.47 ± 0.62

MMSE-STSA 0.14 ± 0.04 0.18 ± 0.03 0.23 ± 0.05 5.60 ± 1.14 5.60 ± 0.77 5.03 ± 0.75

Table 7 Results using two CD codebooks and on CI codebook, for context match scenario for CD-1 under babble noise

�PESQ �SSNR (in dB)

Input SNR 0 dB 5 dB 10 dB 0 dB 5 dB 10 dB

CBSE with CD-1 0.18 ± 0.14 0.18 ± 0.16 0.12 ± 0.14 5.87 ± 1.16 4.88 ± 1.14 2.81 ± 1.27

CBSE with CD-2 0.08 ± 0.18 0.05 ± 0.16 −0.03 ± 0.12 5.69 ± 1.30 4.52 ± 1.17 2.18 ± 1.31

CBSE with CI 0.04 ± 0.17 0.02 ± 0.15 −0.11 ± 0.17 5.41 ± 1.20 4.39 ± 1.16 1.98 ± 1.28

Proposed 0.17 ± 0.13 0.16 ± 0.14 0.07 ± 0.16 5.81 ± 1.14 4.87 ± 1.10 2.58 ± 1.33

Reference −0.03 ± 0.07 −0.03 ± 0.06 −0.07 ± 0.07 1.76 ± 0.50 1.93 ± 0.43 1.66 ± 0.57

Both mean and standard deviation values are reported.

Table 8 Results using two CD codebooks and one CI codebook, for context match scenario for CD-2 under babble noise

�PESQ �SSNR (in dB)

Input SNR 0 dB 5 dB 10 dB 0 dB 5 dB 10 dB

CBSE with CD-1 0.11 ± 0.13 0.09 ± 0.09 0.06 ± 0.12 4.15 ± 1.02 3.25 ± 1.18 1.55 ± 1.44

CBSE with CD-2 0.24 ± 0.12 0.21 ± 0.13 0.21 ± 0.12 5.22 ± 1.07 4.64 ± 1.17 3.02 ± 1.32

CBSE with CI 0.18 ± 0.11 0.16 ± 0.10 0.17 ± 0.12 4.77 ± 0.91 4.24 ± 1.02 2.61 ± 1.29

Proposed 0.24 ± 0.12 0.22 ± 0.11 0.21 ± 0.11 5.08 ± 1.12 4.51 ± 1.20 2.93 ± 1.39

Reference 0.08 ± 0.09 0.10 ± 0.07 0.08 ± 0.05 2.59 ± 0.49 3.06 ± 0.51 2.71 ± 0.52

Both mean and standard deviation values are reported.

Table 9 Results using two CD codebooks and one CI codebook, for context match scenario for CD-1 under traffic noise

�PESQ �SSNR (in dB)

Input SNR 0 dB 5 dB 10 dB 0 dB 5 dB 10 dB

CBSE with CD-1 0.07 ± 0.17 0.24 ± 0.17 0.25 ± 0.18 6.67 ± 1.67 5.70 ± 1.62 3.76 ± 1.50

CBSE with CD-2 −0.16 ± 0.16 −0.03 ± 0.17 −0.03 ± 0.19 6 ± 1.78 4.49 ± 1.82 1.88 ± 2.00

CBSE with CI −0.1 ± 0.18 0.01 ± 0.16 0.03 ± 0.17 5.85 ± 1.76 4.53 ± 1.87 2.06 ± 1.84

Proposed 0.06 ± 0.16 0.20 ± 0.19 0.22 ± 0.21 6.58 ± 1.68 5.44 ± 1.65 3.19 ± 1.61

Reference 0.05 ± 0.07 0.11 ± 0.09 0.17 ± 0.11 2.54 ± 0.85 2.96 ± 0.91 2.71 ± 1.02

Both mean and standard deviation values are reported.

Table 10 Results using two CD codebooks and one CI codebook, for context match scenario for CD-2 under traffic noise

�PESQ �SSNR (in dB)

Input SNR 0 dB 5 dB 10 dB 0 dB 5 dB 10 dB

CBSE with CD-1 −0.05 ± 0.13 0.08 ± 0.15 0.13 ± 0.12 6.39 ± 1.40 5.87 ± 0.98 4.4 ± 0.95

CBSE with CD-2 0.01 ± 0.12 0.21 ± 0.15 0.25 ± 0.15 6.69 ± 1.35 6.21 ± 0.91 4.62 ± 0.96

CBSE with CI −0.07 ± 0.14 0.09 ± 0.16 0.19 ± 0.16 6.48 ± 1.37 5.80 ± 1.02 4.17 ± 1.03

Proposed 0.01 ± 0.12 0.20 ± 0.15 0.27 ± 0.14 6.69 ± 1.36 6.21 ± 0.95 4.70 ± 0.96

Reference 0.07 ± 0.07 0.12 ± 0.10 0.13 ± 0.10 2.76 ± 0.84 3.17 ± 0.83 2.78 ± 0.69

Both mean and standard deviation values are reported.
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in this paper obtains estimates of speech and noise param-
eters based on all available models, requires no prior
information on the context at hand, and automatically
obtains results close to those obtained when using the
appropriate codebook for a given context scenario as
seen from experiments with various aspects of speech
context.
The improved performance of the proposed method

is at the cost of increased computational complexity. As
opposed to employing a single CI model, the proposed
method involves computations with multiple models.
The computations related to each model can, how-
ever, occur simultaneously, which allows for a parallel
implementation.
The proposed method has been developed using the

codebook-based speech enhancement system as an exam-
ple of a data-driven model-based speech enhancement
system. Other model-based schemes, such as those using
HMMs, GMMs, and NMF, can benefit in a similar
manner, and the extension is a topic for future work.
The theory developed in this paper is directly applica-
ble to context-dependent noise codebooks and can be
used for robust noise estimation under varying noise
conditions.
In this paper, context-dependent models are assumed to

be available. In practice, they need to be trained online.
For several aspects of context, a separate enrollment stage
may not be meaningful and the models need to be pro-
gressively adapted during usage when the SNR is high.
Distinguishing between different aspects of context and
training separate models for them online is another topic
for future work.
The codebooks considered in this paper consist of

vectors of tenth-order LP coefficients, which model the
smoothed spectral envelope. It will be worthwhile to
investigate the suitability of other spectral representations
such as higher resolution PSDs, mel-frequency cepstral
coefficients, etc., to capture context-dependent informa-
tion. Different features may be employed depending on
which aspects of context are to be modeled and depend-
ing on the application, e.g., whether the enhancement is
for speech communication, speaker identification, or for
speech recognition.
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