Martinez Padilla et al. EURASIP Journal on Information Security (2018) 2018:3
https://doi.org/10.1186/513635-018-0073-z

EURASIP Journal on
Information Security

RESEARCH Open Access

Security evaluation of Tree Parity @
Re-keying Machine implementations utilizing
side-channel emissions

1,2%

Jonathan Martinez Padilla , Uwe I\/\eyer—Baese“2 and Simon Foo '~

Abstract

In this work, side-channel attacks (SCAs) are considered as a security metric for the implementation of hybrid
cryptosystems utilizing the neural network-based Tree Parity Re-Keying Machines (TPM). A virtual study is presented
within the MATLAB environment that explores various scenarios in which the TPM may be compromised.
Performance metrics are evaluated to model possible embedded system implementations. A new algorithm is
proposed and coined as Man-in-the-Middle Power Analysis (MIMPA) as a means to copy the TPM's generated keys. It
is shown how the algorithm can identify vulnerabilities in the physical device in which the cryptosystem is implemented
by using its power emissions. Finally, a machine learning approach is used to identify the capabilities of neural networks

hybrid cryptosystem in an AVR microcontroller.

evaluation

to recognize properties of keys produced in the TPM as they are transferred to an encryption algorithm. The results
show that physical exploits of TPM implementations in embedded systems can be identified and accounted for
before a final release. The experiments and data acquisition is demonstrated with an implementation of a TPM-AES

Keywords: Tree parity machine, Side channel, Machine learning, Neural networks, Microcontrollers, Security

1 Introduction
The advent of quantum cryptanalysis has elicited a grow-
ing concern for the security of modern cryptographic
protocols. For instance, in the mid-1990s, Shor published
a quantum algorithm that can factor the prime numbers
from any integer with extreme efficiency, thus breaking
public-key cryptosystems such as the widely used RSA
[1]. When quantum computing technologies rise to prac-
ticality, some of the most popular forms of public-key
cryptography may be endangered. To mitigate the poten-
tial reality, different types of public-key schemes have
been proposed as substitutes that deviate from traditional
number theory: hash, lattice, and multivariate quadratic
equation, are some among other schemes.

The neural key exchange protocol is considered to be
a possible alternative that could be resistant to quantum

*Correspondence: jem14m@my.fsu.edu

TFAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer
St, 32310 Tallahassee, Florida, USA

“Machine Intelligence Laboratory, Florida State University, 2525 Pottsdamer St,
32310 Tallahassee, Florida, USA

@ Springer Open

cryptanalysis mostly due to not being established off num-
ber theory. Originally proposed in [2], it consists on using
the properties of a neural network to generate public or
private keys for a cryptosystem with the use of its synaptic
weights. But if future cryptosystems where to use the neu-
ral key exchange schemes for public-key cryptography, the
question arises as to what other forms of attacks may the
neural key scheme be vulnerable to. The cryptographic
device that hosts the neural key exchange mechanisms
could encounter weaknesses that may be exploited for
malicious intent. Having the vulnerabilities cataloged and
accessible can allow for effective countermeasures to be
considered at the time of implementation.

Embedded systems are a crucial asset in many aspects
of technology. They are used in various applications
including motion estimation in imaging [3, 4], comput-
ing optimization [5], secure exchange of information, and
among others. Yet every computational device emits a
series of leakages coined as side channels. These can be
in the form of power dissipation, electromagnetic emis-
sions, execution time of a process, emanated light, and

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the

Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13635-018-0073-z&domain=pdf
http://orcid.org/0000-0002-8678-5595
mailto: jem14m@my.fsu.edu
http://creativecommons.org/licenses/by/4.0/

Martinez Padilla et al. EURASIP Journal on Information Security (2018) 2018:3

among other physical attributes. The methods used to
determine a cryptographic device’s physical vulnerabili-
ties lie within the realm of side-channel analysis, while the
use of it for the purpose of extracting private or secret
keys from a cryptographic protocol is described as side-
channel attacks (SCAs) which was pioneered by Kocher in
[6]. SCAs largely depend on statistical schemes to extract
keys and are relatively cheap to mount and perform (7, 8].
Advancements in side-channel cryptanalytics have high-
lighted the need to account for countermeasures against
them especially in the design of secure systems.

This work presents a series of evaluation methods
that aim to reveal vulnerabilities in a hardware-based
implementation of a neural key architecture, namely the
Tree Parity Re-Keying Machine (TPM). First, a virtual
model of a TPM-AES hybrid cryptosystem is built to
evaluate performance. A case study of various security-
compromising scenarios is observed and realized to deter-
mine potential weaknesses in a cryptographic device. The
model is used to develop an embedded hardware imple-
mentation of the TPM hybrid with the ATMega328P
microcontroller as the target device. A new algorithm
is proposed to effectively synchronize a TPM’s gener-
ated keys by measuring its power dissipation. Finally, a
machine learning approach is used to classify a TPM’s
generated keys by monitoring the power dissipation of the
data transfer between the generated key and an encryp-
tion operation in AES. The following sections describe
the methodologies used to achieve key extraction and
emphasize the need to include additional protection
schemes in embedded hardware implementations of TPM
cryptosystems.

2 Background and related work

The attack algorithms and numerical foundations for the
construction of side-channel attacks are described as pre-
liminaries for execution of SCAs. In the following sub-
sections, a brief description of the procedures used in
SCAs are described and generalized. Additionally, the
TPM'’s algebraic structure is formulated and discussed.
The unsupervised learning techniques and learning rules
are described in more detail to facilitate the incorporation
of a neural key exchange protocol.

2.1 Tree Parity Re-Keying Machine

Neural networks as a solution for cryptographic appli-
cations originated in [2] with the creation of the TPM.
Figure 1 shows the tree-like diagram towards which car-
ried the inspiration for its name. The original paper
suggested that synchronized synaptic weights would be
anti-parallel to one another and could serve as keys for
different cryptosystems. Yet slight modifications to the
original algorithm turn the TPM as a generator of equal
shared keys.

Page 2 of 16

The structure is comprised of two machines, each with
an input layer, a hidden layer, and an output layer. The
input layer has a total of » = 1,2, ..., N input nodes inter-
connected to k = 1,2, ..., K hidden nodes in the hidden
layer. The inputs (xx ;) are a stream of random numbers
that are applied to the machines in the TPM. The hidden
nodes (y;) connect to a single output node in the out-
put layer (O,,). The synaptic or learning weights (w) are
wedged between the input and hidden layers. The weights
take on bounded integer values wy, € [—L,L]. The
hidden nodes have an activation function in the form of
Eq. (1). The activation function takes the sum of products
between the inputs and weights at each hidden node and
determines its sign to be either negative or positive where
the sgn(-) function outputs — 1 for the former and +1
for the latter. The output node also has its own activation
function. The trigger is the product of each hidden node’s
output in the form of Eq. (2). The output of the TPM
is then delivered to an identical machine. The possible
output values are bounded by O,,, € {—1, 1}.

n=1

N
Yk(x, w) = sgn (Z xk,nwk,n) (1)
K
Om = l_lyk (2)
k=1

A conditional operation is performed to determine
whether or not to update the synaptic weights. For
the unsupervised training method, the adaptation step
requires that the machines output an equal value. Even
if both outputs are equal, another condition is set com-
paring the machine’s output to the value of a hidden
node’s output. This ensures that only the hidden node,
whose weights are mismatched to the machine’s output,
are updated. Additionally, the adaptation step uses a learn-
ing rule to modify and update the weights. The result of
the learning rule is clipped to satisfy the specified bound-
aries L of the weights. After complete synchronization of
the machines, the weights are used as keys for a cryp-
tosystem. A special case is seen when determining the
sign of a zero value. For the machine that initiates the key
exchange y4, = sgn(0) = 1, for the responding machine
yB, = sgn(0) = —1is held.

The three main learning rules that aid into the synchro-
nization of weights in the adaptation step are Hebbian,
anti-Hebbian, and Random Walk. Hebbian learning takes
into account both the response received from a machine
as well as its input value. Thus, the weight is strengthened
in proportion to O,, and x ,, as postulated in Eq. (3) where
the new weight is represented by w™.

@ = Okn + O 3)

Martinez Padilla et al. EURASIP Journal on Information Security (2018) 2018:3

Page30f 16

Fig. 1 TPM diagram. The TPM neural network consists of input, hidden, and output layers to generate keys from its weights

OUTPUT LAYER,
Om

HIDDEN LAYER,
Yk

INPUT LAYER,
Xgn and wy

Conversely, in anti-Hebbian learning, the weight is
weakened in proportion to its output’s activation function
as seen in Eq. (4).

+
a)k,n = @k

- Omxk,n (4)

Finally, Random Walk learning does not take into
account the output of a machine, solely leaving the weights
to strengthen or weaken based on the values of the inputs
to the TPM. Since the input nodes are a constant stream of
randomly generated values, the weights are stochastically
updated with respect to Eq. (5).

+
W, = Dkyn + Xkn (5)

2.2 Side-channel cryptanalysis

Advancements in cryptanalytics allow for the understand-
ing of the security capabilities of a proposed crypto-
graphic protocol. Historically, cryptanalysts largely relied
on how to uncover vulnerabilities based on the math-
ematical foundation of a cipher. But by the 1950s, the
US government introduced the TEMPEST [9] program to
evaluate the electromagnetic emanations in their comput-
ers due to the fear that compromising information was
leaking. Although the security of systems via side chan-
nels were being studied, it was a largely omitted area in the
field of cryptanalytics until the mid-1990s. This was when
Kocher introduced a novel paper detailing timing attacks
against different types of cryptographic implementations
in computing devices [6].

Side-channel cryptanalysis has expanded as a crucial
asset to evaluate the security in physical implementa-
tions of the different types of cryptographic algorithms.
Statistical and analytical techniques are used to corre-
late these leakages into processed data, so its content can
be extracted. A variety of methods exist which are cho-
sen based on availability of equipment to monitor side
channels, familiarity with a target cryptographic protocol,

computational resources of a method, known architec-
tural weaknesses of a computational device, and among
other reasons. The most often sought out side chan-
nel is the power consumption of a target device. Some
of the prevalent SCA methods are simple power analy-
sis (SPA), differential power analysis (DPA), correlation
power analysis (CPA), and template attacks (TA).

SPA comprises of acquiring power traces from a crypto-
graphic device and looking at visible patterns that can be
related to functions of known cryptosystems or to actual
private keys. The attacker can use the traces to reverse
engineer instruction sequences when sufficient knowl-
edge of a processor’s architecture is known, thus giving
clues about what the cryptosystem is processing [10, 11].
DPA utilizes statistical methods to indicate if a key bit is
dependent to the power consumption of the device. To
execute DPA, an attacker must record numerous power
traces while the implemented cryptosystem operates on
input data. After collecting the power traces, a statisti-
cal analysis is performed to identify how samples in a
power trace correlate to changes of a possible key [12].
CPA is an extension of DPA that adds improvements to
the statistical methods used. The main difference is in
the use of Pearson’s correlation coefficient to determine
if there’s a proportional association between the target
key and the power consumption of a cryptographic device
as described in [13]. The Hamming weight (HW) and
Hamming distance (HD) power consumption models are
widely used to describe the output behavior of an inter-
mediate function in this attack. Finally, a TA is based on
acquiring a private key by means of multivariate statis-
tics and probability methods [14]. An attacker essentially
builds a set of templates from a clone device that has
the expected power trace for a key-dependent operation
when a possible key is used. All the templates form a tuple
that are used to compare with the original power trace of
the target device. A probabilistic estimator, e.g., maximum

Martinez Padilla et al. EURASIP Journal on Information Security (2018) 2018:3

likelihood estimator, is typically applied for the compar-
isons to the possible key templates where the largest value
is said to be the targeted key.

2.3 TPM-AES hybrid cryptosystem

Neural networks can be utilized as an asset to the con-
struction of cryptosystems. An application is found in
the context of key exchange and generation. For the sake
of keeping data confidential, cryptosystems use either
a single shared key or a public-private key to achieve
encryption and decryption. By the 1990s, Giinther sug-
gested forward secrecy unto key agreement protocols [15].
It entails the generation of a unique private key for
each session initiated for station-to-station communica-
tions. That way, if the secure communication is com-
promised, only the data from that specific session would
be affected. In neural networks, a stochastic pattern of
synaptic weights is generated after a learning session is
completed which can be used as keys. Reinitializing a
neural network creates a new stream of synaptic weights
fitted for a cryptosystem that refreshes its keys for every
session. The mechanisms to perform a successful neu-
ral key exchange protocol rely on the key generation,
the key management procedures, and the neural network

architecture to achieve both.
A practical scenario where a TPM key generation mech-

anism may be implemented is with the use of a cryp-
tographic protocol such as the Advanced Encryption
Standard (AES). AES is of particular interest because its
usage spans many applications. Originally named Rijn-
dael, it is one of the most widely used symmetric algo-
rithms in use today [16]. Some of the most notable users of
it are governmental agencies such as the National Institute
of Standards and Technology and the National Security
Agency. The former classified AES as a US Standard for
federal information handling while the latter utilizes AES
to encrypt SECRET and TOP SECRET levels of classified
information [17, 18]. These factors serve to magnify the
importance of AES in modern communications.

2.3.1 Advanced Encryption Standard
AES is a symmetric cryptographic protocol structured
by means of three processes: encryption, decryption, and
key scheduling. The encryption process aims to hide the
meaning of the message while the decryption process
interprets and recovers the original message with a shared
key. The secret key is expanded into round keys by means
of a KSA which is used in both the encryption and decryp-
tion processes. Three modes of operation are available:
128-bit, 192-bit, and 256-bit key sizes. The key sizes only
change the amount of resources used by AES and are an
option for applications where higher security against a
brute force attack is required.

The encryption operation can be described as a series of
interconnected modules ordered as: KeyAddition (),

Page 4 of 16

SBOX (), ShiftRows (), Mix®lum (), and Ciphertext ().
The following lists are a brief description of its operation.

e KeyAddition (): A round key is added to the
original plaintext by means of a modulo-two addition.

® SBOX (): Also known as a substitution box, it has
series of generated numbers in a lookup table that are
indexed by the resulting values in KeyAddition ().

e shiftRows (): After mapping the SBOX output
values, the resulting matrix has its rows shifted to the
right.

e MixColumn (): The resulting matrix is further
shuffled by multiplying it to a constant matrix.

e Ciphertext (): After all modules loop exhausting
the total number of round keys available, an output
16-byte block of ciphertext is generated.

In the decryption operation, an ISBOX () (inverse sub-
stitution box) module is used instead. It has a different
set of generated numbers from the encryption opera-
tion’s version of the lookup table. The process is done in
reverse order from the encryption operation to recover
the original plaintext. More information about the inter-
nal structure of AES can be found in [16, 19].

2.3.2 Incorporation of TPM with AES

A possible implementation of TPM utilizing the AES
cryptographic protocol is shown in Fig. 2. To add the
properties of a neural key exchange mechanism, the
cryptosystem must be able to publicly share informa-
tion that relates to the message in an unsecure channel
without compromising its content. When both machines
synchronize with one another, a shared key is gen-
erated to aid in the transmission and recovery of an
input plaintext. PRNGs utilized upon implementation
have the option of being either public or private. The
generated inputs x;, can act as an implicit authen-
tication method if privately generated by both sender
and receiving machines [20]. Some authors have sug-
gested that a higher number of input and hidden nodes
may improve security against eavesdropping for TPM
implementations [21], but for AES, the three modes
of operation have limited key sizes. Thus, at a mini-
mum, the learning weights must produce 128-bit keys for
usage.

3 Experimental setup and methodology

Two distinct setups are built to implement the TPM-AES
cryptosystem. First, a virtual model is created for anal-
ysis of possible security-compromising scenarios. Then,
an experimental setup is constructed based on low-cost
equipment and available measurement instrumentation to
evaluate how SCAs can affect its security. The method-
ology to acquire and pre-process data is explained and

Martinez Padilla et al. EURASIP Journal on Information Security (2018) 2018:3

Page 50f 16

for each machine

i Medium !
L

Xkn
: :
i 1
i !
: Om ;
; ;
i i
i a
_________________ a:____________J,._____ = o e e
: !
| 1
: i
: : Recovered
Plaintext i Ciphertext ! Plaintext
AES ! Y AES
—_—> ; > >
Encryption ! ; Decryption
! ipmmeceen .
i | Unsecure i .
| |
i i
; a

Fig. 2 TPM-AES cryptosystem. An implementation of a TPM and AES hybrid cryptosystem is shown. The PRNG can be generated publicly or privately

usage of the AVR ATMega328P microcontroller for SCAs
is discussed.

3.1 Virtual model security setup

The topology of the TPM and the AES cryptographic
protocol is constructed and tested within the MATLAB'
environment. The hybrid cryptosystem’s interface relies
on having the machines in the TPM fully synchronize
and utilizing the final weights as input keys to AES. The
weights reset their values for each run yielding a fresh
set of keys for each session. The user specifies both the
amount of hidden nodes and the amount of input nodes
desired. For AES, a 16-byte key (128 bits) is required,
thus it is fitted accordingly with K = 4 and N = 4.
The bounded integer values for the weights is also user-
defined, with an arbitrary number of L = 4 utilized for
the experiments. The internal inputs to the machines are
public vectors generated by MATLAB’s PRNG function
rand ().

The experimental setup aims to test and simulate differ-
ent scenarios involving the security and the performance
of the TPM in MATLAB. Security is evaluated on a case-
by-case basis involving an attacker coined as the Eve
machine. The Eve machine represents an untrusted source
with full knowledge of the cryptosystem and with access
to the TPM’s output nodes. The performance metric is
split into various sets of parameters including execution
time, synchronization score, and stability. Figure 3 depicts
a system-view flowchart of how each module is interfaced.
Initially, the TPM starts and checks whether its machines
are not synced. To simulate the security-compromising

cases, the Eve machine is implanted to try and sync with
the Alice and Bob machines. If the Eve machine is not
enabled, the program execution will evaluate performance
metrics. Finally, a key is generated and used as input
for the AES. The generated key is expanded into round
keys and used to create a ciphertext after the encryp-
tion process. The original message is recovered after the
decryption process.

3.2 Testbed for SCA experiments

Security evaluations of side channels require a measure-
ment station and a testing setup. The measurement sta-
tion has to provide a means to evaluate multiple side
channels as well as capability of logging data to a comput-
ing platform for statistical analysis required in most cases
of SCAs. Utilizing the Machine Intelligence Laboratory at
the FAMU-FSU College of Engineering, a testing platform
is built to achieve a means for further study and explo-
ration into vulnerabilities of cryptographic devices via side
channels.

The main idea of developing an experimental setup for
SCAs revolves around a large amount of stored mea-
surements from a leakage source in the target device.
From this, a testbed is constructed utilizing the fol-
lowing instrumentation: Tektronix™ DP0O4054B oscillo-
scope, ATmega328P microcontroller, 10 2 resistor, and
a PC station. The resistor is utilized as a measurement
point to connect the oscilloscope’s probes and read the
power consumption of the microcontroller along its GND
rail. The microcontroller hosts an implementation of a
TPM-AES cryptosystem with added triggers for leakage

Martinez Padilla et al. EURASIP Journal on Information Security (2018) 2018:3

Page 6 of 16

Define K,N, L
Initialize Alice (A), Bob (B)

Initialize Eve machine

Generate key
from weights.

eno

Update Aand B
machines

AES START

Declare global variables
Read plaintext, key

RoundKeys =KeyGen(key)

ciphertext =
AESencryption(RoundKeys, plaintext)

plaintext =
AESdecryption(RoundKeys, ciphertext)

AES END

Update Eve Machine

Fig. 3 Virtual model flowchart. The flowchart described how the performance metrics and security evaluation is performed on the cryptosystem

evaluation of certain intermediate operations: memory
reads, machine outputs inside the TPM, and key transfers
to AES. The triggers are sent to the oscilloscope to cap-
ture the time frames of the intermediate functions chosen.
This is possible due to the availability of a customizable
environment within the Arduino” platform. Since it com-
piles code via a C/C++ wrapper, implementations can
be examined to insert triggers in specific locations that
hold special significance. The PC station acts as the mas-
ter controller of the measuring system to read and store
oscilloscope data via a custom interface.

The PC oscilloscope interface is realized via serial
communication as shown in Fig. 4. The communication
protocol TekVISA [22] is implemented utilizing the
Python programming language and integrated develop-
ment environment (IDE). The written Python code reads
and decodes RPB binary formatted output measurements
from the oscilloscope and adds data-logging capabilities.
The measurements are written to comma-separated
value (CSV) file for general usage in statistical software.
The oscilloscope’s output buffer is cleared before a new
measurement takes place to avoid possible overflow
flags to be triggered. Additionally, the interface allows
programming the microcontroller and tests for inter-
rupted communication. The Arduino Duemilanove™
shield is utilized to provide the voltage supply, crys-
tal oscillator, and programming interface to the
microcontroller.

Although external triggers provide a means to capture
a specific time frame, it often is not enough to have reli-
able side-channel traces. A main issue arises with the
synchronicity of the PC, oscilloscope, and the microcon-
troller when extracting data. To combat the problem,
the microcontroller is programmed to poll for a mes-
sage from the PC before a new operation is commenced.
The polling allows the Python script to decide when
to commence a next round of an encryption operation,
continue a function, or halt the system. The microcon-
troller waits for the PC to extract the measurements from
the oscilloscope before being asked to perform another
task. To counter noise in measurements, the functions
of interest are set to iterate over a period of time. The
oscilloscope is configured to average the repeated side-
channel measurements. This method provides a robust
signal that can be used for statistical analysis and reduces
data overhead. Yet, in a practical implementation, devices
may not be able to be fully controllable, thus requiring a
larger amount of measurements and data to implement
SCAs.

For the experiments, the inputs are selected to hold
a relationship with a statistical distribution. The input
plaintext to a cryptosystem is selected to hold a uniform
distribution with respect to the Hamming weight of its
integer values. It allows for a realistic scenario where the
plaintext can be a set of random values. The symmetric
keys used, however, hold a uniform distribution between

Martinez Padilla et al. EURASIP Journal on Information Security (2018) 2018:3

Page 7 of 16

Serial

PC Station

Side-channel
leakage and
trigger signal to
oscilloscope

Tektronix

[AVR ATMega328P Communication
Microcontroller

DP0O4054B

Oscilloscope
(2.5 GS/s)

(Python, Arduino

IDE, MATLAB)

Initialization of oscilloscope
and data-logging of side-
channel measurements via
TekVISA serial protocol

Fig. 4 Diagram of the experimental setup. PC oscilloscope serial communication interface to extract side channels from target device

its integer values. It is purposely selected to magnify a
potential relationship within HW or HD leakage models.

4 Security and performance evaluation of
TPM-AES hybrid cryptosystem
A total of three different cases are studied in which the
Eve machine tries to fully synchronize with the Alice and
Bob machines: case 1 deals with the mutual syncing of
the Alice and Bob machine outputs, case 2 focuses on
syncing solely with Alice machine’s outputs, and case 3 is
a direct intercept of the communication channel to sync
acting as Alice or Bob. For all three cases, 1000 differ-
ent iterations of synchronizations run between Alice and
Bob using three different learning rules as depicted in
Egs. (3)—(5): Hebbian, anti-Hebbian, and random walk.
The vulnerability of the system is measured by defining
a synchronization score sg,. as the percentage of weights
that match between the Eve and Alice or Bob machines.
Equation 6 depicts the relationship where #* is the num-
ber of matched weights from the total available weights
n1B for a single session key in the TPM. If Eve manages to
achieve a perfect synchronization score, the key would be
rendered compromised and the cryptosystem unsecure.

E
match
A|B
total

n

(6)

SEvess = 100 -
n

Histograms of the Eve machine’s synchronization score
are obtained and plotted in Fig. 5. In the first case, Fig. 5a,
Eve applies each of the specified learning rules to update
its weights only when all the three machines have the same
outputs. The resulting histogram shows that Eve could not
synchronize with Alice or Bob. The most frequent syn-
chronization score is tabbed at sgye = 60% meaning that
the failure to synchronize is because the training is slower

than the Alice and Bob machines. Although for some runs,
Eve manage to achieve up to 88% sync score. For the other
learning rules, similar behavior is seen with no full syn-
chronization. In the second case, Fig. 5b, Eve focused on
training its weights by observing solely Alice’s output. The
results indicate that full synchronization is achieved in 30
of the 1000 runs using the Hebbian learning rule. Lastly, in
Fig. 5¢, an active attack is simulated where Eve intercepts
the channel and overrides Alice and Bob’s output with
its own output. The attack achieved full synchronization
across all learning methods and runs signifying a notable
weakness.

To test the synchronization performance of the TPM,
only the Alice and Bob machines are utilized to sync and
measured with respect to execution time. The surface plot
of Fig. 6a is generated by sweeping through the param-
eters of hidden nodes K and the number of input nodes
N. The synchronization time is seen to increase propor-
tionally to the number of hidden nodes and input nodes.
Figure 6b shows that by increasing the number of hid-
den nodes, the execution time for full synchronization
increases when holding a fixed amount of input nodes.
Likewise for increasing amounts of input nodes utilized,
performance slows down for a fixed amount of hidden
nodes. The results imply that larger key lengths will affect
performance since weights are distributed with respect to
the number of input nodes to the hidden layer.

The synchronization errors between Alice and Bob can
be seen by revisiting Fig. 5 and reading the synchroniza-
tion failures. Table 1 summarizes the error rates with
respect to each learning method. Anti-Hebbian learning
produces the highest amount of synchronization errors
as compared with the other utilized learning methods.
The case where Eve intercepts the channel shows a 25.8%

Martinez Padilla et al. EURASIP Journal on Information Security (2018) 2018:3

Page 8 of 16

Sync Score per runs

% 60 70
Sync Scoce [%]

Via Hebbian Learning
Sync failures: 1

Sync Score per runs

Sync Score per runs.

45 EEE [CEEE]

0 e 10
Sync Score [*]

Via Anti-Hebbian Learning
Sync failures: 64
a

& 70
Sync Seore (]

Via Random-Walk Learning
Sync failures: 0

Sync Score per runs.

Frequency

60 70
Sync Score [N]

Via Hebbian Learning
Sync failures: 1

Sync Score per runs

Frequency

0 10 20 30 40 50 60 70

Sync Score %, Seve

80 9 100

Via Hebbian Learning
Sync failures: 4

as Alice or Bob

g L
g
100 0 70
Sync Score [*]
Via Anti-Hebbian Learning Via Random-Walk Learning
Sync failures: 68 Sync failures: 0

660 Sync Score per runs o Sync Score per runs

900 700

800

600

700
8 wo e
g 500 g 400
o o
i [
i o L 300

300

200
200
100 100

o

0 10 20 30 40 5 6 70

Sync Score %, s

80 9 100

VE

Via Anti-Hebbian Learning
Sync failures: 258

c

°
o

10 20 30 40 50 60 70 80 90 100

Sync Score %, Seve

Via Random-Walk Learning
Sync failures: 81

Fig. 5 Security evaluation cases. a Case 1: Eve syncs with Alice and Bob. b Case 2: Eve syncs only with Alice. ¢ Case 3: Eve intercepts channel and acts

error rate. The drastic increases in synchronization errors
for case 3 can aid in determining whether the channel is
being intercepted. The number of errors can be used as
a mechanism to detect intrusion or a compromised com-
munication channel since synchronization is more likely

achieved in the other cases.

5 Man-in-the-middle power analysis

Taking advantage of the properties of the SPA, DPA, CPA,
and TA attack algorithms, a new MIM attack is designed
and developed taking into account a target device’s side-
channel emissions. The attack algorithm is developed

as a set of steps and is directed towards uncovering

Martinez Padilla et al. EURASIP Journal on Information Security (2018) 2018:3

Page 9 of 16

Performance of TPM

Surface plot
Sync time vs kand n
a

Exocution time vs Number of Hidden Layers

400 500
Hdden Layers (k)

) 100 200 300

Sync time vs Number of
Hidden Layers
(n =10 inputs per layer)
b

Fig. 6 TPM performance evaluation. a Surface plot with varying hidden layers and varying number of inputs. b Execution time with varying number

of hidden layers and ¢ with varying number of inputs

Execution time (s)
»

Execution time vs Number of inputs

10 15 20 25 30 35 40 45 50
Number of inputs (n)

Sync time vs Number of inputs
(k = 100 hidden layers)

(]

the synchronized synaptic weights, or the final gener-
ated keys, of the TPM by observing its machine outputs.
The modified MIM attack presented is inherently another
form of profiling attack that takes advantage of the power
consumption of the target device. Additionally, an iden-
tical device is required to perform offline processing of
the profiling’s results. The attack is coined as man-in-the-
middle via power analysis attack (MIMPA) for simplicity.

Table 1 TPM synchronization errors

Learning Error %

rules Case 1 Case 2 Case 3
Hebbian 0.1 0.1 04
Anti-Hebbian 6.4 6.8 258
Random walk 0 0 8.1

The following subsections elaborate on the attack and
analysis of the results.

5.1 MIMPA attack algorithm

MIMPA is developed utilizing a modified version of
the DPA, CPA, and TA attack algorithms. The method
aims to utilize the power emissions from a crypto-
graphic device utilizing a neural key exchange pro-
tocol for the generation of session keys. The TPM
is the target cryptosystem as applied to an observ-
able cryptographic device. It is a non-invasive attack
and cataloged as a profiling-based attack. Full knowl-
edge of the neural key implementation is required to
land a successful extraction of keys. The approach to
develop a MIMPA attack is described by the following
steps:

e Actively record traces from a key session: Power

dissipation traces are recorded from an active neural
key session. The traces are labeled with respect to the
learning steps performed by the neural network.
After full synchronization of the machines’ respective
weights, the recorded traces are stored in a matrix T
indexed by ¢;; as described in Eq. (7). The rows

1 <i < I represent the recorded learning step’s
power consumption while the columns 1 <j <J
represent the number of samples in the measured
trace.

tin tip ... Lty
21 vov ven nn
T=| > ?)

Pick a single point of interest: A point of interest is
chosen from the recorded traces from the results of
an applied discriminant. The discriminant test is
formulated in Egs. (8) and (9). The calculated A
determines the distance between differences in a
sample point and its mean value per learning step. A
single arbitrary sample is taken as a point of interest
(POI) by evaluation of the highest peak in the sum of
absolute differences between the traces and mean.
The peak indicates the highest distance encountered
from samples to the mean and can be an indicator of
data-dependent power consumption.

1 1
W= Zti,j (8)
i=1
I
Aj =l — | ©)
i=1
POI = (j, argmax (Aj)) (10)

Characterize the machine outputs: To characterize
the outputs, threshold estimations are created from
the average value between the highest and lowest
peak from all the traces at the POI as shown in

Eq. (11). Afterwards, a conditional operator is utilized
to determine the value of O,,, and mapped to a matrix
V of size 1 x I as formulated in Eq. (12). V represents
the machine outputs from either the Alice of Bob
machines. In the case where ¢; po; = Ty, the value is
adjusted with respect to the machine output
observed. This means that v; = 1 if the traces
observed are from the Alice machine and v; = —1 if
they are from the Bob machine.

1
Ty = 3 (argmax (t;por) + argmin (#,p0r)) (1)

_jvi=1 iftipor > Ty,
V= { vi=—1ift;por < Ty, 12

Martinez Padilla et al. EURASIP Journal on Information Security (2018) 2018:3 Page 10 of 16

e Verify validity of mapped machine outputs: CPA is
executed to verify if the mapped machine outputs are
consistent with its power dissipation. The
hypothetical machine outputs in V are used as the
intermediate function. A power model of choice
(such as the HW power model) is selected to generate
a matrix H with respect to V. Finally, Pearson’s
correlation coefficient is performed to determine the
relationships existing between the generated machine
outputs and its traces. Matrix H is indexed by 4;
where its rows are the number of traces gathered
1 <i <[and its columns are the possible keys in a
key space of a cryptosystem 0 < key < K’ — 1
indexed as k" = key + 1. Equations 13 and (14) help
formulate the parameters.

1 o . ke

H= h2_1 (13)
h[,l h]y[(/
Z <(hlk/ - hfk/) . (tz; t]))
riej = —= (14)

® Feed outputs to identical device: After verifying the
machine outputs, they are ready to be implemented
in a cryptographic device. The testing device must be
identical to the original target device. However, the
implementation should utilize a single Eve machine
that receives the calculated machine outputs in matrix
V. The internal input nodes &y, are publicly available
in the standard architecture of the TPM, which can
be used in conjunction with the machine outputs to
emulate the learning steps. Selecting a learning
method for the Eve machine is entirely reliant on
knowledge of the target device. The Eve machine is
trained posing as either the Alice machine or the Bob
machine. Its final synaptic weights represent the
target key for a single session of the key exchange. It
is important to note that the initial weights play a
large factor in determining an accurate key.

5.2 MIMPA results and analysis

A MIMPA attack is performed against a TPM imple-
mentation in the ATMega328P microcontroller. Figure 7a
shows how the absolute difference between the sam-
ples in the recorded traces and its mean. The plot indi-
cates that the maximum distance from the mean is seen
between samples 840 < j < 860 while other local
maximums of interest peak at j = 538 and j = 145.
Via this method, the POI chosen is at j = 845.
Other possible POIs can be selected by the next highest
peaks. The samples at the POI for every learning step

Martinez Padilla et al. EURASIP Journal on Information Security (2018) 2018:3

Page 11 0f 16

a b
0.08 T T T T T T T = S . p
v .2 Power Dissipation at j = 845
0.07 X: 537 Y:0.0782 “
g Y: 0.06337
R 35* "
.— 0.06 [.
<4
0] —~ 3
0.05
8 X: 145 <
[0 Y:0.04018 i
— e
Q 0041 n - QO 25
= 2
] O
© 003 o,
=
2
Q o0 15
Q
<
0.01 1
0 10 20 30 40 50 60 70 80
0 - - . - . - . . . Learning Step (/)
0 100 200 300 400 500 600 700 800 900 1000

Sample Number (j)

Fig. 7 Classifying POl and Oj,. a Absolute difference of sample and mean. Another form of a standard deviation calculation. b Recorded power at

j = 845. For each learning step, a noticeable gap exists

are shown in Fig. 7b. It is seen that the power con-
sumption exhibits distant values based on the possible
machine output. The dataset essentially holds a linearly
separable pattern that can be exploited to classify the
actual machine output that happened in a respective
learning step.

The distance between power consumption values for a
machine’s output allows for its mapping. Figure 8 demon-
strates the threshold values for the M samples in the N
learning steps. At the POL, Ty, = —58uW. A snippet of
the recorded traces adjusted to the mean are also shown.
Samples around 730 < j < 745 would not be useful
as classifiers due to the threshold being too close to the
mean. With the Ty, selected, the machine outputs are
mapped.

The extracted machine outputs are tested for validity by
using CPA. HW power model is selected to create a hypo-
thetical model with respect to the machine output data.
The correlation plots are displayed in Fig. 9a. It indicates
the correlation between the samples in the observed traces
and the hypothetical power model. The correlation coef-
ficient is r > 0.80 for 550 < j < 900. The high correlation
indicates that the power model proportionally matches
the hypothetical model. It holds significance in that the
machine outputs classified bear a high likelihood on being
the actual outputs as produced by the target device. At
the POI, the correlation is r = 0.997, guaranteeing that
the behavior matches the actual use of the classified out-
put values. Figure 9b presents how r varies with respect
to the learning steps. It holds that as more learning steps
are needed to synchronize the final weights, the more
accurate the correlation calculation is. This result also

indicates that faster synchronization in the TPM can be
beneficial to countering a CPA attack. Yet, if more learning
steps are required to synchronize, the resulting correla-
tion calculation can reach a steady state indicating higher
accuracy for interpretation.

The machine outputs are fed to an identical TPM
implementation and device. A synchronization score is
plotted in Fig. 10 outlining how similar are the result-
ing Eve machine’s synaptic weights are with the tar-
get machine. The plot highlights the dynamic learning
that Eve machine invokes until reaching synchroniza-
tion. Full synchronization is interpreted as the identi-
cal keys utilized by the original session of the target
device operating the TPM. Initially, the synchroniza-
tion sinks from 50% of matched weights to 30%, but
as more data is fed, the synchronization scores rapidly
increases.

6 Machine learning for TPM key transfer
classification utilizing side channels

Neural networks can aid as a tool to create secure cryp-
tosystems as seen in the form of the TPM. They can
also be applied to evaluate cryptosystems by utilizing
some of their capabilities: distinguishing information,
classifying linearly separable data, and information-based
prediction. Multiple learning models exist that can be
used to expand side-channel cryptanalysis, in particu-
lar, profiling-based attacks. In the following subsections,
a machine learning model is proposed as an alternative
to a template attack targeting a cryptosystem utilizing
TPM and parameters for evaluation of the model are
discussed.

Martinez Padilla et al. EURASIP Journal on Information Security

(2018) 2018:3

Page 12 of 16

15 L N " L

Power (W)
%
:
¥

I L " L 1)

0 100 200 300 400

Fig. 8 Threshold values. Ty, for every sample in recorded traces

Sample Number (j)

500 600 700 800 900 1000

6.1 Profiling attack via machine learning model

Execution of a profiling attack with a machine learning
model is similar to performing a template attack. Full
knowledge of the target device is needed and an additional
identical device. The identical device provides the side-
channel traces required to train the neural network (NN).
Afterwards, features are selected to reduce the dimen-
sionality of the side-channel traces and maximize the NN
model’s ability to classify patterns. Feature selection is per-
formed via a discriminant test. These range from principal
component analysis, sum of absolute differences, correla-
tion coefficient, rank, and among others. This allows for

a more narrowed classification process, less errors in the
training phase of the NN, and reduction in computational
effort.

Training algorithms are utilized to achieve optimum
classification, some of these are perceptron learning,
Levenberg-Marquardt (LM), scaled conjugate gradient,
and gradient-descent algorithms. These algorithms gener-
ally differ in computational cost and optimization speed.
Overall, LM algorithms produce faster speeds but with
higher memory usage. Perceptron learning requires lin-
early separable data to operate and suffers from being
a rather slow algorithm in practice. Gradient-descent

Correlation vs Samples in Power Trace

s"l‘MrWN’_M 1Ml
J, i J)hll ﬁ,nw\,h‘hnw
— M
&S 04 W‘f’” i r]
iy
N iy
O sl
O 04

100 200 300 400 500 600 700 800 900 1000
Samples in power trace i
a

Fig. 9 CPA in MIMPA. Correlation coefficient plots with respect to a the samples and b the learning steps

Correlation (at j = 845) vs Learning Steps Used

0.999

- 0.998

o
~

Correlation (r

0.994

0 10 20 30 40 50 60 70 80

Total number of learning steps (M)

Martinez Padilla et al. EURASIP Journal on Information Security (2018) 2018:3

100 —7
//V
9% A
r A
— 80 _/
2 /
< r
o 7
—
Q /
Q 60 ~
2 f
J
L 5 — !
> |7y {
s |
D 4 ! f
| II
.2 \ ~J
30 W
20
0 10 20 30 40 50 60 70 80
Learning Steps (/)
Fig. 10 Final synchronization score. Synchronization score
determining matching weights from session key generation

algorithms and scaled conjugate gradient offer a balanced
trade-off between computational cost and speed for train-
ing neural networks.

After a successful training session, the NN is ready to
classify the possible keys. The classification depends on
how distinct the power consumption is for each of the keys
utilized. For instance, the NN may be trained to correctly
classify the Hamming weight of the keys based on the
recorded traces. Yet, validation is needed to ensure that
the training is accurate. Cross-validation algorithms aid in
determining the progression of accuracy of the key classi-
fication model and are typically taken from the input data
set. Unknown testing data is utilized for the final model
before heading for a practical use. It is then where a trace
from the actual target device is presented to classify the
transferred key.

Some work has been done developing machine learn-
ing as prediction and classification tools in SCAs. For
instance, acoustic signals from a keyboard are used as
the side-channel source to eavesdrop on what the user is
typing in [23]. A backpropagation-based neural network
was built to receive the frequency spectrum of a key-
board press. Its output equaled to the number of keys
present in the studied keyboard. Training the algorithm
involved pressing each key individually hundreds of times
to give the neural network a baseline into what to deter-
mine. They concluded that the shape, make, and force
applied to a mechanical keyboard can reveal its con-
tent with machine learning techniques. Additionally, [24]
explores the utilization of least squares support vector
machine (LS-SVM) as their neural network model. The
method is found to be affected by the choice of regu-
larization and kernel parameters where tuning is needed
for minimization of training errors. The approach utilized

Page 13 of 16

simulated power traces of an AES SBOX lookup opera-
tion rather than a hardware implementation with physical
emissions.

6.2 Approach for classification of TPM keys upon transfer
Similar to other forms of SCAs, side-channel measure-
ments are required from a target device. The experiment
utilizes the TPM-AES hybrid and aims to intercept the
power signals emanating from the transfer of generated
keys unto the AES modules. The intermediate operation
of choice is the lookup of the session keys into the AES
KKSA. The scenario being targeted and implemented uses
a range of weights with L = 2 in the TPM that gener-
ated 16-byte keys for the AES KSA. The steps are sum-
marized below. For the experiments realized, the scaled
conjugate gradient method is selected as the training
algorithm.

e Acquire traces from identical target device:
Side-channel traces are gathered from an identical
target device to profile the power characteristics and
serve as training data. The data needs to reflect the
intended intermediate operation. Before undergoing
further analysis, SPA can be used to identify
data-dependent operations (visual inspection).

® Build a training and target dataset: Supervised
training algorithms require a training and target
dataset for the expected outcomes. The training
dataset is generated by selecting features, or samples,
that exhibit data dependency to the keys. A
discriminant test is applied in the form of the
variance seen in Eq. (15) to select the features. The
target dataset should be a predetermined set of
expected session key values. In the TPM, this range is
o = {—L, L}. The classifier aims to identify the
following properties of the targeted keys: actual
values, sign, and Hamming weight.

M
9 1

—\2
of =—= > (t;—1)

i=1

(15)

® Build a neural network classifier: The approach
implemented utilizes the MATLAB Neural Network
Toolbox™. The training and target data sets are
applied to generate a neural network classifier. The
training algorithm is selected, and error metrics are
evaluated to study the efficiency of classification of
keys.

e Acquire traces from actual target device: At least one
side-channel trace must exist from an actual TPM
session key operation of the target device. This trace
must be measured and stored for use in the generated
neural network. Pruning the target traces is

Martinez Padilla et al. EURASIP Journal on Information Security (2018) 2018:3

sometimes required to align the traces with the
training data.

e Input session key traces to neural network: The
session key traces are used as inputs to the trained
network. Its outputs determine the classification of
the keys. Comparison of the target results and actual
results are used to evaluate how accurate the
classification is performed.

6.3 Classification results and analysis

The traces acquired are of the form shown in Fig. 11.
They indicate a clear distinction in power consumption
between samples 170 < j < 220. It shows that the key
transfer exhibits dependency between the data handled
and the power consumed. At j = 181, the maximum
variance is seen, which is used as a characteristic fea-
ture selected for use in training data generation. The
targeted properties exhibit differing performance ratios
after training.

Applying the neural network to classify TPM session
keys yields the results in Table 2. A total of 1000 neural
networks are created and trained with the side-channel
traces acquired from the microcontroller. The attempted

Page 14 of 16

recovery of the exact key being transferred yielded an
average of 54% true positive rates (TPR). The classifica-
tion of Hamming weights in the keys exhibited a higher
average TPR of 69%. Finally, a 100% TPR is seen for iden-
tification of signed values in the keys. For key transfers
that exhibit signed values, the key space can be lessened
to identify the session key in use. The machine learning
tool can essentially reduce a brute force attack on the key
transfers by half if it feeds it the correct sign classification.
For the exact key and Hamming weights to be retrieved,
other learning methods may need to be employed. The
TPR rate is not sufficiently high enough to accurately clas-
sify its values. An interesting thing to note is that for all
properties, key = — L = — 2yields a TPR of 84%.
It indicates that there is enough separation to distinguish
the number from key = — 1 on the traces. This also
means that for non-negative keys, the power measure-
ments are highly correlated. It is observed in the 98% TPR
of non-negative HW classifications.

7 Conclusions
A security evaluation is applied to a TPM-AES hybrid
cryptosystem utilizing side-channel cryptanalytics. Two

Power and Variance after pruning

T
02
0.1
2 of
£
<
= 01
o
2
O o2
o
P X: 181
Y:-0.2432
04 I I 1 1]
0 50 100 150 200 250
-3
<10
5 T T T T
4 » .
X: 181
“ Y:0.004112
@ 3r
o}
c
o
-2
©
>
1}

150 200 250

Samples, i

Fig. 11 Power dissipation in key transfer. The power dissipation varies with respect to the key being transferred to the AES KSA

Martinez Padilla et al. EURASIP Journal on Information Security (2018) 2018:3

Table 2 Average TPR of session key classification

Key values Average TPR (%)

{—L1L} Exactkey Sign Hamming weight
-2 84 100 85

-1 10 100 05

0 01 100 01

1 41 100 98

2 41 100 98

Avg. session key prediction (%) 54 100 69

methods are applied for the evaluation: virtual and phys-
ical. In the virtual method, it is found that the TPM-AES
systems need extra layers of protection to implement due
to their susceptibility to traditional MIM attacks. This
means that countermeasures must be included for via-
bility of a practical implementation. These can be of the
form of digital signature schemes to identify the actual
sender and receiver of a machine’s outputs. Additionally,
the findings indicate that synchronization errors increase
when the TPM is directly intercepted. The errors can be
used as a form of warning of an attempt to compromise
the TPM. It is also found that execution time is higher
with growing amount of input nodes and hidden nodes.
The limits in a practical implementation arise in the size
of the TPM for usage with the cryptographic protocols as
well as in total speed of an encryption operation. A higher
number of weights correlate to better resistance against
a brute force attack, yet the trade-off lies in poor overall
performance.

In the physical method, a new attack algorithm is
described to evaluate cryptosystems utilizing TPM. The
MIMPA is constructed as an alternative SCA where the
results show that in optimal conditions, the TPM is vul-
nerable to have its keys compromised. The results indicate
that a potential attacker can recreate session keys offline
by creating a hypothetical power model with respect to
the mapped machine outputs. The MIMPA possesses
countermeasures that can be accounted for. First, faster
synchronization of session keys can thwart the attack due
to its accuracy depending on the number of traces gath-
ered. Since CPA is utilized as part of the algorithm, it
shares its vulnerability of random pre-charge masking and
noisy traces.

Another physical method is utilized to evaluate the
security of the TPM via a machine learning approach. A
supervised training algorithm is used to develop a neural
network to classify session keys. The algorithm allows the
network to be trained with respect to captured traces from
a target cryptographic device. The classifier is created by
using a clone device to create the training and target data
sets. Several neural networks are created to classify sev-
eral properties of keys. The classification results indicate

Page 15 0f 16

that the exact key and Hamming weight TPR need a data
set with more features for more accurate representations.
Yet the data set had enough features to properly distin-
guish the signed value of a session key transferred. Thus,
running a signed value classifier can reduce the key space
necessary to determine the actual session key.

The MIMPA may be further improved to be applied in
a real-time scenario where power traces can be scanned
and keys immediately identified during a communication
session. More tests can be implemented to determine its
effectiveness while running a TPM-based cryptosystem
that utilizes private input node generation. Countermea-
sures to general SCAs can also be implemented to test
their resilience to MIMPA. Another possible expansion
relies on the creation of an ASIC that performs MIMPA to
evaluate any TPM implementation.

The machine learning method has room for improve-
ment and exploration as well. Extracting a higher num-
ber of features from the measured traces can aid in the
classification of the various properties in a key. Other
intermediate operations can be selected such that the
key dependency is magnified and distinct when creating
the training data. Another room for investigation lies in
examining the types of operations that emit side channels
with distinctions based on the key utilized. Increasing the
dimensionality of the features can also aid a training set
by utilizing other properties of a trace, e.g., using power
measurements along with frequency measurements.

Abbreviations

AES: Advanced Encryption Standard; CPA: Correlation Power Analysis;

CSV: Comma-separated value; DPA: Differential power analysis; HW: Hamming
weight; HD: Hamming distance; IDE: Integrated development environment;
KSA: Key scheduling algorithm; NN: Neural network; MIMPA: Man-in-the-
middle power analysis; POI: Point of interest; PRNG: Pseudo-random number
generator; RSA: Rivest-Shamir-Adleman; SCA: Side-channel attack; TA:
Template attack; TPM: Tree Parity Re-Keying Machine; TPR: True positive results

Acknowledgements
I would like to thank the ECE Department at Florida State University for giving
me the opportunity to research this topic.

Funding
Funding is provided in parts by the National GEM Consortium and sponsor
GTRI.

Availability of data and materials
The datasets supporting the conclusions of this article are available in the
Github repository [25].

Authors’ contributions

JMP developed, performed, and implemented all the main portions of the
theory and experiments. UMB and SF helped craft ideas and approve the final
manuscript to be submitted.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Martinez Padilla et al. EURASIP Journal on Information Security (2018) 2018:3

Received: 13 December 2017 Accepted: 20 March 2018 24,

Published online: 13 April 2018

References

1.

2.

20.

21.

22.

23.

PW Shor, Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM Rev. 41(2), 303-332 (1999)

| Kanter, W Kinzel, E Kanter, Secure exchange of information by
synchronization of neural networks. EPL Europhys. Lett. 57(1), 141 (2002)
G Botella, U Meyer-Baese, A Garcia, M Rodriguez, Quantization analysis
and enhancement of a VLSI gradient-based motion estimation
architecture. Digit. Signal Proc. 22(6), 1174-1187 (2012)

G Botella, A Garcfa, M Rodriguez-Alvarez, E Ros, U Meyer-Baese, MC
Molina, Robust bioinspired architecture for optical-flow computation.
IEEE Trans. Very Large Scale Integr.(VLSI) Syst. 18(4), 616-629 (2010)

U Meyer-Baese, G Botella, DE Romero, M Kumm, in Independent
Component Analyses, Compressive Sampling, Wavelets, Neural Net,
Biosystems, and Nanoengineering X. Optimization of high speed pipelining
in FPGA-based FIR filter design using genetic algorithm, vol. 8401 (SPIE,
Maryland, 2012), p. 84010R

PC Kocher, in Annual International Cryptology Conference. Timing attacks
on implementations of Diffie-Hellman, RSA, DSS, and other systems
(Springer, Berlin, 1996), pp. 104-113

J-J Quisquater, D Samyde, in Proceedings of the International Conference on
Research in Smart Cards: Smart Card Programming and Security. E-SMART
'01. Electromagnetic analysis (EMA): measures and counter-measures for
smart cards (Springer, London, 2001), pp. 200-210

A Matthews, Low cost attacks on smart cards: the electromagnetic
sidechannel. Next Generation Security Software, 1-15 (2006). Manchester
J Friedman, Tempest: a signal problem. NSA Cryptologic Spectr.

35,76 (1972)

E Brier, M Joye, in International Workshop on Public Key Cryptography.
Weierstral3 elliptic curves and side-channel attacks (Springer, Berlin, 2002),
pp. 335-345

K Okeya, K Sakurai, ed. by L Batten, J Seberry. On insecurity of the side
channel attack countermeasure using addition-subtraction chains under
distinguishability between addition and doubling (Springer, Berlin,
Heidelberg, 2002), pp. 420-435

P Kocher, J Jaffe, B Jun, Differential power analysis. (M Wiener, ed.)
(Springer, Berlin, Heidelberg, 1999), pp. 388-397

E Brier, C Clavier, F Olivier, Correlation power analysis with a leakage model.
(M Joye, J-J Quisquater, eds.) (Springer, Berlin, Heidelberg, 2004), pp. 16-29
S Chari, JR Rao, P Rohatgi, in International Workshop on Cryptographic
Hardware and Embedded Systems. Template attacks (Springer, Berlin,
2002), pp. 13-28

CG Glnther, An identity-based key-exchange protocol. (J-J Quisquater,
JVandewalle, eds.) (Springer, Berlin, Heidelberg, 1990), pp. 29-37

C Paar, J Pelzl, Understanding cryptography: a textbook for students and
practitioners. Tst edn. (Springer, New York, 2009)

NIST, in Proc. FIPS PUB. Federal information processing standards
publication 197: Advanced Encryption Standard (National Insitute of
Standards and Technology, United States, 2001), pp. 46-53

NIST, Cnss policy no. 15, fact sheet no. 1: National policy on the use of the
advanced encryption standard (AES) to protect national security systems
and national security information. Technical report, National Insitute of
Standards and Technology, United States (2003)

J Daemen, V Rijmen, The design of Rijndael: AES-the advanced encryption
standard. (Springer, Secaucus, 2013)

M Volkmer, Entity authentication and authenticated key exchange with
tree parity machines. IACR Cryptol. ePrint Arch. 2006, 112 (2006)

R Mislovaty, Y Perchenok, | Kanter, W Kinzel, Secure key-exchange
protocol with an absence of injective functions. Phys. Rev. E. 66(6),
0661021-0661025 (2002). APS

Inc TekVISA, TekVISA Version 1.1 Programmer Manual, 1.1 edn. (TekVISA,
Beaverton

L Zhuang, F Zhou, JD Tygar, in Proceedings of the 12th ACM Conference on
Computer and Communications Security. CCS ‘05. Keyboard acoustic
emanations revisited ACM, New York, 2005), pp. 373-382

Page 16 of 16

G Hospodar, B Gierlichs, E De Mulder, | Verbauwhede, J Vandewalle,
Machine learning in side-channel analysis: a first study. J Cryptographic
Eng. 1(4), 293 (2011)

. J Martinez Padilla, NN Side channel classifier dataset. (GitHub, 2017).

https://github.com/dbossnirvana/NN_SideChannelClassifier. Accessed 10
Dec 2017

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

https://github.com/dbossnirvana/NN_SideChannelClassifier

	Abstract
	Keywords

	Introduction
	Background and related work
	Tree Parity Re-Keying Machine
	Side-channel cryptanalysis
	TPM-AES hybrid cryptosystem
	Advanced Encryption Standard
	Incorporation of TPM with AES

	Experimental setup and methodology
	Virtual model security setup
	Testbed for SCA experiments

	Security and performance evaluation of TPM-AES hybrid cryptosystem
	Man-in-the-middle power analysis
	MIMPA attack algorithm
	MIMPA results and analysis

	Machine learning for TPM key transfer classification utilizing side channels
	Profiling attack via machine learning model
	Approach for classification of TPM keys upon transfer
	Classification results and analysis

	Conclusions
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Competing interests
	Publisher's Note
	References

