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Abstract 

Cellular-connected unmanned aerial vehicles (UAVs), which have the potential 
to extend cellular services from the ground into the airspace, represent a promising 
technological advancement. However, the presence of communication coverage 
black holes among base stations and various obstacles within the aerial domain pose 
significant challenges to ensuring the safe operation of UAVs. This paper introduces 
a novel trajectory planning scheme, namely the double-map assisted UAV approach, 
which leverages deep reinforcement learning to address these challenges. The mission 
execution time, wireless connectivity, and obstacle avoidance are comprehensively 
modeled and analyzed in this approach, leading to the derivation of a novel joint opti-
mization function. By utilizing an advanced technique known as dueling double deep 
Q network (D3QN), the objective function is optimized, while employing a mechanism 
of prioritized experience replay strengthens the training of effective samples. Further-
more, the connectivity and obstacle information collected by the UAV during flight 
are utilized to generate a map of radio and environmental data for simulating the fly-
ing process, thereby significantly reducing operational costs. The numerical results 
demonstrate that the proposed method effectively circumvents obstacles and areas 
with weak connections during flight, while also considering mission completion time.

Keywords:  Cellular-connected UAV, Trajectory planning, Radio map, DRL, Environment 
characteristic

1  Introduction
With its low cost, clear line-of-sight (LoS), and deployment flexibility, UAV communica-
tion technology has gradually become an integral component of future sixth generation 
(6G) networks [1]. However, in order to practically realize the application of UAVs in 6G 
networks, several critical challenges need to be addressed, including high-capacity, low-
latency, and reliable links. Nevertheless, most existing civilian UAV links primarily rely 
on a simplistic point-to-point (P2P) communication pattern and utilize commonly used 
frequency bands such as ISM 2.4 GHz [2]. Furthermore, it is important to acknowledge 
certain limitations such as regional constraints, lower transmission rates, inadequate 
information confidentiality, and increased communication interference. To address 
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these challenges and meet the escalating data demands of future 6G systems, there is an 
urgent need for establishing ultra-reliable, high-rate, and secure wireless communication 
between ground cellular networks and UAVs. In this regard, cellular-connected UAVs 
have emerged as a promising technology that can fulfill diverse requirements. UAVs 
can serve as relays [3, 4] or base stations (BSs) [5] to facilitate wireless communications 
without direct connectivity. In comparison with conventional air-to-ground (A2G) com-
munication, cellular-connected UAVs offer numerous advantages. Firstly, leveraging the 
global cellular infrastructure enables cost-effective communication links and facilitates 
extensive UAV operations. Secondly, compared to simple peer-to-peer wireless com-
munication, cellular-connected UAVs provide reduced latency and enhanced data trans-
mission rates, thereby promising substantial performance enhancements. Specifically, 
cellular-connected UAVs have the potential to expand the conventional two-dimensional 
(2D) cellular network into a future three-dimensional (3D) architecture, which would 
greatly benefit both UAV and cellular industries. However, despite the promising appli-
cation prospects of cellular-connected UAV communication, there are still several chal-
lenges that need to be addressed. The existing conventional cellular network is primarily 
designed for ground users (GUs) [6], resulting in ground base station (GBS) antennas 
being tilted downwards towards the ground. This configuration limits their ability to 
provide optimal coverage for air connections. Furthermore, cellular-connected UAVs are 
susceptible to significant co-channel interference from other unconnected GBS.

To tackle these issues, various strategies have been proposed in the literature. Some 
studies aim to enhance A2G communication conditions for improved coverage rate 
and spectral efficiency. In order to maximize the coverage of GUs, researchers in 
[2] suggested employing a generalized Poisson multinomial distribution to simu-
late interference information. In [7], the authors proposed a two-stage strategy utiliz-
ing Deep Reinforcement Learning (DRL) to optimize the placement of aerial BSs. The 
GBS antenna inclination was utilized as an optimization objective in [8] to maximize 
transmission quality and minimize switching time, thereby enhancing the overall per-
formance of the system. In [9], the authors optimized the positioning, user clustering, 
and frequency band allocation of UAVs to enhance the coverage rate and minimize the 
required number of UAVs. The authors in [10] proposed a cooperative interference elim-
ination strategy based on the information regarding backhaul links between GBSs in 
cellular networks to effectively mitigate interference caused by non-associated BSs. The 
authors propose an alternative scheme in [11] and [12], which utilizes the non-orthog-
onal multiple access technique to achieve successive interference cancellations at each 
GBS.

In addition to the aforementioned studies, there has been further research conducted 
on UAV trajectory control in order to mitigate potential issues arising from weak con-
nectivity between UAVs and GBSs. In [13], the signal-to-interference-plus-noise ratio 
(SINR) map was constructed, and by employing graph theory, the UAV trajectory was 
optimized under the constraint of SINR. In [14], the authors employed graph theory 
to elucidate the correlation between connection interrupt rate and path length, while 
addressing the connectivity issue by investigating the shortest path with enhanced GBS 
coverage capabilities in undirected weighted graphs. In [15], the cellular-connected 
UAVs were subjected to both convex optimization and graph theory techniques, aiming 
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to minimize the mission execution time while ensuring connectivity with at least one 
GBS. Additionally, prior studies [16] and [17] have also addressed similar issues. In [18], 
the authors consider the anti-collision and communication interference constraints 
between UAVs, and maximizes system throughput by jointly optimizing vehicle com-
munication scheduling, UAVs power distribution, and UAVs trajectory. However, con-
ventional trajectory design approaches tend to oversimplify channel models for diverse 
environments, rendering them unsuitable for practical applications. For instance, pre-
vious studies [15] and [17] simplified the environmental models by making certain 
assumptions, such as considering free-space path loss and assuming isotropic radiation 
for antennas. Studies [19–21] have considered statistical channel models incorporat-
ing probabilistic LoS and angle-dependent parameters. However, these simplified and 
constrained models fail to accurately capture real-world channel conditions, rendering 
them unsuitable for practical environments. Moreover, trajectory optimization poses a 
challenging non-convex problem with exponentially increasing complexity as the num-
ber of optimization variables grows, rendering it difficult to solve. Fortunately, the rapid 
advancements in machine learning (ML) have led to investigations into trajectory design 
methods based on DRL aiming to tackle these aforementioned challenges [22–27]. Such 
approaches acquire navigation strategies by actively interacting with the environment 
and collecting empirical data.

The advantages of DRL have led to its widespread utilization across various scenarios. 
For instance, a framework called simultaneous navigation and radio mapping (SNARM) 
was proposed [22], which employs the Dueling Double Deep Q network (D3QN) to con-
struct a radio map solely based on raw signal measurements. This approach enables accu-
rate prediction of outage probabilities at all significant locations. In [27], the creation of 
a 3D radio map was described, and the utilization of the multi-step D3QN technique 
was employed for UAV trajectory design. Although these frameworks are applicable to 
diverse environments, they do not account for additional factors present in complex set-
tings. For instance, urban areas often pose challenges such as tall buildings, no-fly zones, 
and flying objects that need to be considered alongside reliable connectivity. Therefore, 
apart from ensuring dependable communication links, it is crucial to address effective 
obstacle avoidance. To enable the effective application of cellular-connected UAVs in 
complex urban environments, it is imperative to ensure both reliable wireless connec-
tivity and obstacle avoidance. However, there is a limited number of studies addressing 
this crucial aspect at present. In [28], several trajectory planning methods have been 
proposed solely for obstacle avoidance purposes. In [29], a novel scheme incorporating 
environment sensing and channel mapping was presented to enhance trajectory plan-
ning in unknown 3D airspace with obstacles. Nevertheless, the seamless integration of 
reliable connectivity and obstacle avoidance in [29] was conducted independently.

To address the aforementioned gap and facilitate joint optimization of reliable wireless 
connectivity in unknown 3D airspace with obstacles, we propose a novel path optimiza-
tion method based on environmental awareness within the cellular context. The main 
contributions and innovations are summarized as follows:

•	 ·The proposed approach presents a joint optimization strategy for UAV path, inte-
grating obstacle avoidance and communication connectivity. Moreover, we formulate 
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the optimization problem by introducing a potential function that considers factors 
such as flying time, communication interruptions, and distance variations between 
UAVs and obstacles.

•	 ·We propose a framework for path planning of UAVs called the Double-Map-
Assisted UAV (DMAU) framework. This framework utilizes connectivity and obsta-
cle distance information collected by the UAV during its flight to train a map of radio 
and environmental data. The mapping network generates data that is used to simu-
late UAV flight training, enabling a combination of simulated and actual flying which 
accelerates training speed and reduces UAV flight costs.

•	 ·The proposed framework introduces a learning approach for joint path optimization 
using an enhanced D3QN. Specifically, by incorporating the prioritized experience 
replay (PER) mechanism based on the sum tree in the network, diversity sampling 
replaces traditional uniform sampling to enhance learning efficiency and reduce 
computational complexity in path optimization.

The remainder of this paper is organized as follows. Section 2 introduces the system 
model. In Sect. 3, the problem formulation and the proposed algorithm are presented. 
Section  4 gives the analyzed and simulated results. Finally, conclusions are drawn in 
Sect. 5.

2 � System model
2.1 � Scenario model

As depicted in Fig. 1, we consider a scenario model wherein a single UAV functions as an 
aerial user, establishing communication with a cellular network in a densely populated 
urban area. The UAV is assigned special missions and is expected to reach the desig-
nated destination from its initial location within the shortest possible time while ensur-
ing uninterrupted communication connectivity and avoiding collisions..

LoS

NLoS

UAV

BS1

BS2

BS3

Supertall building

prohibited area

Flight path
Obstacle

Fig. 1  Path planning for cellular-connected UAV in urban scene
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To accurately establish the scenario model of cellular-connected UAVs, we consider a 
flying area of size D × D km2 encompassing high-rise buildings. The heights and posi-
tions of these buildings are generated based on the statistical model proposed by the 
International Telecommunication Union (ITU). Additionally, an overview map depicting 
the distribution of these buildings is illustrated in Fig. 2.

The constant altitude of the UAV during flight is represented as h . The mission 
execution time is denoted as T, and the position of the UAV at time t is defined as 
g(t) = (xt , yt) , where t ∈ [0,T ],xt ∈ [0,D] , yt ∈ [0,D] , and variables xt and yt denote the 
X-coordinate and Y-coordinate of the UAV, respectively.

The definition of motion space significantly impacts the efficacy of UAV path planning. 
In principle, the motion space of a UAV can be represented in any direction. However, 
excessive movement of a UAV will considerably augment the training time required for 
learning model DQN, whereas limited movement of the UAV will result in zigzag motion. 
As depicted in Fig.  3, we partition the 360° angle into nact equal segments, denoted as 
ϕ = 360◦/nact , representing the precision of UAV heading accuracy ϕ . The spatial range of 

Fig. 2  The spatial distribution and vertical dimensions of the buildings

Fig. 3  Action space
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UAV movement varies with adjustments made to the heading precision, thereby granting 
greater flexibility for flight path planning.

2.2 � Antenna model

The BS is modeled in this section to represent the antenna radiation. It is assumed that 
there are 7 GBSs within the designated airspace [30]. These GBSs, equipped with a uniform 
linear array (ULA) consisting of n elements, are divided into M cells and have a fixed height 
of hbs meters. Let θ and φ denote the UAV’s elevation and azimuth angles relative to the 
base station, respectively. The gain of each pair of angles for the antenna element can be 
expressed as

where GE,max represents the maximum directional gain of each antenna element in the 
direction of the main lobe, while Am denotes the front-back ratio. The vertical and hori-
zontal radiation patterns are denoted by AE,V (θ) and AE,H (φ) respectively, which can be 
defined as

where θ3dB and φ3dB denote the half-power beam widths in the vertical and horizontal 
dimensions,, while SLAV  represents the limit of side lobe level.

In the case, the array factor can be obtained by

where n represent the antenna elements, ρ denotes the correlation coefficient, a repre-
sents the amplitude vector, and w signifies the beamforming vector. The latter is defined 
as

and

where mV  and mH denoted the array elements of the antenna in the vertical and hori-
zontal directions, respectively, mVmH = n , while the pair of angle (θs,φs) defines as the 
direction of main lobe.

Combining with (1) and (4), the radiation pattern can be written as

(1)AE(θ ,φ) = GE,max −min −[AE,V (θ)+ AE,H (φ)],Am

(2)AE,V (θ) = −min

{
12

(
θ − 90◦

θ3dB

)2

, SLAV

}

(3)AE,H (φ) = −min

{
12

(
φ

φ3dB

)2

,Am

}

(4)AF(θ ,φ, n) = 10 log10

[
1+ ρ(

∣∣∣a · wT
∣∣∣
2
− 1)

]

(5)w =
[
ω1,1,ω1,2, . . . ,ωmV ,mH

]

(6)ωp,r = eπ((p−1)(cos θ−cos θs)+(r−1)(sin θ sin φ−sin θs sin φs))

(7)AA(θ ,φ) = AE(θ ,φ)+ AF(θ ,φ, n).



Page 7 of 26Zhong et al. EURASIP Journal on Advances in Signal Processing         (2024) 2024:35 	

The current elevation and azimuth information can be obtained when the coordinates 
g(t) of the UAV are provided. Consequently, the antenna gain received at position q(t) can 
be defined as

2.3 � Signal model

In this section, we establish the received signal model and introduce the concept of 
expected outage probability. The instantaneous signal power received by UAV from cell m 
at location g(t) is defined as

where Pm represents the transmitting power of cell m , and hm(t) is the channel gain at 
time t , which can be written as

where β(s(t)) given by (8) represents the gain of the GBS antenna at location g(t) , h̃m(t) 

is a random variable with E
[∣∣∣h̃m(t)

∣∣∣
2
]
=1 , representing the small-scale fading [31]. 

hm(g(t)) is the large-scale channel gain, and can be expressed as

Based on the urban Macro (UMa) in 3GPP specification [32], hLoSm (g(t)) and hNLoSm (g(t)) 
can be defined as

where fc denotes the carrier frequency, h represents the flying altitude of the UAV, which 
is assumed to be a constant,dm(g(t)) is the distance between UAV and cell m at location 
g(t) , which is given by

where �·� is the Euclidean norm, and gm is the location of the GBS corresponding to the 
cell m.

Based on (9), the signal-to-interference ratio (SIR)[33] between the UAV and the associ-
ated GBS at time t can be defined as

(8)β(s(t)) = 10
AA(θ ,φ)

10 .

(9)ym(t) = Pm
∣∣hm(t)

∣∣2,m = 1, . . . ,M

(10)
∣∣hm(t)

∣∣2 = β(g(t))hm(g(t))h̃m(t)

(11)hm(g(t)) =

{
hLoSm (g(t)), if LoS link

hNLoSm (g(t)), if NLoS link
.

(12)hLoSm (g(t)) = 28+ 22 log10(dm(g(t)))+ 20 log10(fc)

(13)hNLoSm (g(t)) = −17.5+
(
46− 7 log10(h)

)
log10

(
dm(g(t))

)
+ 20 log10

(
40π fc

3

)

(14)dm(g(t)) =

√
(h− hbs)2 +

∥∥g(t)− gm
∥∥2

(15)SIR(t) =
yb(t)(t)∑

m�=b(t) ym(t)
,b(t) ∈ {1, · · · ,M}
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where b(t) is the associated cell of UAV, yb(t)(t) denotes the instantaneous signal power 
received from the associated cell m , ym(t) mainly depends on the location of UAV, the 
current associated cell and small-scale fading. In the case, SIR(t) can be rewritten as 
SIR(g(t), b(t), h̃b(t)) . We use the outage probability to evaluate the communication con-
nectivity between UAV and GBS. When the SIR is lower than the set threshold ρth , the 
UAV is considered to be in an outage state. In this condition, the outage probability can 
be defined as

where Pr {·} represents the probability of event happening.

2.4 � Obstacle avoidance model

In addition to ensuring connectivity probability, effective obstacle avoidance plays a cru-
cial role in UAV cellular operations. In an unfamiliar environment, UAVs are unable to 
anticipate environmental information beforehand. When an obstacle emerges within the 
observation range of the airborne sensor, the UAV can promptly execute appropriate 
maneuvers to evade it.

When employing intelligent optimization algorithms like DQN for obstacle avoid-
ance, it is typically imperative to establish rewards for UAVs. The conventional approach 
to obstacle avoidance reward usually entails assigning a fixed negative value as a con-
sequence of the next action when the UAV approaches an obstacle; conversely, a fixed 
positive value is assigned otherwise. However, this definition fails to quantify the impact 
of the action on the UAV. The obstacle avoidance rewards under different circumstances, 
as depicted in Fig. 4, are quantified based on the UAV’s distance from the obstacle. This 
categorization encompasses four distinct scenarios:

(1)	 The UAV did not detect any obstacles at time t and t + 1 . In this scenario, the lack 
of environmental prediction information prevents the UAV from determining 
whether it will encounter an obstacle in the next moment, despite its actions in the 
current state. Since this is unrelated to the UAV’s actions, a reward of 0 is assigned 
for encountering an obstacle.

(16)Pout(s(t), b(t)) � Pr
{
SIR(s(t), b(t), h̃b(t)) < ρth

}
.

Fig. 4  The relative motion of a UAV with respect to an obstacle
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(2)	 At time t , the UAV does not detect any obstacles; however, at time t + 1 , an obsta-
cle is detected by the UAV. This observation suggests that the current action per-
formed by the UAV is in close proximity to the obstacle, and introducing obstacles 
yields a negative reward for the UAV.

(3)	 The UAV detected an obstacle at time t , while no obstacle was found at time t + 1 . 
This observation suggests that the current action executed by the UAV is to avoid 
the obstacle, and the presence of the obstacle is considered a positive reinforcement 
for the UAV.

(4)	 The UAV detected the obstacle at both time t and t + 1 , which presents a relatively 
intricate scenario necessitating a quantitative formulation of the reward function 
for the UAV in relation to the obstacle. The potential function reward associated 
with an obstacle encountered by the UAV can be defined as

where dto represents the minimum distance between the UAV and any obstacle 
at time t , dos is the radius of said obstacle and dobs is a constant representing the 
observation range of the sensor utilized in the airborne sensing system of said UAV. 
The radius of the obstacle is set to robs . In case the denominator is zero, when the 
value of dt+1 − dt is in the range of [− 1,0), set dt+1 − dt = −1 ; when the value of 
dt+1 − dt is in the range of [0, 1], set dt+1 − dt = 1.

3 � Preliminary knowledge and DRL based path planning
The present paper proposes a novel approach for UAV trajectory design, taking into 
account the duration of communication outages, mission completion time, and obstacle 
avoidance. Figure 5 illustrates the flowchart of the proposed method, which comprises 
three main parts: modeling optimization objectives, constructing joint optimization 
objectives, and optimizing trajectories. Firstly, we model three optimization objec-
tives including communication outage duration, mission completion time, and obstacle 
avoidance probability. Subsequently, a radio map is constructed by utilizing SIR meas-
urement values and an obstacle avoidance strategy is developed based on obstacle infor-
mation. To achieve joint optimization, we combine the radio map, obstacle avoidance 
strategy, and mission completion time. Finally, DRL is employed to design trajectories 
that align with the joint optimization objective.

3.1 � Radio map and environmental information map

The Radio map is a tool that facilitates the visualization of communication quality’s 
spatial distribution. In this subsection, we generate a radio map by utilizing the outage 
probability of the UAV at all locations within the designated area to provide connectiv-
ity information during simulated flight. The outage probability is accurately obtained by 
defining the outage indicator function as

(17)r(t) =





0, dto > dobs, d
t+1
o > dobs

−1, dto > dobs, d
t+1
o ≤ dobs

1, dto ≤ dobs, d
t+1
o > dobs

dt+1 − dt��dt+1 − dt
��e

1

|dt+1−dt | ,dto ≤ dobs, d
t+1
o ≤ dobs

,
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The assumption is made that the UAV continuously measures the SIR of each cell M 
times within a short time period. Let J =

∑K
j=1 F(g(t), b(t), h̃b(t)) , and the outage prob-

ability at time t can be obtained by

Based on the measured outage probability, the best associated GBS at the location g(t) 
can be determined as

where arg min · represents the value of the variable that minimizes the objective 
function.

The outage probability of the position g(t) can be expressed as

(18)F(g(t), b(t), h̃b(t)) =

{
1, SIR(g(t), b(t), h̃b(t)) < ρth
0, otherwise

(19)Pout(g(t), b(t)) =
J

K .

(20)b(t)∗ = arg min
b(t)∈M

Pout(g(t), b(t))

(21)Pout(g(t)) = min
b(t)∈M

Pout(g(t), b(t)).

Fig. 5  Flowchart for UAV path planning
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In order to construct the map of communication connectivity probability (CCP) in the 
UAV flying area, the CCP of the location g(t) can be defined as

Based on the aforementioned theory, we can derive the connectivity probability of 
each position from signal measurements and subsequently construct a radio map based 
on this probability. Similarly, upon detecting an obstacle, the UAV can record both its 
current position and distance information to generate an environmental information 
map. Especially when no obstacles are detected by the UAV, the distance value of the 
current position can be set to a constant dobs + a that exceeds the sensor detection 
range, where a is positive.

3.2 � Reformulate a collaborative optimization objective

Based on the above discussion, the following three optimization objectives are consid-
ered in this paper.

(1)	 Minimizing the UAV’s flight duration from the initial point to the destination.
(2)	 Minimizing the expected outage time between the UAV and the GBS.
(3)	 Refraining from colliding with obstacles within the designated airspace.

For the above three objectives, the joint optimization problem can be formulated as

where µ and η are non-negative coefficients that respectively represent the weight coef-
ficients of connectivity and obstacle avoidance, respectively. The greater the value of µ , 
the higher the emphasis placed on wireless connectivity; similarly, the larger the value of 
η , the greater attention is given to obstacle avoidance performance. The duration of out-
age is expected to increase as the mission completion time T  improves, while maintain-
ing a constant outage probability Pout(g(t)) . However, as the mission completion times 
increase, the UAV becomes more adaptable in adjusting its path to avoid areas with 
weak coverage and reduce expected outage time. Similarly, during obstacle avoidance, 
the flight path of a UAV tends to become more convoluted, resulting in longer mission 
completion times. Therefore, there is generally a tradeoff between minimizing mission 
completion time, expected outage duration, and effective obstacle avoidance. When 
constructing a joint optimization objective function, it is necessary to assign appropriate 
weight coefficients to balance their interrelationships.

Given the intricacy of continuous optimization, it is necessary to discretize the flying 
area and flying actions into a discrete trajectory planning problem on grid points. To 
achieve this objective, we consider T = N�t and observe that the distance between the 
UAV and any BS remains approximately constant within �t , while both the large-scale 

(22)Pcover(g(t)) = 1− Pout(g(t)).

(23)

min
T ,g(t)

T + µ

∫ T

0
Pout(g(t))dt − η

∫ T

0
r(t)dt

s.t. g(0) = gs, s(T ) = gf

0 ≤ xt ≤ D, ∀t ∈ [0,T ]

0 ≤ yt ≤ D, ∀t ∈ [0,T ]

µ > 0, η> 0
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channel gain and the BS antenna gain remain nearly invariant. In the case, (28) can be 
equivalently written as

Clearly, the aforementioned problem is non-convex and poses significant challenges in 
terms of solvability, with its complexity escalating substantially as the number of param-
eters to be optimized increases. Fortunately, the trajectory planning issue can be for-
mulated as a Markov decision process (MDP), and In addition to ensuring connectivity 
probability, effective obstacle avoidance plays a crucial role in UAV cellular operations. 
In an unfamiliar environment, UAVs are unable to anticipate environmental information 
beforehand. When an obstacle emerges within the observation range of the airborne 
sensor, the UAV can promptly execute appropriate maneuvers to evade it. algorithms 
exhibit immense potential in tackling such intricate problems [34]. Consequently, we 
employ DRL to explore an optimal flight path based on experiential learning through 
trial and error within a specific environment.

3.3 � Basic of DRL

In this subsection, we first present a concise overview of DRL [35], and then introduce 
our proposed algorithm as detailed in the subsequent section.

The DRL model, depicted in Fig.  6, comprises a combination of RL and DNN. RL, 
which aims to maximize the cumulative reward through agent-environment interac-
tions, is an effective machine learning technique that adapts well to Markov decision 
processes (MDP).

In the RL model, there are two pivotal components—the agent and the environ-
ment. As the driving force behind the RL algorithm, the agent perpetually engages in 
a cycle of learning and exploration within its surroundings. Based on the current state 
sn provided by the environment, the agent strategically selects an action an . The agent 

(24)

min
N ,g(n)

N + µ

N∑

n=1

Pout(g(n))− η

N∑

n=1

r(n)

s.t. g(1) = gs, s(N ) = gf

0 ≤ xt ≤ D, ∀n ∈ [1,N ]

0 ≤ yt ≤ D, ∀t ∈ [1,N ]

µ > 0, η> 0.

Fig. 6  DRL model
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state sn transitions to sn+1 simultaneously, accompanied by the feedback of reward 
rn+1 . By iteratively repeating the aforementioned process, the agent can efficiently 
attain the optimal strategy and successfully accomplish the learning task within a spe-
cific environment. The objective of the agent is to optimize the overall cumulative 
reward Gn , which can be defined as

where 0 ≤ γ ≤ 1 is a discount factor, signifying the present-time discounting of future 
rewards. A higher value of γ emphasizes the significance of long-term returns, while a 
smaller value of γ highlights the importance of short-term gains.

However, due to the unknown quantity of Gn at time n persisting throughout the 
episode (where an episode refers to the complete process of the UAV from start to 
finish, crash, outbound or reaching maximum steps), obtaining an accurate value 
for Gn becomes unattainable. In this case, we address the problem by employing an 
expectation-based approach to derive the action-value function Qπ , which is equal to

where π(an|sn) = P[a = an|s = sn] is the policy function that represents the probability 
of selecting and executing action an in state sn . The action-value function Qπ represents 
the expected return that can be derived by following strategy π(an|sn) . Suppose there is 
an optimal strategy π∗ with higher return than other strategies and can be expressed as 
π∗ = arg maxQπ (sn, an)

π

 , which makes Q∗(sn, an) = max
π

Qπ (sn, an) . Q∗(sn, an) repre-

sents the optimal function of action-value, and satisfies

However, the Eq. (27) is nonlinear in nature and generally lacks a closed-form solu-
tion. To address this issue, we can employ the concept of temporal difference (TD) 
learning, which proves to be an effective approach for obtaining an estimation of 
action-value.

where rn + γ max
a

Q(sn+1, a)− Q(sn, an) is defined as the TD-error and can be repre-

sented by εn . Specifically, the TD learning algorithm belongs to a category of model-free 
reinforcement learning methods that estimate value functions by directly sampling 
state-action-reward-next state sequences, and update the value function estimates using 
bootstrapping.

The aforementioned RL method is called table-base, which necessitates the storage 
of each state-action pair and proves unsuitable for scenarios involving an exceedingly 
large number of states or actions. The present study employs the DQN approach to 
address this issue. It uses deep neural network (DNN) as a function of approximator 
and assumes Q(s, a) ≈ Q̂(s, a; θ) , where θ is the network parameter, corresponding to 

(25)Gn =

∞∑

k=0

γ krn+k+1

(26)Qπ (sn, an) = Eπ [Gn|s = sn, a = an]

(27)Q∗(s, a) = r(s, a)+ γ
∑

s′

p(s′|s, a)maxQ∗(s′, a′)
a′

.

(28)Q(sn, an) ← Q(sn, an)+ α

[
rn + γ max

a
Q(sn+1, a)− Q(sn, an)

]
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the weights and bias of all links in the DNN. The Q network is updated by minimizing 
the loss function, which can be modified as

However, applying the standard training algorithm (29) directly may lead to oscilla-
tions and divergence. Therefore, a target network with its parameter set to θ− is intro-
duced in [36].

The parameter θ in the Q network can be updated B times, and then set θ− be changed 
for the next B times update. Correspondingly, the loss function in (13) can be rewritten 
as

This contributes to maintaining the target’s relative stability, thereby enhancing the 
convergence characteristics of the training process. Furthermore, we employ a multi-
step bootstrapping technique that effectively enhances the training speed by considering 
the future reward after N1 steps. The truncated N1-steps reward is given by

It should be noted that when n+ N1 ≥ N  , rn:n+N1 = rn:N , i.e., it is accumulated to N
-step at most.

Based on the aforementioned analysis, the loss function of (30) can be reformulated as

3.4 � Prioritized experience replay

The experience replay is another important technique in DRL, where transitions 
(sn, an, rn, sn+1) are stored in a replay buffer and randomly sampled to update network 
parameters. The experience replay technology (ERT) facilitates the reuse of sampled 
information acquired through the interaction between the agent and its environment. 
The correlation between the samples is broken through random sampling, but this 
mechanism cannot differentiate the significance of the samples. The limited capacity of 
the replay buffer further exacerbates the issue of low sampling efficiency. In this case, we 
propose a PER mechanism to replace the traditional uniform sampling, increasing the 
frequency of learning useful data and decreasing the frequency of learning useless data. 
This method enhances learning efficiency, achieves more accurate results, and optimizes 
UAV paths effectively.

(29)
(
rn + γ max

a
Q̂(sn+1, a; θ)− Q̂(sn, an; θ)

)2
.

(30)
(
rn + γ max

a
Q̂

(
sn+1, arg max

a′
Q(sn+1, a

′; θ); θ−
)
− Q̂(sn, an; θ)

)2

.

(31)rn:n+N1 =

N1−1∑

k=0

γ krn+k+1.

(32)
(
rn:n+N1 + γN max

a
Q̂

(
sn+N1 , arg max

a′
Q(sn+N1 , a

′; θ); θ−
)
− Q̂(sn, an; θ)

)2

.
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The PER mechanism assigns sampling weights based on the TD-errors of transi-
tions, where the absolute value of TD-error is utilized as the sampling probability 
denoted by Pj =

∣∣εj
∣∣+ σ . Additionally, a parameter σ is introduced to prevent the 

occurrence of zero sampling probabilities. The larger the TD-error, the greater the 
potential for enhancing prediction accuracy, indicating that learning based on this 
sample can achieve superior performance. In this case, higher sample priority P(j) , 
which corresponds to a larger TD-error, can be defined as

where δ determines whether to prioritize sampling, and when δ = 0 , the sampling 
belongs to the uniform random sampling, 

∑
i

Pδ
i  represents the cumulative sum of transi-

tion priorities in the replay buffer.
The use of a data structure called sum-tree avoids the need for extensive computa-

tion when calculating sampling priorities in each sampling process. The sum-tree is a 
hierarchical structure resembling a tree, where each leaf node stores the priority value 
of an individual sample. Each internal node has exactly two child nodes, and its value 
represents the cumulative sum of its children’s values. Consequently, the root node of 
the sum-tree corresponds to the total sum of all priorities. When the batch sample 
size is m, priority (0,

∑
i

Pδ
i ] is evenly divided into intervals. Subsequently, a random 

value is generated within each interval, and the corresponding transition sample is 
retrieved from the sum-tree. The sampling process is shown in Algorithm 1.

Algorithm 1  Sampling from a Sum Tree

(33)P(j) =
Pδ
j∑

i

Pδ
i
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By prioritizing, the Q network can enhance training efficiency and optimize path 
results. The introduction of priority alters the sample distribution, necessitating 
the use of importance sampling weights ωj to rectify this discrepancy. The sampling 
weights ωj can be given by

where β is a hyperparameter, which plays a crucial role in determining the impact of PER 
on the convergence outcome. Accordingly, the loss function in (32) can be rewritten as

3.5 � DMAU algorithm for UAV path planning

The proposed approach integrates a potential function (PF) D3QN, and Prioritized PER 
algorithms to optimize the connectivity and obstacle avoidance of UAVs. The proposed 
DMAU algorithm is summarized in Algorithm 2. In this paper, the UAV is considered as 
an autonomous agent, and the state space S , action space A , and reward function rn are 
described as follows.

(1)	  State space S : The current state of the UAV at time n is denoted as position gn , 
while the set of all possible positions within the flying region constitutes the state 
space.

(2)	 Action space A : The action space of the UAV, encompasses all feasible directions 
for flight and is characterized by continuity.

(3)	 Reward function rn : Corresponding to the objective function of (24), and the 
reward function rn is set to rn= 1+ µPout(gn+1)− ηrob(n+ 1).

The present study introduces several enhancements to address the limitations associ-
ated with insufficient prior environmental knowledge, exorbitant training costs relying 
solely on actual UAV flight, and the suboptimal efficiency of traditional DQN random 
sampling. The network of obstacle distribution is established in step 8 of Algorithm 2, 
and the distance information obtained from the sensor is utilized to update the network 
parameter, enabling the UAV to acquire obstacle avoidance behavior during simulated 
flight. The sampling operation is performed according to the priority in step 10 of Algo-
rithm 2, while important sampling weights are assigned to the loss function in step 12. 
Subsequently, steps 15–21 utilize predicted outage probability and obstacle information 
from neural networks to simulate the UAV’s flying process, which significantly acceler-
ates algorithm convergence by incorporating real-world flight data.

(34)ωj =

�
P(j)

�−β

max
i

�
(P(i))−β

� =


 P(j)

min
i
(P(i)




−β

(35)ωj

(
rj:j+N1 + γN max

a
Q̂

(
sj+N1 , arg max

a′
Q(sj+N1 , a

′; θ); θ−
)
− Q̂(sj , aj; θ)

)2

.
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Algorithm 2  DMAU for joint optimization of UAV connectivity and obstacle avoidance

˜

˜ ˜

˜
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The initialization of algorithm 2 involves setting the various parameters in step 1. It 
is important to note that during the initial phase, when the UAV has limited knowledge 
about the environment, the initialization process should prioritize guiding the UAV to 
follow the shortest path towards its destination. In each episode of actual flight, the UAV 
commences from a randomly determined location, executes an action based on strategy 
ε − greedy , and carries it out. The probability of selecting an action randomly is denoted 
as ε , while the probability of selecting the action with the highest value is represented by 
1− ε , i.e.,

The UAV employs its sensors in steps 6–7 to detect surrounding obstacles and assess 
the outage probability at the current location, thereby calculating the reward value. The 
outage probability and obstacle distance are utilized as input samples to update two net-
work parameters, denoted as θradio and θobs , respectively.

The simulated flying process, encompassing steps 14–21, is initialized indepen-
dently from the actual flight. It is noteworthy that during the simulated flight process, 
we are unable to acquire information regarding the actual obstacles and outage prob-
ability. Therefore, two networks are employed in step 17 to facilitate the generation of 
a simulated UAV flight experience. The number of episodes Ñepi = min([nepi/100], 10) 
determines the duration of simulated flying in relation to actual flight. As the number of 
actual flight episodes increases, so does the number of simulated flight episodes, thereby 
enhancing the reliability of forecasted rewards, expediting the training process, and 
yielding cost savings.

4 � Numerical results
The performance evaluation of the proposed joint optimization algorithm is presented 
in this section through numerical results. Our proposed algorithm 2, DMAU, extends 
the traditional D3QN algorithm by creating a joint optimization function of obstacle 
avoidance and connectivity guaranteeing based on PF, inserting the learning operation 
of the radio map and environment information map, and adding the PER mechanism 
based on the sum tree. The DMAU model employs a fully connected feedforward neural 
network with 5 hidden layers for both the Q network and the target network. The num-
ber of neurons is 512, 256, 128, 128, and nact + 1 , where nact corresponds to the action 
advantages of nact actions, and the other one corresponds to the estimated value of the 
state. The radio network and obstacle distribution network are equipped with 5 hidden 
layers, each consisting of 521, 256, 128, 64, and 32 neurons respectively. The activation 
function employed in the hidden layer is Rectified Linear Unit (ReLU), while the Adam 
optimizer is utilized to train the ANN with an objective of minimizing the mean square 
error (MSE) loss. The designated destination position for the UAV is set at [1400, 1600]. 
Simulation parameters utilized in model construction are presented in Table  1, while 
additional parameters relevant to DMAU can be found in Table 2.

The proposed algorithm’s validity is verified by comparing it with D3QN and D3QN-
PER. Both D3QN and D3QN-PER penalize the UAV for colliding with obstacles, but 

(36)an =





randi(A)

arg max
a∈A

Q̂(qn, a; θ)
.
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unlike D3QN, D3QN-PER incorporates the PER mechanism. The two methods lack a 
simulation of the flight process, fail to incorporate the radio map network or obsta-
cle information network, and solely rely on real-time measurements during flight 
for path planning. The actual radio map within the flying area is depicted in Fig. 7a, 
which is obtained through computer simulation considering building distribution 
and channels, and can be generated by UAV measurements in practical scenarios. 
The analysis of Fig. 7a reveals the presence of multiple regions with weak coverage, 
characterized by a coverage probability below 0.3, in close proximity to the central 
area. Evidently, for effective cover-aware UAV navigation, it is imperative to steer the 
UAV away from entering areas with weak coverage in order to ensure uninterrupted 
communication connectivity. The quality validation of the radio map generated by the 
DMAU framework proposed in Algorithm  2 is demonstrated in Fig. 7b, which pre-
sents the final estimation of the radio map achieved by algorithm 2. The comparison 
reveals a remarkable similarity between the two radio maps, exhibiting only minor 
discrepancies. This serves as a compelling demonstration of Algorithm 2’s exceptional 
capability in radio map estimation and coverage-aware path learning.

Table 1  Parameters of the system model

Simulation parameter Value

Flight range D 2 km

The ratio of the built-up area to the total land area αbd 0.3

The mean density of buildings per unit area βbd 300

The average value of the buildings height distribution σbd 50

The flying height h 100 m

Flying speed V 10 m/s

The height of GBSs hbs 25 m

The maximum directional gain of each individual antenna element GE ,max 3 dBi

Front-back ratio Am 30 dB

The half-power beamwidths θ3dB and φ3dB 65°

The limit of the side lobe level SLAV 30 dB

The transmitted power of cell Pm 0.1 W

The carrier frequency fc 2 GHz

Outage threshold ρth 0 dB

Table 2  Parameters for training algorithms

Simulation parameter Value

Maximum number of episodes Nepi 5000

Replay buffer capacity C 100,000

Initial exploration ε0 0.5

Exploration decay rate α 0.998

Slide window size N1 32

Outage penalty weight µ 30

Obstacle avoidance weight η 50

Maximum step per episode Nstep 300

Reaching destination tolerating distance Dtol 20 m
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The obstacle distribution in the flying area, along with the distance to the nearest 
obstacle for each location, is illustrated in Fig. 8a. The yellow region denotes obsta-
cles that fall beyond the sensor’s detection range, resulting in a lack of distance infor-
mation. Evidently, the navigation system for UAVs should effectively guide them to 
circumvent these obstacles while ensuring optimal communication connectivity. The 
environment information map learned through the obstacle distribution network 
in algorithm 2 is depicted in Fig. 8b. Upon careful observation and comparison, we 
note a minimal disparity between the two figures, thereby effectively substantiating 
algorithm 2’s robust perception of obstacles. The MSE of the learned radio map and 
environment information map versus the episode number are illustrated in Fig.  9, 
respectively. The MSE is calculated by comparing the predicted outage probabilities 
in the learned radio map with their actual values in the real map for a set of ran-
domly selected locations. In the initial stages, the lack of environmental knowledge 
resulted in significant inaccuracies. With an increasing number of episodes, there was 
a noticeable enhancement in signal measurement, leading to a higher quality learned 
radio map. Similarly, as depicted in Fig.  9b, an increase in the number of episodes 
enabled more accurate detection of obstacle distances and consequently improved 
the quality of the learned environment information map.

Fig. 7  The comparison of radio maps

Fig. 8  The comparison of maps depicting the distribution of obstacles
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The moving average returns per episode of different algorithms are depicted in 
Fig. 10, with a moving window length of 200 episodes. It can be observed from the 
figure that despite experiencing certain fluctuations, all three algorithms exhibit an 
overall upward trend in average returns.

The paths of multiple UAVs, randomly selected from the last 100 learning episodes, 
are depicted in Fig. 11. All sub-figures within Fig. 11 share common initial positions 
indicated by a black cross. The obstacles in the figures are depicted as solid black cir-
cles, while the red circles indicate the detectable range of obstacles. In Fig. 11a, b, it 
is evident that in the absence of obstacle avoidance using PF, the UAV collides with 
an obstacle at approximately position (300, 1000), leading to a forced termination of 
flight. The proposed method effectively avoids obstacles and ensures high coverage 
probability along the routes, as demonstrated in Fig. 11c. For instance, the UAV suc-
cessfully detects and navigates through a ‘radio narrow bridge’located approximately 
1000 m along the x-axis without any collision with obstacles. This exemplifies how our 
method adeptly considers both obstacle avoidance and connectivity requirements. 
However, due to potential deviations in the UAV’s trajectory for obstacle avoidance 
purposes, it may inadvertently bypass the optimal connectivity path, thereby increas-
ing both the expected outage time and flight duration.

To assess the connectivity in our proposed joint optimization algorithm, we sequen-
tially assign numbers to the paths depicted in Fig. 11 based on their starting positions 
from left to right and top to bottom. The resulting table (Table 3) presents the aggre-
gated weighted sum of both expected outage time and mission completion time for 
each route. Additionally, We conducted a comparative analysis between the baseline 
algorithm (specifically, the D3QN algorithm unaffected by obstacles) and its obsta-
cle-free counterpart. The connectivity of D3QN is relatively good, as evident from 
Table 3. However, due to the absence of fly process simulation, the training efficiency 
is compromised and certain paths exhibit poor connectivity, such as 1, 3, and 6. The 
D3QN-PER algorithm outperforms due to the incorporation of the PER mechanism. 
Although the DMAU algorithm exhibits proficient obstacle avoidance capabilities, it 
compromises connectivity to some extent. However, in certain unobstructed paths 
such as paths 3 and 6, DMAU can even outperform the baseline algorithm by iden-
tifying superior flight routes due to the accelerated learning efficiency facilitated 
by our proposed simulated fly process, thereby enabling the UAV to traverse more 

Fig. 9  The MSE of radio map and obstacles distribution map
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well-connected trajectories. The results demonstrate that the proposed DMAU algo-
rithm effectively ensures enhanced connectivity while successfully circumventing 
obstacles.

The effectiveness of obstacle avoidance in the proposed joint optimization method 
is evaluated using a novel evaluation strategy, while ensuring the preservation of cer-
tain connectivity. The UAV sensors recorded the distance and frequency of obstacle 
detection in all episodes, where a lower value indicates fewer instances of the UAV 
approaching obstacles, thus implying a more effective obstacle avoidance perfor-
mance. The simulation results based on the aforementioned evaluation methods are 
depicted in Fig.  12. Specifically, Fig.  12a, b illustrate the average number of obsta-
cles detected by the UAV at varying distances over 5000 episodes and the last 100 
episodes, respectively, utilizing the aforementioned evaluation strategy. The obstacle 
avoidance performance of the proposed DMAU is superior to that of the other two 

Fig. 10  Moving average return

Fig. 11  Resulting path by different algorithms

Table 3  The aggregate of the weighted expected outage time and mission completion time

1 2 3 4 5 6 7

D3QN 1320.26 – 2313.67 1205.18 – 2188.47 1057.84

D3QN-PER 1148.23 761.00 1236.59 1316.18 – 2015.57 1147.76

DMAU 1163.22 860.86 1024.04 1391.60 1001.60 1871.33 1007.67

No obstacle 1141.07 811.52 1403.38 1138.20 965.70 1955.03 925.23
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algorithms in both cases. In particular, during the last 100 episodes, when the train-
ing outcome reaches its optimum, UAVs exhibit infrequent encounters with obstacles. 
The simulation results demonstrate that the obstacle avoidance strategy proposed in 
the joint optimization method effectively mitigates obstacles.

The collision probability of different algorithms versus the episode number is illus-
trated in Fig.  13. Specifically, Fig.  13a presents the variation in collision probability 
over 5000 episodes. It can be observed that without employing PF for obstacle avoid-
ance, there is no significant enhancement in anti-collision performance as the episode 
number increases. The collision probability of the algorithm employing PF for obsta-
cle avoidance exhibits a conspicuous decreasing trend, with our proposed method 
demonstrating a faster rate of decrease compared to the other three methods. Fig-
ure 13b illustrates the collision probability over the last 100 episodes. It is evident that 
our proposed algorithm achieves a 100% success rate in obstacle avoidance, while the 
two algorithms without PF exhibit higher collision probabilities.

The expected outage time, mission completion time, and weighted sum of the two 
are calculated in Fig. 14 to assess the connectivity performance of the joint optimiza-
tion algorithm over the last 100 episodes. The expected outage time follows the order 
of D3QN, DMAU, and D3QN-PER in decreasing magnitude. This is attributed to 
the accelerated training efficiency of the PER mechanism in the algorithm, enabling 

Fig. 12  Statistical analysis of the distance between UAVs and obstacles using different algorithms

Fig. 13  Collision probabilities of different algorithms
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D3QN-PER to discover a path with superior connectivity within a relatively short 
duration. However, due to the presence of obstacles obstructing the originally optimal 
connectivity path, UAVs are compelled to choose detours that lead to slightly weaker 
connectivity paths. Consequently, DMAU exhibits a slightly longer expected outage 
time compared to D3QN-PER. The implementation of obstacle avoidance inevitably 
introduces additional flight steps, resulting in a longer mission completion time for 
the proposed algorithm compared to the other two algorithms without PF obstacle 
avoidance. In summary, the proposed algorithm ranks second only to D3QN-PER in 
terms of the weighted sum of expected outage time and mission completion time, 
thereby demonstrating its effectiveness in ensuring path connectivity.

5 � Conclusions

(1)	 This paper investigates the joint optimization of connectivity, mission completion 
time, and obstacle avoidance for cellular-connected UAVs through path planning.

(2)	 We have presented a methodology for constructing a radio map and an environ-
ment information map, followed by the creation of a novel optimization function 
based on PF for joint optimization. Additionally, we propose a DMAU method 
utilizing D3QN to achieve multi-objective optimization. To enhance learning effi-
ciency, we introduce an advanced PER mechanism. Moreover, we suggest employ-
ing radio map and obstacle map networks for simulating UAV flight training, which 
can expedite the training process, reduce reliance on actual UAV flight data meas-
urements, and yield cost savings.

(3)	 The numerical results have demonstrated the efficacy of the proposed method in 
terms of UAV connectivity, mission completion time, and obstacle avoidance, as 
well as its superior performance compared to alternative approaches. In future 
research endeavors, our objective is to extend the application of the proposed path 
planning method to multiple UAVs.

Fig. 14  The weighted summation of the expected outage time and mission completion time by various 
algorithms
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