
Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate‑
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// 
creat iveco mmons. org/ licen ses/ by/4. 0/.

RESEARCH

Zhu et al. 
EURASIP Journal on Advances in Signal Processing         (2023) 2023:15  
https://doi.org/10.1186/s13634-023-00972-w

EURASIP Journal on Advances
in Signal Processing

Information and sensing beamforming 
optimization for multi-user multi-target MIMO 
ISAC systems
Minghe Zhu1,2, Lei Li1,2, Shuqiang Xia3,4 and Tsung‑Hui Chang1,2* 

Abstract 

Integrated sensing and communication (ISAC) has been envisioned as a key enabler 
in the next‑generation wireless networks. In this paper, we consider the joint informa‑
tion and sensing beamforming design in a multi‑user and multi‑target multi‑input 
multi‑output ISAC system, where a transmit BS and a sensing BS collaborate to sense 
targets, and the transmit BS sends information streams to communication users at the 
same time. To optimize the sensing performance and guarantee the communication 
throughput, we formulate a joint beamforming design problem to minimize the trace 
of the weighted Cramer–Rao bound of target parameters subject to the sum‑rate con‑
straint. The problem is challenging to solve due to the intricate non‑convex objective 
function and constraints. We firstly exploit the weighted mean square error minimiza‑
tion (WMMSE) and semidefinite relaxation (SDR) techniques to devise a WMMSE–SDR 
algorithm that can achieve a KKT point of the problem. The SDR can be shown to 
be tight for a subproblem in the WMMSE–SDR algorithm, which implies zero duality 
for the subproblem. Based on this property and fractional programming techniques, 
we further reformulate the beamforming problem as a min–max form with simple 
constraints which then can be efficiently solved by first‑order min–max optimization 
algorithms. Finally, the proposed algorithms are evaluated extensively in simulations. 
Numerical results show that both proposed algorithms can achieve promising per‑
formance in sensing and communication, and the low‑complexity algorithm has a 
significantly reduced computation time.

Keywords: MUMT‑MIMO ISAC, Joint beamforming, CRB, Sum rate, WMMSE, 
Semidefinite relaxation, Fractional programming

1 Introduction
With the deployment of massive antennas and the utilization of higher-frequency spec-
trum like millimeter wave, the next-generation wireless networks are envisioned to 
provide higher service quality for communications as well as sensing functionality to 
support many emerging applications like smart manufacturing, environment monitor-
ing and intelligent transportation, etc. [1]. To achieve this target, the integrated sensing 
and communication (ISAC) technique has been recognized as a key enabler and gained 
paramount interest from both academia and industry [1, 2].
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Contrary to the traditional systems where the communication and radar sensing are 
usually designed independently and deployed separately, ISAC aims to realize the dual 
functionality in a unified system by the sharing of frequency, hardware and the joint 
signal processing design [3–6]. In ISAC, the implementation of digital processing tech-
nology on the radar sensing and communication facilitates the sharing of hardware 
components, making it possible to build a unified and simple structure with reduced 
device size and energy consumption. Moreover, by co-designing the waveform, the dual 
functionality can be operated simultaneously and achieve a higher spectral and time 
efficiency. The paper [7] considers the employment of the ISAC technique for assist-
ing orthogonal time frequency space (OTFS) transmission in both uplink and downlink 
vehicular communication systems. Authors in [8] propose to jointly design the dual-
functional transmit signals occupying several subcarriers to realize multi-user OFDM 
communications and detect one moving target in the presence of clutters. Beyond the 
sharing of time-spectral resources, the interplay between communication information 
and sensing information in ISAC will be beneficial to both functionalities [9]. For exam-
ple, the information distributed on a communication network can be used in radar sens-
ing applications to increase detection probability and estimation precision, while the 
radar sensing can assist the proactive resource management in wireless communications.

In this work, we consider the multi-input multi-output (MIMO) ISAC waveform 
design in wireless multi-user (MU) networks and investigate the joint information and 
sensing beamforming optimization problem to ensure high-quality dual functionali-
ties in both communication and sensing. The beamforming designs for mitigating the 
interference between a communication system and a coexisting radar system have been 
widely studied [10–16]. While these designs are effective to control the interference, the 
beamforming designs are separate in two systems and they often need extra central-
ized entities to exchange knowledge such as the interference channel information and 
radar waveform parameters between the two systems, causing high system complexity 
and increased energy consumption [17]. ISAC, which brings the radar and communica-
tion systems together, can avoid this issue and enable the dual functions by proper time 
frequency resource allocation [6, 18–20]. For instance, the work [18] studied a time-
division-based ISAC system to implement a spectrum-sharing dual-function signaling. 
While the probing capabilities of orthogonal frequency division multiplexing (OFDM) 
waveforms were studied in [3, 6, 19, 20], though the hardware is shared, the integration 
between sensing and communication in most of these works [18, 19] is still weak as the 
dual functionalities operate in different time slots or frequency bands. Besides, some of 
these existing schemes [6, 20] are based on a single directional antenna and thereby suf-
fer from a notable degradation in signal-to-noise-ratio (SNR) when the communication 
receivers are not physically located within the radar lobe. As a result, they are not able to 
illuminate multiple targets and communicate with multiple users simultaneously.

While the aforementioned works did not fully integrate the sensing and communi-
cation, the recent works [3, 17, 21–25] stepped further into a stronger integration via 
considering the unified waveform design in the context of MU-MIMO. In paper [22], 
the authors introduced an approach to dual-function radar communications using 
waveform diversity in tandem with sidelobe control by designing two transmit beam-
forming weight vectors. The paper [26] proposed a quadrature amplitude modulation 
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(QAM)-based dual-function radar communications (DFRC) strategy which exploits 
sidelobe control and waveform diversity to transmit communication information. How-
ever, both of these two papers only considered limited desired direction set. It will 
limit the performance of sensing when the targets located out of the direction set. The 
paper [23] proposed an antenna-selection-based signaling strategy for DFRC systems 
to embed communication symbols into transmit array configurations. But the usage of 
transmit antennas for the dual function individually prevents the system from making 
use of the whole antennas, limiting both the performance of sensing and communica-
tion. Authors in [27] tackled the joint design of the DFRC transmitter and of the radar, 
and user receivers and formulate a general resource allocation problem. But both radar-
centric and communication-centric designs cannot achieve scalable trade-off between 
the two functions. In [25], a joint sensing and communication model is considered and 
the modulation symbol is precoded by the communication beamforming vector and the 
sensing beamforming vector to sense the target while serving the communication user. 
In [17], the authors designed the array probing signal to match the desired radar trans-
mit beampattern and minimize the interference power at communication receivers. In 
the work [21], a transmit beamforming design was proposed wherein the communica-
tion waveform was also utilized as a radar sensing waveform. In these works, the com-
munication waveform is also used for target sensing, and thus, the available degrees of 
freedom (DoF) for sensing is equal to the number of communication users [3]. When 
the number of users is small, it incurs a loss of DoF of sensing and may lead to distortion 
of radar beampattern. To address this issue, the authors of [3] employed an additional 
sensing waveform and proposed to jointly optimize both communication and sensing 
waveforms, which not only greatly improves the design flexibility but also makes fully 
use of the DoF of antenna arrays. Instead of minimizing the mismatch between a desired 
sensing waveform, the work [24] introduced the Cramer–Rao bound (CRB) as the meas-
ure of sensing performance and used it in the ISAC joint waveform design. A CRB-min-
imization problem was formulated under per-user SINR constraints, and the authors 
demonstrated that the proposed beamforming design could achieve a better sensing 
performance than its counterparts based on the beampattern matching [3].

In this paper, we propose a framework for ISAC beamforming in a multi-user and 
multi-target multi-input multi-output (MUMT-MIMO) network, with a specific 
emphasis on optimization of the target estimation performance measured by the CRB 
for unbiased estimators, subject to the communication sum-rate constraint as well 
as the transmit power budget limit. Specifically, in the MUMT-MIMO network, we 
consider two connected base stations (BSs) collaborating in a bi-static sensing mode 
for the target sensing. At the same time, the transmit BS also sends information data 
streams to communication users. Compared with the mono-static sensing mode in 
[3, 24, 28] that requires full-duplexing and suffers from self-interference, the bi-static 
sensing avoids this problem as the transmission of sensing signals and the reception 
of reflected signals are separate at different BSs. In our formulated beamforming 
design problem, the CRB of target parameters is minimized to improve the sensing 
performance. Different from the work [24] that considers minimizing the CRB of one 
subset of parameters (angles or reflection coefficients) of a single target only and [29, 
30] that emphasize the localization accuracy by CRB of locations of the targets, we 
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consider multiple targets and minimize the CRB of all the parameters including angle 
of arrival (AoA), angle of departure (AoD) and reflection coefficient simultaneously in 
the formulation. By doing that, the designed beamforming can achieve a better sens-
ing performance [31]. In addition, unlike the individual SINR constraint for each user 
equipment (UE) in [3], the sum-rate constraint is considered in our design to guaran-
tee the network throughput performance.

While the resultant joint information and sensing beamforming problem is highly 
non-convex and challenging to solve, we first devise an effective algorithm by the 
weighted mean square error minimization (WMMSE) [32] and semidefinite relaxa-
tion (SDR) techniques. Although the WMMSE–SDR method can converge properly 
and one can show that the SDR is tight without performance loss, its computational 
complexity can be high when the numbers of targets and transmit antennas are large. 
To alleviate the computational burden of the WMMSE–SDR algorithm, we further 
develop a low-complexity algorithm for the joint beamforming design by leveraging 
fractional programming (FP) [33] and first-order algorithms for min–max problems 
(e.g., the smoothed gradient descent–ascent (SGDA) [34]). For example, in paper [35, 
36], the authors make use of the fractional programming transformation to transform 
the non-convex sum-rate objective function into a convex form with introduce aux-
iliary variables and both of them specialize in single-ratio problems. We are the first 
to apply the quadratic transform for FP to solve the CRB-minimization problem. The 
main contributions of our work are summarized as follows.

• We formulate a new joint ISAC beamforming design problem in a multi-user and 
multi-target MIMO network for simultaneous target sensing and communica-
tions. The formulated problem considers the comprehensive optimization of the 
CRB of all the parameters of multiple targets while guaranteeing the network 
throughput (sum rate) for communication users.

• We devise an effective WMMSE–SDR algorithm for handling the joint beamform-
ing design problem and show that SDR is in fact tight and incurs no performance 
loss.

• By leveraging the tightness of SDR and the FP techniques, we further show that 
the joint beamforming problem can be equivalently reformulated as a min–max–
min problem with simple constraints. This allows us to combine the block coordi-
nate descent (BCD) method and the SGDA algorithm to devise a low-complexity 
FP-SGDA algorithm. It is shown that the FP-SGDA algorithm can achieve almost 
the same performance as the WMMSE–SDR algorithm but has a significantly 
reduced complexity.

• We evaluate the proposed algorithms by extensive simulations. The numerical 
results reveal that the minimization of CRB of all parameters achieves a better 
sensing performance than that of partial parameters only. In addition, it demon-
strates that our proposed FP-SGDA algorithm solves the beamforming problem 
efficiently with greatly reduced computation time.

The remainder of this paper is organized as follows. In Sect. 2, we introduce the sys-
tem model and formulate the beamforming design problem by deriving the CRB for 
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radar sensing and sum rate for communication. Sections  3 and 4 elaborate on the 
design of WMMSE–SDR and FP-SGDA to solve the formulated problem. Simulation 
results are presented in Sect. 5. Finally, Sect. 6 provides concluding remarks.

Notations Column vectors and matrices are, respectively, written in boldfaced low-
ercase and uppercase letters, e.g., a and A . The superscripts (·)T , ¯(·) and (·)H represent 
the transpose, conjugate and Hermitian transpose, respectively. IK  is the K × K  identity 
matrix; ‖a‖ denotes the Euclidean norm of vector a , and || · ||F denotes the Frobenius 
norm. ⊙ denotes the Hadamard (element-wise) matrix product. ℑ(·) and ℜ(·) represent 
the imaginary and real part of a complex value, respectively. {ai} denotes the set of all ai 
with subscripts i covering all the admissible integers.

2  Dual‑functional system model and problem formulation
In this section, we build the signal and channel model for the MIMO communication 
and sensing systems followed by formulating the joint information and sensing signal 
beamforming design problem.

2.1  Signal model

We consider a dual-functional MUMT-MIMO ISAC system in Fig. 1a.1 The transmit BS, 
which is equipped with Nt transmit antennas, sends communication signals to Nu sin-
gle-antenna UEs, while transmits the probing signals to the L targets. At the same time, 
the sensing BS with Ns receiving antennas receives the signals reflected by these targets 
and performs sensing operation collaboratively with the transmit BS in a bi-static mode. 
Without loss of generality, we assume Nu < Ns ≤ Nt . For both transmit BS and sens-
ing BS, we assume a uniform linear array (ULA) with half-wavelength separation, i.e., 
d = �/2 with � = c/fc , c the speed of light, and fc the carrier frequency.

As shown in Fig. 1b, at the transmit BS, both the communication and sensing func-
tionalities operate simultaneously by joint beamforming; each data symbol si ∈ C for 
the i-th communication UE and the sensing signal ss ∈ C

Nt×1 are first precoded by a 
digital precoding vector wi ∈ C

Nt and a digital precoding matrix Ws ∈ C
Nt×Nt , respec-

tively. The corresponding transmitted baseband signal x ∈ C
Nt integrated by si and ss is a 

weighted sum of communication symbols and radar waveforms given by

Fig. 1 Illustration of the system and transmitter model

1 The signals reflected by UEs are ignored in the model since the sensing of UEs is not of the interest [3, 10]. In practice, 
these echoed signals from UEs can be removed with available CSI.
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Without loss of generality, the transmit signals satisfy the following assumptions: 

1. Both the signals si for communication and ss for sensing are zero-mean and wide-
sense stationary stochastic process;

2. The communication signals intended to different users are uncorrelated, namely 
E{sisj} = 0 for i  = j , and E{|si|2} = 1;

3. The sensing signals sent from different antennas are uncorrelated with each other, 
i.e., E{sssHs } = INt . In practice, the corresponding waveform can be generated by 
pseudorandom coding [37–41].

4. Both si and ss are known at the transmit BS and the sensing BS. For example, the 
information can be exchanged among BSs via an fiber-optic backhaul.

2.2  Sensing channel model

As shown in Fig. 1a, since the transmit BS and sensing BS work in a bi-static mode of 
passive sensing, it means that the transmitter and receiver are located in different places. 
Therefore, the AoD and AoA are different. Denote θℓ,φℓ as the AoD and AoA of the ℓ-th 
target to the transmit BS and the sensing BS, respectively, ℓ = 1, . . . , L . Then, the trans-
mit array response vector and the receive array response vector can be expressed as

respectively. Correspondingly, the channel response matrix from the transmit BS to the 
sensing BS G ∈ C

Ns×Nt can be modeled as

 where bℓ ∈ C is the reflection coefficient accounting for the path loss, including the dis-
tance information and the radar cross section (RCS) of the ℓ-th target. Since the sens-
ing task is typically accomplished within a few milliseconds [42], the sensing channel 
(3) is assumed to be quasi-static, and the parameters {φℓ, θℓ, bℓ}Lℓ=1 maintain unchanged 
during the sensing period. Meanwhile, it is assumed that the channel state informa-
tion (CSI) of the downlink (DL) communication channel from transmit BS to UE i 
hi ∈ C

Nt , i = 1, . . . ,Nu is available to the transmit BS.

2.3  Problem formulation

To facilitate the dual functionalities of the DL communication and the target sensing, the 
beamformer {wi} and Ws are jointly designed in the ISAC system. In this subsection, the 
performance metrics for the communication as well as the target sensing are described 
firstly, based on which the joint beamforming optimization problem is formulated.

(1)xt =
Nu

i=1

wisi +Wsss.

(2)
v(θℓ) = [1, ejπ sin(θℓ), . . . , ejπ(Nt−1) sin(θℓ)]T,
a(φℓ) = [1, ejπ sin(φℓ), . . . , ejπ(Nt−1) sin(φℓ)]T,

(3)G =
L

∑

ℓ=1

bℓa(φℓ)v(θℓ)
T,



Page 7 of 29Zhu et al. EURASIP Journal on Advances in Signal Processing         (2023) 2023:15  

2.3.1  Information throughput

With the transmitted signal xt ∈ C
Nt in (1), the received signal yi ∈ C at UE i can be written 

as

in which ni ∼ CN (0, σ 2
i ) is the additive white Gaussian noise (AWGN) at UE i. In (4), the 

first term is the desired signal for the i-th communication UE, while the second term and 
the third term are the interference caused by the signals to the other UEs and the sensing 
signals, respectively. To this end, the signal-to-interference plus noise ratio (SINR) at the 
i-th communication UE can be expressed as

where Rs = WsW
H
s  denotes the sensing covariance matrix. The overall throughput (sum 

rate) of the DL communication in the network is

2.3.2  Sensing CRB

Similar to (4), the reflected signal received at the sensing BS is

with ns ∼ CN (0, σ 2
s INs) being the AWGN. Note here both the sensing signal ss and the 

communication signal si can be used for sensing since they are known by the sensing BS.
Combining (3) and (7), the received signal ys can be written as

where

and diag(b) represents a diagonal matrix with bℓ being its diagonal entries.

(4)

yi = hHi xt + ni,

= hHi wisi +
Nu
∑

j �=i

hHi wjsj + hHi Wsss + ni,

(5)SINRi =
|hHi wi|2

∑Nu
j �=i |hHi wj|2 + |hHi Rshi| + σ 2

i

,

(6)
Nu
∑

i=1

ri =
Nu
∑

i=1

log (1+ SINRi).

(7)ys = G

(

Wsss +
Nu
∑

i=1

wisi

)

+ ns,

(8)ys = ABVT

(

Wsss +
Nu
∑

i=1

wisi

)

+ ns

(9)

A = A(φ) = [a(φ1), . . . , a(φL)],
V = V(θ) = [v(θ1), . . . , v(θL)],
φ = [φ1, . . . ,φL],
θ = [θ1, . . . , θL],
b = [b1, . . . , bL]T,
B = diag(b),
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From the perspective of target sensing, the parameter estimation accuracy is of the 
main interest in the work, where we adopt the CRB to evaluate the performance of 
the target sensing for the beamforming design. The CRB represents the best perfor-
mance of any unbiased estimators [43] and is widely applied to assess the sensing per-
formance. As shown in [24], the CRB-minimization beamformers outperform other 
methods based on beampattern matching for target sensing. Denote the parameters 
of the targets as φ, θ ,bR,bi , where bR = ℜ(b) and bi = ℑ(b) . Given the received signal 
y in (8), the Fisher information matrix (FIM) w.r.t. φ, θ ,bR,bi can be derived as

where 

 and

The details of the derivation of (10), (11), (12) are given in “Appendix 1.” Notice that 
M ∈ C

4L×4L . Given M , the CRB matrix for the target sensing is given by C = M−1.
Based on the sum-rate expression in (6) and the CRB matrix C derived before, the 

joint information and sensing beamforming design problem to achieve the dual func-
tionalities in the ISAC system can be formulated as 

(10)M = 2

σ 2
s









ℜ(Mφφ) ℜ(Mφθ ) ℜ(Mφb) − ℑ(Mφb)

ℜT(Mφθ ) ℜ(Mθθ ) ℜ(Mθb) − ℑ(Mθb)

ℜT(Mφb) ℜT(Mθb) ℜ(Mbb) − ℑ(Mbb)

−ℑT(Mφb) − ℑT(Mθb) − ℑT(Mbb) ℜ(Mbb)









,

(11a)Mφφ = (ȦHȦ)⊙ (B̄VHR̄xtVB),

(11b)Mφθ = (ȦHA)⊙, (B̄V̇HR̄xtVB),

(11c)Mφb = (ȦHA)⊙ (VHR̄xtVB),

(11d)Mθθ = (AHA)⊙ (B̄V̇HR̄xt V̇B),

(11e)Mθb = (AHA)⊙ (VHR̄xt V̇B),

(11f )Mbb = (AHA)⊙ (VHR̄xtV),

(11g)Ȧ(φ) =
[

∂a(φ1)

∂φ1
, . . . ,

∂a(φL)

∂φL

]

,

(11h)V̇(θ) =
[

∂v(θ1)

∂θ1
, . . . ,

∂v(θL)

∂θL

]

,

(12)Rxt =
Nu
∑

i=1

wiw
H
i + Rs.



Page 9 of 29Zhu et al. EURASIP Journal on Advances in Signal Processing         (2023) 2023:15  

 where �α = diag{α1, . . . ,α4L} is a diagonal matrix with αℓ, ℓ = 1, . . . , 4L , being the 
weights for different target parameters, and P is the maximum transmission power of 
the transmit BS. With defined weights αℓ, ℓ = 1, . . . , 4L , sum rate rm and the power P, 
problem (13) aims to improve the sensing performance via minimizing the trace of the 
weighted CRB matrix in (13a) while guaranteeing the DL communication performance 
of the network by imposing the sum-rate constraint in (13b). The constraint (13c) is to 
ensure the system to meet the total transmit power limit. It is necessary to point out 
that, compared with existing works [24, 31], our formulation in (13a) incorporates the 
CRB of all the sensing parameters instead of only parts of them. As demonstrated in 
[31], the minimization of CRB of more parameters could achieve a better accuracy for 
the parameter estimation, which will also be verified in Sect. 5.

While CRB is a function of φ, θ ,bR,bi as can be seen in (10), problem (13) can be 
interpreted as optimizing the beamformers {wi},Ws with respect to targets of interest 
with the potential values of {bℓ, θℓ,φℓ} . This is quite typical in the target tracking sce-
nario where  we wish to beamform toward an estimated/predicted direction to track the 
movement of the target [24, 31]. Thus, these parameters are assumed to be known and 
incorporated into the optimization.

Problem (13) is very challenging to solve because of the non-convexity of (13b) and 
M−1 in (13a). What’s more, the high dimension of M makes it unrealistic to give explicit 
expression of M−1 . In what follows, we address these challenges to solve problem (13) 
and develop two computationally efficient beamforming algorithms.

3  Proposed WMMSE–SDR algorithm
In this section, we tackle the intricate joint beamforming problem (13). The ingredients 
are to leverage the seminal WMMSE algorithm [32] to deal with the sum-rate constraint 
while using the SDR to overcome the non-convexity in the CRB function.

To elaborate this, firstly, note that by the epigraph form, we can write the objective 
of (13) as 

∑4L
ℓ=1 αℓtℓ and have additional constraints eTℓM

−1eℓ ≤ tℓ, ℓ = 1, . . . , 4L, where 
eℓ ∈ R

4L is the ℓ-th column of the identity matrix I4L , and {tℓ} is introduced slack vari-
ables. Then, by applying the Schur complement [44], we can reformulate (13) into the 
following problem 

(13a)min
{wi},Rs � 0

Tr(�αM
−1)

(13b)s.t.

Nu
∑

i=1

ri ≥ rm,

(13c)
Nu
∑

i=1

�wi�2 + Tr(Rs) ≤ P,

(14a)min
{wi},Rs � 0 ,{tℓ}

4L
∑

ℓ=1

αℓtℓ
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 As seen, we no longer deal with M−1 in (14).
As mentioned before, another challenge for solving problem (14) is the non-convex sum-

rate constraint (14c). Note that, unlike the SINR constraints considered in [24], directly 
application of SDR to constraint (14c) does not yield a tractable form. Instead, we exploit the 
relation between the rate expression and mean square error (MSE), following the WMMSE 
method [32]. The WMMSE algorithm addresses weighted sum-rate maximization by solv-
ing a problem equivalent to it, i.e., with the same optimal solution, and amenable for block 
coordinate descent [45]. With the assumption provided in Sect. 2.1, the equivalent problem 
is given by a weighted sum mean square error minimization problem (15) as illustrated in 
Theorem 1 [32].

in which ei is the MSE of the estimated data symbol and transmitted data symbol given 
by

and vi is the user weight, ui is the receiver gain, and both of them are the introduced 
auxiliary variables need to be optimized. Problem (15) is convex in in each individual {vi} 
and {ui} with fixed {wi} and Ws , and hence, the partial optimization problem can be eas-
ily solved and a local optimum can be obtained by iteratively minimizing the cost func-
tion with respect to one variable while keeping the others fixed.

Based on (15), problem (14) is updated to 

(14b)s.t.

[

M eℓ
eTℓ tℓ

]

� 0, ℓ = 1, . . . , 4L,

(14c)
Nu
∑

i=1

ri ≥ rm,

(14d)
Nu
∑

i=1

�wi�2 + Tr(Rs) ≤ P,

(15)max

Nu
∑

i=1

ri = Nt − min
{vi}, {ui},
{wi},Ws

Nu
∑

i=1

, (viei − log(vi)),

(16)

ei = E|ŝi − si|2

= |(uiyi − si)|2

=
�

�

�

�

1− uih
H
i wi

��

�

�

2
+ |ui|2





�

j �=i

|hHi wj|2 + hHi Rshi



+ σ 2
i |ui|2,

(17a)min
{wi},Rs, {vi}, {ui}, {tℓ}

4L
∑

ℓ=1

αℓtℓ

(17b)s.t.

[

M eℓ
eTℓ tℓ

]

� 0, ℓ = 1, . . . , 4L,
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 Until now, the constraint (17d) is convex and the MSE ei in (16) is also convex w.r.t. each 
variable.2 However, problem (17) is still hard to solve due to the intricate non-convex 
mapping from {wi},Rs to M in (10) and (11). To handle it, we adopt the popular semidef-
inite relaxation (SDR) technique [31]. By defining Ri = wiw

H
i  , Rxt in (12) can be written 

as

Therefore, by SDR, M becomes a linear function of Ri and Rs . On the other hand, the 
MSE ei in (17d) can be expressed by Rxt as follows

Therefore, problem (17) is updated to (20) as follows 

(17c)
Nu
∑

i=1

�wi�2 + Tr(Rs) ≤ P,

(17d)
Nu
∑

i=1

(viei − log(vi)) ≤ Nt − rm,

(17e)Rs � 0.

(18)Rxt =
Nu
∑

i=1

Ri + Rs.

(19)ei = 1− 2ℜ
(

uih
H
i wi

)

+ |ui|2hHi Rxthi + σ 2
i |ui|2.

(20a)min
{wi}, {Ri},Rs, {vi}, {ui}, {tℓ}

4L
∑

ℓ=1

αℓtℓ

(20b)s.t.Rs � 0,

(20c)
Nu
∑

i=1

Tr(Ri)+ Tr(Rs) ≤ P,

(20d)
Nu
∑

i=1

(viei − log(vi)) ≤ Nt − rm.

(20e)
[

M eℓ
eTℓ tℓ

]

� 0, ℓ = 1, . . . , 4L,

(20f )Ri = wiw
H
i .

2 One can rotate the phase so that the term hH
i
wi in the RHS of (16) is real valued.
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 In problem (20), the only non-convex constraint is (20f ). By SDR, we relax the con-
straint to Ri � wiw

H
i  which, by the Schur complement, is equivalent to the following lin-

ear matrix inequality (LMI)

Based on the above derivations, problem (17) can be updated to 

As seen, given {vi}, {ui} , the remaining part of problem (22) is an SDP that can be 
efficiently solved with off-the-shelf solvers, such as CVX [46]. Once the SDP is solved, 
{vi}, {ui} can be updated at each r-th iteration with the following closed-form expressions 

 The alternating updates proceed iteratively until convergence. The details of the pro-
posed WMMSE–SDR algorithm for problem (22) are given in Algorithm 1.

(21)
[

Ri wi

wH
i 1

]

� 0, i = 1, . . . ,Nu.

(22a)min
{wi}, {Ri},Rs, {vi}, {ui}, {tℓ}

4L
∑

l=1

αℓtℓ

(22b)s.t.Rs � 0,

(22c)
Nu
∑

i=1

Tr(Ri)+ Tr(Rs) ≤ P,

(22d)
Nu
∑

i=1

(viei − log(vi)) ≤ Nt − rm,

(22e)
[

M eℓ
eTℓ tℓ

]

� 0, ℓ = 1, . . . , 4L,

(22f )
[

Ri wi

wH
i 1

]

� 0, i = 1, . . . ,Nu.

(23a)ur+1
i ←



hHi





Nu
�

j=1

Rr+1
j + Rr+1

s



hi + σ 2
i





−1

hHi w
r+1
i , ∀i,

(23b)vr+1
i ←

(

1− ūr+1
i hHi w

r+1
i

)−1
,∀i.
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Algorithm 1 WMMSE-SDR Algorithm
1: Initialize: {w0

i }, {R0
i },R0

s, {v0i }, {u0
i }, {t0�}.

2: for r = 0, 1, 2, . . . do
3: Compute {Rr+1

i }, {wr+1
i },Rr+1

s , {tr+1
� } by solving (22) with fixed {vri }, {ur

i };
4: Update {ui} by (23a);
5: Update {vi} by (23b);
6: end for

It is necessary to point out that the equality in (21) may not be satisfied by the solu-
tion of a general SDP problem (22) after SDR. In that case, Ri is not rank-1 and only 
an approximate solution wi can be attained, which could bring performance loss. 
However, it is interesting to find in the work that a rank-1 solution of problem (22) is 
always achievable from the points obtained by Algorithm 1. In particular, Theorem 1 
holds for problem (22).

Theorem 1 

(1) Algorithm 1 converges, and any limit point is a KKT solution of (22).
(2) For any feasible solution {{t̂ℓ}, {R̂i}, R̂s} of problem (22), one can construct

which is also a feasible solution of (22).
Proof See “Appendix 2.” �

Theorem 1 implies that SDR is in fact tight to problem (22), since by (24b) and (24d) 
one can always construct a rank-one feasible solution R̃i together with R̃s for (22). 
Thus, w̃i and R̃s is a feasible solution to problem (17). Then, the sensing beamforming 
W̃s can be extracted from R̃s by Cholesky decomposition or eigenvalue decomposi-
tion. Lastly, the tightness of SDR implies that with fixed {ui, vi} problem (17) has the 
strong duality.

Corollary 1 With fixed {ui, vi} , problem (17) has a zero duality gap with its Lagrange 
dual.

(24a)t̃ℓ = t̂ℓ, ℓ = 1, . . . , 4L,

(24b)w̃i =
R̂ihi

√

hHi R̂ihi

, i = 1, . . . ,Nu,

(24c)R̃i = w̃iw̃
H
i , i = 1, . . . ,Nu,

(24d)R̃s =
Nu
∑

i=1

R̂i + R̂s −
Nu
∑

i=1

R̃i,
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Proof With {ui} and {vi} fixed, problem (22) is convex w.r.t. {{wi}, {Ri},Rs}} , so it has no 
duality gap with its dual problem, which is given by

where the Lagrangian function is

and �1 � {{wi}, {Ri}, {Rs}, �,µ, {Ŵi},�s, {ξℓ}}.

Because of the tightness of SDR Ri = wiw
H
i  , the last term of (26) will be zero, making 

(25) the same as the dual problem of (17), which is given by

where the Lagrangian function is

and �2 � {{wi}, {Rs}, �,µ,�s, {ξℓ}}.

Thus, under the equivalence between (17) and (22) built in Theorem 1, there is zero gap 
between problem (17) and its dual problem. That completes the proof. �

4  Proposed FP‑SGDA algorithm
While the proposed WMMSE–SDR algorithm can achieve a KKT point, it needs 
to solve an SDP in Step 3, which is usually of high computational complexity 
with O(L3 + L2N 2

t + L2N 2
s + LN 2

t + NuN
2
t ) . Therefore, it necessitates to tailor a 

(25)max
� ≥ 0,µ ≥ 0,Ŵi � 0,�s � 0, {ξℓ ≥ 0}

{

min
{wi}, {Ri},Rs

L(�1)

}

,

(26)

L(�1) =
4L
∑

ℓ=1

αℓtℓ − Tr(�sRs)

+ µ

[(

Nu
∑

i=1

Tr(Ri)+ Tr(Rs)

)

− PT

]

+ �

[

Nu
∑

i=1

(viei − log(vi))− Nt + rm

]

−
4L
∑

ℓ=1

ξℓ

(

eTℓM
−1eℓ − tℓ

)

+
Nu
∑

i=1

Tr
[

Ŵi

(

Ri − wiw
H
i

)]

,

(27)max
� ≥ 0,µ ≥ 0,�s � 0, {ξℓ ≥ 0}

{

min
{wi},Rs

L(�2)

}

,

(28)

L(�2) =
4L
∑

ℓ=1

αℓtℓ − Tr(�sRs)

+ µ

[(

Nu
∑

i=1

Tr(wiw
H
i )+ Tr(Rs)

)

− PT

]

+ �

[

Nu
∑

i=1

(

viei − log(vi)
)

− Nt + rm

]

+
4L
∑

ℓ=1

ξℓ

(

eTℓM
−1eℓ − tℓ

)

,
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computation-efficient algorithm. To accomplish the task, we resort to the FP techniques 
and the primal-dual relation to transform the original problem (13) to a min–max prob-
lem with simple constraints, which then can be efficiently handled by low-complexity algo-
rithms base on the tightness of SDR proved by Theorem 1 and the zero duality in Corollary 
1 for the subproblem.

Firstly, problem (17) can be equivalently written as

in which C1 is defined as the variable set of (29) given by,

For such a problem, the FP is introduced to avoid dealing with M−1 directly.
FP refers to a family of optimization problems that involve ratio term(s). Compared with 

the literature of FP that specialize in single-ratio problems [47, 48], the quadratic transform 
proposed by [33] can recast the original problem to a form amenable to iterative optimiza-
tion with decoupled numerator and denominator of each ratio term by introducing some 
suitable auxiliary variables. This decoupling feature of the proposed quadratic transform 
can convert the original non-convex problem into a sequence of convex problems, mak-
ing it particularly suited for the coordinated resource optimization problem across multiple 
cells in a wireless cellular network. To deal with the FP problem (29) which in a multidi-
mensional complex case where the numerators are vectors and the denominators are matri-
ces, the following lemma is given.

Lemma 1 [33] Consider the following sum of fractional terms

where each am ∈ C
d , and Bm ∈ C

d×d is Hermitian, for m = 1, . . . ,M . Then, the above 
term is equal to

Regard M and eℓ as B and am in Lemma 1, respectively, and introducing auxiliary vari-
ables {yℓ ∈ C

4L}4Lℓ=1 , problem (29) can be transformed to

(29)
min

{wi},Rs, {vi}, {ui}

4L
∑

ℓ=1

αℓe
T
ℓM

−1eℓ

s.t. {{wi},Rs, {vi}, {ui}} ∈ C1,

C1 �







{wi},Rs, {vi}, {ui}

�

�

�

�

�

�

Rs � 0,
�Nu

i=1(viei − log(vi)) ≤ Nt − rm,
�Nu

i=1 �wi�2 + Tr(Rs) ≤ P,







.

(30)
M
∑

m=1

aHmB
−1
m am,

(31)max
{ym∈Cd}Mm=1

M
∑

m=1

(

2ℜ
{

yHmam

}

− yHmBmym

)

.

(32)min
{{wi},Rs, {vi}, {ui}} ∈ C1

{

max
{yℓ}

4L
∑

ℓ=1

(

2
√
αℓℜ

{

yHℓ eℓ

}

− yHℓ Myℓ

)

}

.
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Notice that problem (32) successfully circumvents dealing with the intricate M−1 in 
problem (29) directly. Let us rewrite problem (32) by separating {{ui}, {vi}} and {{wi},Ri} 
as

and consider the inner min–max problem when {{ui}, {vi}} is fixed. After SDR by (18) 
and (21), the inner min–max problem is

in which C2 is defined by

Because problem (34) is concave in {yℓ} and convex in {{wi}, {Ri},Rs} , the order of min–
max in (34) can be changed to max–min as 

Since the SDR is tight according to Theorem 1, the inner SDR minimization problem in 
(35b) is equivalent to

According to Corollary 1, problem (36) has no duality gap, and thus can be solved by 
considering its Lagrangian dual

where �,µ are the dual variables, � = {{wi},Rs, �,µ} are the variable set, and

(33)

min
{{vi}, {ui}} ∈ C1

{

min
{{wi},Rs} ∈ C1

{

max
{yℓ}

4L
∑

ℓ=1

(

2
√
αℓℜ

{

yHℓ eℓ

}

− yHℓ Myℓ

)

}}

,

(34)min
{{wi}, {Ri},Rs} ∈ C2

{

max
{yℓ}

4L
∑

ℓ=1

(

2
√
αℓℜ

{

yHℓ eℓ

}

− yHℓ Myℓ

)

}

,

C2 �























{wi},Rs

�

�

�

�

�

�

�

�

�

�

Rs � 0,
�Nu

i=1(viei − log(vi)) ≤ Nt − rm,
�Nu

i=1 Tr(Ri)+ Tr(Rs) ≤ P,
�

Ri wi

wH
i 1

�

� 0, i = 1, . . . ,Nu























.

(35a)max
{yℓ}

{

min
{{wi}, {Ri},Rs} ∈ C2

4L
∑

ℓ=1

(

2
√
αℓℜ

{

yHℓ eℓ

}

− yHℓ Myℓ

)

}

(35b)= max
{yℓ}

{

4L
∑

ℓ=1

2
√
αℓℜ

{

yHℓ eℓ

}

+ min
{{wi}, {Ri},Rs} ∈ C2

4L
∑

ℓ=1

−yHℓ Myℓ

}

.

(36)min
{{wi},Rs} ∈ C1

−
4L
∑

ℓ=1

yHℓ Myℓ.

(37)max
� ≥ 0,µ ≥ 0

min
{wi},Rs

L(�),
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Therefore, problem (35b) is further equivalent to 

 Incorporating the minimization over {ui, vi} , problem (32) is equivalent to

It is not difficult to check that the objective function in (40) is convex in each variable of 
{vi} and {ui} , concave w.r.t {yℓ}, �,µ , but non-convex in {{wi},Rs} . In the work, we adopt 
BCD algorithm to update {vi}, {ui} and the inner max–min problem alternatively. With 
{vi}, {ui} fixed, the inner max–min problem can be solved by the SGDA algorithm [34] 
that is designed for non-convex–concave problems. The SGDA is very computationally 
efficient since it takes only a single-loop update in each iteration. Specifically, by intro-
ducing auxiliary sequences {ŵi} and R̂s , the following problem can be built from the 
inner max–min problem in (40)

where p and q are constants. When SGDA is applied to (40), gradient ascent and 
gradient descent are conducted alternatingly over the objective function of prob-
lem (41), while the auxiliary sequences are updated through a averaging step. 
That gives the FP-SGDA algorithm for the joint beamforming optimization prob-
lem (13). The details of the proposed FP-SGDA algorithm are summarized in 
Algorithm 2.

(38)

L(�) =−
4L
∑

ℓ=1

(

yHℓ Myℓ

)

+ �

[

Nu
∑

i=1

(viei − log(vi))− Nt + rm

]

+ µ

[(

Nu
∑

i=1

�wi�2 + Tr(Rs)

)

− P

]

.

(39a)max
{yℓ}

{

4L
∑

ℓ=1

2
√
αℓℜ

{

yHℓ eℓ

}

+ max
� ≥ 0,µ ≥ 0

min
{wi},Rs

L(�)

}

(39b)= max
{yℓ}, � ≥ 0,µ ≥ 0

{

min
{wi},Rs

4L
∑

ℓ=1

2
√
αℓℜ

{

yHℓ eℓ

}

+ L(�)

}

.

(40)min
{ui, vi}

{

max
{yℓ}, � ≥ 0,µ ≥ 0

{

min
{wi},Rs

4L
∑

ℓ=1

2
√
αℓℜ

{

yHℓ eℓ

}

+ L(�)

}}

.

(41)

max
{yℓ}, � ≥ 0,µ ≥ 0

{

min
{wi},Rs

{ 4L
∑

ℓ=1

2
√
αℓℜ

{

yHℓ eℓ

}

+ L(�)

+ p

2

Nu
∑

i=1

||wi − ŵi||2 +
q

2
||Rs − R̂s||F

}}

,
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Algorithm 2 Proposed FP-SGDA Algorithm
1: Initialize: {w0

i },R0
s, {v0i }, {u0

i }, {y0
�}, λ

0, µ0, {ŵ0
i }, R̂0

s.
2: for r = 0, 1, 2, . . . do
3: ur+1

i = (hH
i Rr+1

xt hi + σ2
i )

−1hH
i wr+1

i ,∀ i;
4: vr+1

i = (1− ūr
ih

H
i wr+1

i )−1,∀ i;
5: wr+1

i = wr
i − γ∇wr

i
L(Ω)− γp(wr

i − ŵr
i ),∀ i;

6: Rr+1
s = Rr

s − γ∇Rr
s
L(Ω)− γq(Rt

s − R̂r
s);

7: yr+1
� = yr

� + β(2
√
α�e� − 2Mr+1yt

�),∀l;

8: λr+1 =
[
λr + β

(∑Nu
i=1 (vr+1

i er+1
i − log(vr+1

i ))−Nt + rm
)]+

;

9: µr+1 =
[
µr + β

(∑Nu
i=1 ‖w

r+1
i ‖2 +Tr(Rr+1

s )− P
)]+

;

10: ŵr+1
i = ŵr

i + c(wr+1
i − ŵr

i ),∀ i;
11: R̂r+1

s = R̂r
s + c(Rr+1

s − R̂r
s);

12: end for

In Algorithm 2, γ ,β and c are step sizes and the expressions of ∇wiL(�) and ∇RsL(�) 
are

where yℓ = [yTℓ,1, . . . , yTℓ,4]T and Dyℓ,k = diag(yℓ,k) . As expressed in (10), M is a 4L× 4L 
block matrix, where each sub-block expressed in (11) can be written in the following 
unified form

For example, M11 � Mφφ = MA
11 ⊙MB

11R̄xtM
C
11 , where MA

11 = ȦHȦ,MB
11 = B̄VH and 

MC
11 = VB.
In FP-SGDA algorithm, it has the computational complexity with 

O(LN 2
t + L2N 2

s + LNt + NuNt) , which is much smaller than that in WMMSE–SDR 
algorithm. It is also verified by the simulation results.

(42)

∇wiL(�) = −
4L
�

ℓ=1





4
�

jk

MC
jkD̄yℓ,iM

A
jkDyℓ,kM

B
jkwi

+
�

MC
jkD

H
yℓ,j

MA
jkDyℓ,kM

B
jk

�T
w̄i

�

+ �





Nu
�

j=1

vj|uj|2hjhHj



wi − 2�viuihi + 2δwi,

∇RsL(�) =−
4L
�

ℓ=1





4
�

jk

MC
jkD̄yℓ,jM

A
jkDyℓ,kM

B
jk





+ �





Nu
�

j=1

vj|uj|2hjhHj



+ µINt ,

(43)Mjk = MA
jk ⊙MB

jk R̄xtM
C
jk , j = 1, . . . , 4, k = 1, . . . , 4.
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5  Simulation results and discussion
In this section, the performance of our proposed ISAC beamforming algorithms is evalu-
ated extensively through simulation. The network consists of Nu = 5 UEs and L = 5 tar-
gets. The number of antennas equipped at both BSs is Ns = Nt = 20 . The carrier frequency 
is 2.35 GHz and the signal bandwidth is 100 MHz. The path loss between the UE and the 
transmit BS is set as 128.1+ 37.6 log10(d) (dB), in which d is the distance between BS and 
UE [49]. The power spectral density of is − 174 dBm/Hz . The transmit BS is located at 
(x, y) = (0, 0) m, and the sensing BS is at (0, 500) m. As shown in Fig. 2, the targets and UEs 
are randomly located in a rectangular area enclosed by the magenta dotted line and that 
by the dotted line, respectively. Two scenarios with different distributions of UE’s location 
are considered. In scenario 1, UEs are located near the targets to sense and the directions 
of them to the BSs are close. In scenario 2, UEs are located far away from the targets and 
they have different directions to the BSs. Totally 500 Monte Carlo realizations of typolo-
gies are conducted and the performance is averaged over them. Unless specified otherwise, 
the weights of CRB for all parameters are set as αℓ = 1 . The maximum transmit power is 
P = 30 (dBm), and the sum-rate threshold is rm = 20 (bits/s/Hz). The initial values of {w0

i } 
are set via the zero-forcing beamforming for both WMMSE–SDR and FP-SGDA. The step 

Fig. 2 Two scenarios of different network typologies

Fig. 3 Comparison of convergence of WMMSE–SDR and FP‑SGDA
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sizes in FP-SGDA are set as γ = 0.01 and β = c = 0.02 . In our experiments, the MATLAB 
is operated on the platform with CPU of i7-9800X and GPU of RTX-3080Ti.

5.1  Comparison between WMMSE–SDR and FP‑SGDA beamforming

In this subsection, the performance of the proposed WMMSE–SDR and FP-SGDA beam-
forming schemes is compared in terms of the convergence behavior and the computa-
tional time.

5.1.1  Convergence behavior

Figure  3 presents the convergence behaviors of the proposed algorithms. One can 
observe that the objective value Tr(M−1) obtained by WMMSE–SDR and that by FP-
SGDA decrease quickly. While both algorithms converge to almost the same objective 
value within a few iterations, it shows that WMMSE–SDR takes fewer iterations to con-
verge. An interesting phenomenon in Fig. 3 is that both the two algorithms will converge 
a little faster with a larger transmit power budget P.

Compared with scenario 1, the ISAC system in scenario 2 achieves a lower objec-
tive value during the iteration, corresponding to a better sensing performance. This is 
because that the communication signals received at UEs are more easily to be interfered 
by the sensing signals when the targets and UEs are located close to each other. As a 
consequence, more power will be allocated to communication to meet the throughput 
requirement in scenario 1, and the corresponding sensing performance is degraded.

Fig. 4 Comparison of Tr(CRB) of WMMSE–SDR and FP‑SGDA algorithms

Table 1 Comparison of computational time (s) of WMMSE–SDR and FP‑SGDA algorithms

Number of targets L = 1 L = 3 L = 5 L = 7 L = 9 L = 11

WMMSE–SDR

Nt = 10 11.151 12.623 14.937 19.783 27.291 39.612

Nt = 20 16.523 18.093 20.140 28.617 40.544 58.592

FP-SGDA

Nt = 10 0.342 0.522 0.872 0.902 1.169 1.262

Nt = 20 0.347 0.981 1.356 1.739 1.982 2.348
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5.1.2  Impact of power and sum‑rate constraint

Figure 4 demonstrates the achieved value of the trace of CRB matrix versus the sum-rate 
threshold rm under different transmit power limits. In both scenarios, the achieved value 
of the trace increases with a higher threshold of sum rate. This is reasonable as more 
power will be used for communication to satisfy a more stringent throughput require-
ment. Moreover, with more transmit power budget, the attained CRB values will go 
down and the sensing performance is improved.

In both scenarios, the trend of curves of WMMSE–SDR and that of FP-SGDA are sim-
ilar. FP-SGDA obtains almost the same values as WMMSE–SDR. In addition, under the 
same power and sum-rate constraint settings, the obtained CRB in scenario 2 is smaller 
than that of scenario 1, which is in accordance with our expectation.

5.1.3  Computational time

As analyzed in Sect. 4, one big advantage of the proposed FP-SGDA is its lower com-
putational complexity to WMMSE–SDR. To demonstrate that, the computational time 
(in seconds) of the two proposed algorithms versus the number of targets with different 
number of transmit antennas is listed in Table 1.

As shown in Table 1, the computational time of WMMSE–SDR and that of FP-SGDA 
increase with more targets to be sensed and more antennas equipped at BSs, because the 
increase of number of targets L and the number of antennas Nt will lead to a problem of 
a larger dimension and increased complexity.

More importantly, Table 1 shows that FP-SGDA reduce the computational time sig-
nificantly. In fact, the averaged computational time of FP-SGDA is only 3–4% of that 
of WMMSE–SDR, under the same setting of L and Nt . It verifies the effectiveness of 
our designs to reduce the computational complexity in the proposed FP-SGDA. And its 
computational advantage seems more significant with a larger number of targets and 
transmit antennas. In addition, it showcases that the computational time of FP-SGDA 
is less sensitive to the increase of Nt , making it more appealing to the massive MIMO 
scenarios.

As the two proposed algorithms attain almost the same objective values, while FP-
SGDA admits much better computational efficiency, it is compared with other bench-
mark schemes in the next subsection.

5.2  Comparison of improvement for parameter estimation

In this subsection, the achieved performance of our considered joint beamforming 
formulation is compared with other benchmark schemes. Specifically, the following 
schemes are evaluated for comparison.

• Com.: Problem (13) is solved with the sum-rate threshold set as the objective value 
of the classical sum-rate maximization problem obtained by the WMMSE algorithm 
[32]. In this scheme, the network throughput is more emphasized.

• AOD ( M11 ): Problem (13) is solved with the objective function changed to Tr(M−1
11 ) . 

In this scheme, the channel parameters AOA and reflection coefficient {θ , v} are 
assumed to be known, and only the minimization of the CRB of AOD φ is considered.
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• AOD ( αℓ ): Problem (13) is solved with the weights in the objective function set to 
αℓ = 1, ℓ = 1, . . . , L and αℓ = 0, ℓ = L+ 1, . . . , 4L . Note that, different from that in 
AOD ( M11 ), this scheme treats the other parameters including AoA and reflection 
coefficient unknown here.

• All para: Problem (13) is solved with αℓ = 1, ℓ = 1, . . . , 4L in the objective function 
with Tr(�αM

−1) . In this scheme, the minimization of the CRB of all parameters 
{φ, θ ,bR,bi} is considered in the optimization.

• Sen.: Problem (13) is solved by setting the sum-rate constraint as rm = 0 . The target 
sensing is more emphasized in this scheme.

Figure 5 presents the values of MSE and Tr(CRB) obtained by the beamforming opti-
mized from all the aforementioned schemes above with FP-SGDA. MUSIC algorithm 
is applied to acquire the AoD estimation. MSE(·) is calculated by the summation of the 
mean square errors of the estimated and true AoDs. Tr(CRB)(·) corresponds to the 
achieved summation of the CRB of AoD φ . The values of MSE(·) are depicted by points, 
while values of Tr(CRB)(·) are illustrated by dotted lines.

One can see from Fig.  5 that all the schemes can provide higher estimation accuracy 
when the transmit power is increased. Among all the schemes, the sensing performance of 
Com. is the worst as it emphasizes the most on communication and nearly all the power 
is allocated to the data transmission. In contrast, Sen. gets the best estimation accuracy, 
because it considers the optimization of sensing performance only. Besides, All para 
attains the better performance than AOD ( αℓ ). The reason is that the sensing of different 
parameters for each target indeed impacts each other. As illustrated in [31], the optimiza-
tion of CRB of AoD solely could deteriorate the estimation of the reflection coefficient, 
since the obtained beampattern has a notch at the direction to the target when the minimi-
zation of the CRB of reflection coefficients is ignored. The phenomenon here is consistent 
with what demonstrated in [31]. Comparing AOD ( M11 ) with AOD ( αℓ ), one can observe 
that the performance of the two schemes is very near, while the latter one achieve slightly 
better performance. This is in accordance with our expectation since AOD ( M11 ) ignores 
the uncertainty of the other unknown parameters in the optimization.

Fig. 5 Comparison of MSE and Tr(CRB) for parameter estimation
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5.3  Discussion

We conduct extensive simulations to evaluate our proposed WMMSE–SDR and FP-SGDA 
in various scenarios under different power and sum-rate constraints. The numerical results 
show that our proposed algorithms can improve the sensing performance effectively and 
converge within only a few iterations. It also showcases that the sensing performance that 
is evaluated by the achieved trace of the weighted CRB of parameters will be improved 
with an increased transmit power and degraded with a more stringent sum-rate thresh-
old. The phenomenon reveals the trade-off between sensing and information transmission 
under limited power. In addition, the comparison of the computational time demonstrates 
that FP-SGDA does not only achieve almost the same sensing performance as WMMSE–
SGDA, but also significantly reduces the computational time. It verifies the efficacy of 
our proposed low-complexity designs. Moreover, the proposed MUMT-ISAC framework 
is also compared with other benchmark schemes, including one scheme considering the 
minimization of CRB of partial parameters only, one treating partial parameters as deter-
ministic, one focused more on sensing and another one emphasizing sensing. The compar-
ison presents that our proposed framework achieves the best balance between sensing and 
information transmission. In a nutshell, the simulation verifies the effectiveness of our pro-
posed MUMT-ISAC framework. It shows our proposed joint beamforming algorithms can 
effectively improve the estimation accuracy and ensure a high communication throughput 
with highly reduced computational complexity.

6  Conclusion
In this paper, we have investigated the joint information and sensing beamforming design 
problem in MUMT-MIMO ISAC systems. We have proposed a new MUMT-MIMO ISAC 
framework where two BSs collaborate to sense targets in a bi-static mode, while the trans-
mit BS sends information streams to communication users simultaneously. To improve the 
sensing performance and ensure a high communication throughput, we have formulated 
a beamforming problem to minimize the trace of the weighted CRB of target parameters 
subject to the sum-rate constraint. To solve the intricate non-convex problem, we have 
proposed a WMMSE–SDR algorithm, which can achieve a KKT point of the problem. In 
addition, we have proved the tightness of SDR and developed a low-complexity FP-SGDA 
algorithm. Through extensive simulation, we found that our proposed algorithms can 
achieve a promising sensing and communication performance, and the FP-SGDA algo-
rithm can significantly reduce the computational time. Besides the parameters considered 
in this paper, range and Doppler are also the directions for future research.

Appendix 1: Cramer–Rao bound
For the sake of discussion simplicity, let us stack all the parameters in one vector, 
i.e., ξ = [φT, θT,bTR ,b

T
I ]T ∈ C

4L . Based on the definition of the FIM matrix [50], the 
expression of the (i, j)-th entry of the FIM is

(44)FIM(ξ i, ξ j) =
2

σ 2
s

ℜTr
[

∂(ABVTx)H

∂ξ i

∂(ABVTx)

∂ξ i

]

.
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It is not difficult to verify that

Denote ei as the i-th column of IL , we have

where Xij denotes the (i, j)-th element of X . Hence, Mφφ ,Mφθ ,Mφb can be written as 

 And (11d)–(11f ) can be derived in the similar way. Given (11a)–(11f ), (10) follows 
immediately.

Appendix 2: Proof of Theorem 1

(1) Denote the X as the set containing variables {{Ri}, {wi},Rs, {tℓ}} of problem (22), 
i.e., X � {{Ri}, {wi},Rs, {tℓ}} . With fixed {ui} and {vi} , problem (22) is convex 
w.r.t. X . Therefore, solving problem (22) at Step 3 in Algorithm  1 can provide 
the optimal solutions X∗ . Since the constraint (22d) is also convex w.r.t. {ui} and 
{vi} , the alternative updates of {ui} and {vi} by (23a) and (23b) will not increase 
∑Nu

i=1(viei − log(vi)) , implying that X∗ is still feasible in the updated set. Therefore, 
the objective value will be non-increasing during the iteration and the proposed 
Algorithm  1 converges. Now let us show that Algorithm  1 converges to a KKT 
point. The Lagrangian function of problem (22) is given by (26), and the KKT con-
ditions of problem (22) are given by 

(45)

∂ABVTxt

∂φi
= ȦBVTxt ,

∂ABVTxt

∂θi
= ABV̇Txt ,

∂ABVTxt

∂bRi
= AVTxt ,

∂ABVTxt

∂bIi
= jAVTxt .

(46)

M(φi,φj) =
2

σ 2
s

ℜTr
[

(Ȧeie
T
i BV

Txt)
H(Ȧeie

T
i BV

Txt)
]

= 2

σ 2
s

ℜTr
[

eTi (Ȧ
HȦ)eje

T
j (BV

Txtx
H
t V̄B

H)ei

]

= 2

σ 2
s

ℜ
[

(ȦHȦ)ij( B̄V
HR̄xtVB)ij

]

,

(47a)Mφφ = (ȦHȦ)⊙ (B̄VHR̄xtVB),

(47b)Mφθ = (ȦHA)⊙ (B̄V̇HR̄xtVB),

(47c)Mφb = (ȦHA)⊙ (VHR̄xtVB).

(48a)∇XL(�3) = 0,
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 where �3 � {X, {ui}, {vi}, �,µ, {Ŵi},�s, {ξℓ}} . Since the objective function is coer-
cive, X and {{ui}, {vi}} are all bounded. Hence, the sequence {X, {ui}, {vi}} has at 
least one limit point. Consider the subsequence {Xr , {uri }, {vri }}∞r=0 obtained by algo-
rithm converging to the limit point {X∗, {u∗i }, {v∗i }} , we prove that the limit point is 
a KKT point of problem (22). Based on the update rule given by (23a) and (23b), 
letting r → ∞ implies 

(48b)∇uiL(�3)= vi

[

hHi

(

Nu
∑

i=1

Tr(Ri)+ Tr(Rs)

)

hi + σ 2
i ui−hiwi

]

=0,

(48c)∇viL(�3) = ei −
1

vi
= 0,

(48d)Tr(�sRs) = 0,

(48e)µ

[(

Nu
∑

i=1

Tr(Ri)+ Tr(Rs)

)

− PT

]

= 0,

(48f )�

[

Nu
∑

i=1

(viei − log(vi))− Nt + rm

]

= 0,

(48g)ξℓ(e
T
ℓM

−1eℓ − tℓ) = 0, ℓ = 1, . . . , 4L,

(48h)Tr[Ŵi(Ri − wiw
H
i )] = 0, i = 1, . . . ,Nu

(48i)Rs � 0,

(48j)

(

Nu
∑

i=1

Tr(Ri)+ Tr(Rs)

)

− PT ≤ 0,

(48k)
Nu
∑

i=1

(viei − log(vi))− Nt + rm ≤ 0,

(48l)eTℓM
−1eℓ ≤ tℓ, ℓ = 1, . . . , 4L,

(48m)Ri − wiw
H
i � 0, i = 1, . . . ,Nu,

(49a)u∗i =



hHi





Nu
�

j=1

R∗
j + R∗

s



hi + σ 2
i





−1

hHi w
∗
i , ∀i,
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 With fixed {{ui}, {vi}} , problem (22) is convex w.r.t. X , and there exists a set of mul-
tipliers {�∗,µ∗, {Ŵi},�∗

s , {ξ∗ℓ }} and optimal solution X∗ so that 

 in which 

 With {{u∗i }, {v∗i }} given by (49a) and (49b), we infer that 

(49b)v∗i =
(

1− ū∗i h
H
i w

∗
i

)−1
,∀i.

(50a)∇X∗L(�1) = 0,

(50b)Tr
(

�∗
sR

∗
s

)

= 0,

(50c)µ∗
[(

Nu
∑

i=1

Tr(R∗
i )+ Tr(R∗

s )

)

− PT

]

= 0,

(50d)�
∗
[

Nu
∑

i=1

(v∗i e
∗
i − log(v∗i ))− Nt + rm

]

= 0,

(50e)ξ∗ℓ (e
T
ℓ (M

∗)−1eℓ − t∗ℓ ) = 0, ℓ = 1, . . . , 4L,

(50f )Tr[Ŵ∗
i (R

∗
i − w∗

i (w
∗
i )

H)] = 0, i = 1, . . . ,Nu,

(50g)R∗
s � 0,

(50h)

(

Nu
∑

i=1

Tr(R∗
i )+ Tr(R∗

s )

)

− PT ≤ 0,

(50i)
Nu
∑

i=1

(v∗i e
∗
i − log(v∗i ))− Nt + rm ≤ 0,

(50j)eTℓ (M
∗)−1eℓ − t∗ℓ ≤ 0, ℓ = 1, . . . , 4L,

(50k)R∗
i − w∗

i (w
∗
i )

H � 0, i = 1, . . . ,Nu,

(51)e∗i = 1− 2ℜ(u∗i hHi w∗
i )+ |u∗i |2hHi

(

Nu
∑

i=1

Tr(R∗
i )+ Tr(R∗

s )

)

h∗i + σ 2
i |u∗i |2.

(52a)∇u∗i
L(�1)=

[

hHi

(

Nu
∑

i=1

Tr(R∗
i )+ Tr(R∗

s )

)

hi + σ 2
i

]

u∗i − h∗i w
∗
i =0,
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 Clearly, (50) and (52) imply that the limit point {X∗, {u∗i }, {v∗i }} is a KKT point of 
problem (22).

(2) Let us consider problem (22) with fixed {ui, vi}, and let X∗ � {{R∗
i }, {w∗

i },R∗
s , {t∗ℓ }} 

be a feasible solution. Consider the construction of X̃ � {{w̃i}, {R̃i}, R̃s, {t̃ℓ}} , as in 
(24b), (24c) and (24d). We need to show that X̃ is also feasible to (22). Firstly, by 
(24d), we have 

 So, (22c) holds true for X̃ . Besides, constraints (22e) and (22f ) are automati-
cally true for X̃ given (24c). Secondly, to show (22d), note that we may assume 
hHi w

∗
i = ℜ(hHi w∗

i ) . Then, by (22f ) and (24b) we have 

 By the above inequality and (53), one can see that (22d) holds true for X̃. The last is 
to show (22b) is true for R̃s , which is sufficient to show 

 That is, R∗
i −

∑Nu
i=1 w̃iw̃

H
i � 0 . By the Cauchy–Schwartz inequality, we have 

 which shows (55) is true. The proof is complete.
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