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Abstract 

Due to the time-varying and space-varying characteristics of the underwater acoustic 
channel, the communication process may be seriously disturbed. Thus, the underwater 
acoustic communication system is facing the challenges of alleviating interference and 
improving communication quality and communication efficiency through adaptive 
modulation. In order to select the optimal modulation mode adaptively and maximize 
the system throughput ensuring that the bit error rate (BER) meets the transmission 
requirements, this paper introduces deep reinforcement learning (DRL) into orthogo-
nal frequency division multiplexing acoustic communication system. The adaptive 
modulation is mapped into a Markov decision process with unknown state transition 
probability. Thereby, the underwater communication channel environment is regarded 
as the state of DRL, and the modulation mode is regarded as action. The system returns 
channel state information (CSI) and signal–noise ratio in every time slot through the 
feedback link. Because the Deep Q-Network optimizes in the changing state space of 
each time slot, it is suitable for a variety of different CSI. Finally, simulations in different 
underwater environments (SWellEx-96) show that the proposed adaptive modulation 
scheme can obtain lower BER and improve the system throughput effectively.

Keywords:  Underwater acoustic communication, Orthogonal frequency division 
multiplexing, Deep reinforcement learning, Channel estimation and feedback, Channel 
state information

1  Introduction
Underwater acoustic (UWA) channels are generally recognized as one of the most chal-
lenging communication channels [1]. Considering the complexity of underwater acous-
tic media and the low propagation speed of sound in water, and in order to combat its 
characteristics of large time delay spread and large-scale fading, researchers usually set 
up underwater acoustic communication (UWAC) systems based on the channel’s most 
undesirable state before using adaptive transmission technology [2, 3]. By improving 
the transmitting power of the transmitter, using low-order modulation technology and 
inserting more redundant error correction coding, we can ensure that the transmission 
bit error rate (BER) meets the system requirements and the correct information can be 
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successfully demodulated at the receiver. However, that leads to the low spectral effi-
ciency of the underwater acoustic channel, along with insufficient utilization of chan-
nel capacity and low communication efficiency. Adaptive modulation technology (AMT) 
is always a powerful method for efficient transmission. Therefore, we proposed a deep 
reinforcement learning-based adaptive modulation for OFDM underwater acoustic 
communication system to solve the problem. Through real-time estimation and feed-
back of underwater acoustic channel state, the modulation mode, constellation size, bit 
rate per symbol, transmit power, and so on are automatically changed.

1.1 � Related works

Orthogonal frequency division multiplexing (OFDM) has recently emerged as a more 
effective solutions for underwater acoustic communications because of its robustness to 
channels that exhibit long delay spreads and frequency selectivity [4, 5]. Radosevic et al. 
[6] discussed the design of UWA communication adaptive modulation based on OFDM. 
They proposed two adaptive modulation schemes to maximize the system throughput 
under the target average BER as the design criterion. The first scheme adjusted only the 
modulation level and evenly distributed power among subcarriers; the second scheme 
adaptively adjusted the modulation level and power and then gave the effectiveness 
of UWA link adaptive modulation results through real-time marine experiments for 
the first time. Mangione [7] and others designed and implemented a software-defined 
modem, which can dynamically estimate the acoustic channel conditions, adjust the 
parameters of the OFDM modulator according to the environment, or switch to a more 
robust JANUS/FSK modulator under harsh propagation conditions.

In order to overcome the influence of complex and changeable marine environment 
on underwater acoustic communication signals, artificial intelligence technology 
has been introduced into the field of underwater acoustic communication applica-
tions in recent years. The application of artificial intelligence technology in under-
water acoustic communication mainly focuses on the dynamic changes in the marine 
environment and the physical characteristics of underwater acoustic channels [8, 9]. 
Mahmutoglu et al. [10] proposed the particle swarm optimization (PSO) algorithm-
based adaptive decision feedback equalizer (DFE) for UWAC, in which PSO is inde-
pendent from channel characteristics and has faster convergence. Although PSO has 
the highest computational complexity, our simulation results show that the PSO-DFE 
outperforms other algorithms. Chen Yougan et al. [11] proposed a machine learning-
based environment-aware communication channel quality prediction (ML-ECQP) 
method for underwater acoustic communication networks (UACNs). In ML-ECQP, 
the logistic regression (LR) algorithm is used to predict the communication chan-
nel quality (which is measured according to the bit error rate) between a transmitter 
and a receiver based under the perceived underwater acoustic channel environmental 
parameters (such as signal-to-noise ratio, underwater temperature and wind speed). 
In addition, based on adaptive modulation and coding, Alamgir et al. [12] used sup-
port vector machine, k-nearest neighbor algorithm, pseudo-linear discriminant 
method and the enhanced regression tree method to study the classification of modu-
lation and coding, which further improved the effect of underwater acoustic adaptive 
modulation and coding. Huang et al. [13] proposed an adaptive approach to pre-set 
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the modulation scheme for long-range underwater acoustic communication (LR-
UWAC). They avoided the direct approach of making the decision based on a simula-
tion over the predicted channel and instead added an abstract layer that classifies the 
channel or predicts the channel’s performance using machine learning tools—support 
vector machines (SVMs). Upon capturing the important features from the channel, 
a machine learning-based classifier has better resilience to mismatches in channel 
prediction.

AI-related algorithms and the Markov decision processes have recently attracted some 
attention to research in underwater acoustic communication networking. Jin et al. [14] 
proposed a congestion-avoiding routing protocol for Underwater Acoustic Sensor Net-
works (UASNs) based on reinforcement learning, which provides an effective way for the 
node to choose the next forwarder. Su et al. [15] applied cooperative communications to 
internet of underwater things (IoUT) networks to expand the communication range and 
alleviate power shortages. They investigated the cooperative communication problem in 
a power-limited cooperative IoUT system and proposed a reinforcement learning-based 
underwater relay selection strategy. They formulate the underwater cooperative relay-
ing process as a Markov process and applied reinforcement learning to obtain an effec-
tive underwater relay selection strategy. The simulation results have revealed that the 
DQN-based scheme improved the mutual information and reduced the outage probabil-
ity. Recently, Q-learning-based AM and coding scheme have been proposed. The per-
formance of an adaptive system depends on the transmitter’s knowledge of the channel 
which is provided via feedback from the receiver. Wang et al. [16] developed an online 
algorithm based on the reinforcement learning framework for the long-term running 
regular point-to-point underwater acoustic communication system. They estimated the 
underwater acoustic channel model parameters recursively and tracked the underwa-
ter acoustic channel dynamics and then realize the optimal transmission parameter set-
ting to minimize the long-term cost of the system. The test results obtained from a lake 
showed that the proposed method can perform better than the benchmark method of 
ideal non-causal CSI. Song et al. [17] proposed an underwater acoustic adaptive modu-
lation communication strategy based on the reinforcement learning Dyna-q algorithm. 
The algorithm took the effective signal-to-noise ratio (SNR) as the underwater acous-
tic channel state parameter, predicted the channel state and communication through-
put based on the actual situation and simulation experience of data communication and 
then used the result to select the modulation parameters combined with the channel 
state returned by the receiver to maximize the communication throughput. Simulation 
results showed that the Dyna-q algorithm can achieve higher communication through-
put than the direct feedback effective SNR scheme. Su et al. [18] proposed an adaptive 
modulation and coding scheme for underwater acoustic communication based on rein-
forcement learning (RLMC). The hot-booting Q-learning algorithm is used to solve the 
optimization problem under variant quality of services (QoS) requirements. The per-
formance bound of this optimization problem is calculated and analyzed. The scheme 
dynamically selected the modulation and coding strategy of underwater acoustic com-
munication systems based on network perceived state information such as information 
service quality requirements, previous transmission quality and energy consumption. 
Pool and sea trial data showed that it improved the throughput and reduced BER with 
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less energy consumption compared with the benchmark scheme. However, none of the 
above methods can deal with continuous channel states.

1.2 � Contributions

The inherent Doppler double spread effect delay of the underwater acoustic channel has 
space–time uncertainty, and hence, there is no unified standard model of the underwa-
ter acoustic channel at present. The model uses reinforcement learning to adaptively 
learn the underwater acoustic channel and realize the adaptive modulation scheme, 
which is convenient for the parameter setting of the underwater acoustic communica-
tion system. It is the key for artificial intelligence technology to break through the bottle-
neck of underwater acoustic communication. The basic assumptions for our design are: 
(1) For many applications, the underwater channel is in good enough condition to allow 
the setup of an OFDM-link, and (2) calibration of the OFDM modulation parameters is 
possible in scenarios with temporal variability of environmental parameters.

Our approach and contributions are the following:

1.	 We proposed a metric for channel environment. Firstly, CSI information is stored in 
a sparse matrix and combined with SNR, including environmental noise, the residual 
ICI and the noise due to the channel estimation error. The throughput loss due to 
quantization can be reduced by adjusting states not directly dependent on the com-
plexity of the algorithm. Meanwhile, a DRL-based adaptive modulation scheme com-
bining neural network and RL is used. It can effectively deal with continuous state 
space problems with fast convergence speed. The reward mechanism includes BER, 
spectral efficiency, maximum throughput and time consumption. When the trans-
mission does not meet the accuracy requirements, the defined penalty is reset to 
zero, and non-transmission mode is turned on in addition to the four modulation 
modes.

2.	 We investigated the performance of the proposed DRL-based AM scheme under 
the BELLHOP simulation environment of the SWellEx-96 experiment. A time-var-
ying underwater acoustic channel was established using the temperature, salinity, 
depth, sound velocity and corresponding time data in the SWELLEX-96 experiment. 
This channel modeling method is more in line with the real-world scenarios. Com-
pared with the adaptive modulation algorithm people usually use in practice (tabu-
lar method with setting fixed threshold) and adaptive modulation method based on 
improved Q-learning, it demonstrates stable transmission accuracy performance and 
maximizes the use of channel capacity.

The paper is organized as follows: The second section introduces the experimen-
tal model of the OFDM underwater acoustic communication system, the time-varying 
underwater acoustic channel model and the feedback link; the third section describes 
the adaptive modulation scheme based on improved DRL, including environmental 
change setting and system state feedback as well as the reward mechanism and the algo-
rithm process; in fourth section, MATLAB and BELLHOP simulation is used to analyze 
the anti-environmental interference, BER performance, maximum throughput perfor-
mance and the defined reward function value of the proposed method in underwater 



Page 5 of 23Cui et al. EURASIP Journal on Advances in Signal Processing          (2023) 2023:1 	

acoustic channel; and the fifth section summarizes and looks forward to perfecting this 
paper.

2 � System model
2.1 � Time‑varying underwater acoustic channel model

In most cases, the underwater acoustic channel can be regarded as a slow time-varying 
coherent multi-path channel [19]. If the observation or processing time is not too long, 
we can describe the underwater acoustic channel as a time-invariant filter. However, in 
a continuously operating underwater acoustic communication system, the sound source 
and receiver’s distance and position follow the hydrological changes, and the channel 
environment varies as well. According to this principle, the assumptions of the multi-
path channel simulation model are as follows:

(a)	 The sound velocity does not change with the horizontal direction, but only with the 
depth of the seawater;

(b)	 The surface and the bottom of the sea are flat interfaces;
(c)	 The position of sound source and receiving point does not change with time;
(d)	 The eigen-rays determine the sound field.

The ray from the sound source reaches the receiving point through multiple routes, 
and the received sound field is the superposition result of all arriving rays (eigen-rays). 
Figure 1 shows the physical model of three simple propagation paths. We did not con-
sider the bending of the rays caused by different sound velocity profiles, but we sim-
ulated the delay. We assume that each response amplitude is not equal, so τ21 and τ31 
represent the delay difference between the second path and the first path and between 
the third path and the first path, respectively. The received signal is the signal superposi-
tion of the three paths.

The transmitted waveform is convoluted with the impulse response, and then, the 
output is correlated with simulate the multi-path effect, and each arriving sound 
line is superimposed. Generally, in one transmission τ pulse signal, h(τ , t) (in which t 

Fig. 1  Physical model of sound line propagation



Page 6 of 23Cui et al. EURASIP Journal on Advances in Signal Processing          (2023) 2023:1 

represents the time) represents the response obtained at a specific time of the signal 
in the time-varying channel, and the following formula can express h:

where i represents the i th arrival sound line, and N  is the number of all rays from the 
transmitting end to the receiving end, or the number of eigen-rays. The underwater 
acoustic multi-path channel corresponding to this time has n, paths. A is the amplitude, 
δ is the receiving phase, and τ is the arrival delay difference of each path. Ai and τi is the 
propagation attenuation coefficient and relative delay corresponding to different paths.

Another important acoustic property of underwater acoustic channels is marine 
environmental noise. The marine turbulence, wind noise and thermal noise in the 
underwater acoustic channel are added through empirical function, which are calcu-
lated as follows:

where sw is wind speed for ambient noise level calculation, and fc is the center frequency 
of the acoustic band.

2.2 � OFDM communication model

We consider a point-to-point underwater acoustic communication system. The 
transmitter can adaptively adjust the modulation mode. There is a feedback channel 
between the transmitter and the receiver. The receiver feeds back the CSI for each 
fixed time slot through the feedback channel.

Figure 2 only shows the process related to the adaptive modulation scheme in the 
OFDM Underwater acoustic communication system. It is assumed that the transmit-
ted CSI will not be affected by the instability of underwater acoustic channel and sys-
tem hardware equipment, which is to say that a noiseless transmission is assumed. 
Our goal is for the actual BER to be less than 10−2 , and the system BER after error 
correction coding to be than 10−5 . In order to simplify the environment model, this 
paper does not consider the error correction coding scheme but only the modulation 
scheme. The optimal modulation level is determined by CSI [20] and BER in our sys-
tem to find an optimal transmission strategy for the transmitting transducer. There-
fore, to realize demodulation, the sender notifies the receiver of the modulation level 
before transmitting data in each time slot, for the purpose of maximizing the system 
throughput under the specified BER requirements in a limited time range.

(1)h(τ , t) =
N (t)

i=1

Ai(t)δ(τ − τi(t)),

(2)ANturbdB = 17− 30log10
fc

1000
,

(3)ANwinddB = 50+ 7.5
√
sw + 20log10

fc

1000
− 40log10

(
fc

1000
+ 0.4

)
,

(4)ANthermodB = −15+ 20log10
fc

1000
,
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1.	 Frame structure

	 We adopt the multiple hyperbolic frequency-modulated (MHFM) signals [21] to 
jointly estimate the arrival time and use cyclic prefixes (CP)-OFDM leader codes 
with self-repetition for Doppler extension estimation. The frame structure of OFDM 
system model is shown in Fig. 3.

2.	 Channel frequency-domain estimation

	 The input/output relationship between discrete symbol sampling and emitted sym-
bols can be expressed as follows [22]:

	 where the noise term W contains the ambient noise, the residual ICI and the noise 
caused by the channel estimation error. Based on the above input/output relation-
ship, with the help of frequency measurements on pilot subcarriers, the path param-
eters of the channel can be estimated by the minimal military method or the com-
pressed sensing method based on sparse channel estimation [23]. In order to reduce 
the complexity of the algorithm, we adopted the least square (LS) method which is 
widely used in practice.

(5)z = Hs + w

(6)ĤLS = argmin
ξ

||z −Hs||2,

Fig. 2  OFDM system model

MHFM

t
CP X X 1 Nb

OFDM data block

Fig. 3  The frame structure of OFDM system model
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3.	 SNR estimation

In the environmental assessment of the underwater acoustic channel, the SNR is an 
essential parameter that can effectively reflect the magnitude of noise and the environ-
mental quality of the ring channel [24]. According to the received signal of each pilot 
subcarrier in each OFDM symbol in the system, it is expressed as:

where S is the signal power factor, N  is the noise power factor, h is the channel coef-
ficient, a

(
i, j
)
 is the i th pilot subcarrier, the modulation signal at the j th OFDM symbol, 

and n is the AWGN signal with zero mean added. Then, the SNR is estimated as:

where J  is the number of OFDM symbols used for SNR estimation, Re{•} represents the 
real part of the complex number, ∗ represents the conjugate of the complex number, and 
ĥ is the channel time-domain impulse response estimated in the previous part.

3 � Our adaptive modulation scheme
3.1 � Multi modulation system

We map the adaptive modulation scheme to a finite Markov decision process. Based on 
this discrete and finite-state theoretical framework, agents and the environment achieve 
their goals through interactive learning. In finite MDP, function p defines the dynamic 
characteristics of MDP and specifies a probability distribution for the selection of each 
state and action.

In order to improve the bandwidth efficiency of the system, an underwater acoustic 
communication system usually adopts a multi-band modulation scheme. A set of sig-
nal constellation points can represent the modulation level of each data symbol Mt . We 
select modulation scheme {BPSK, QPSK, 8-QAM and 16-QAM.}, where M1 = {2, 4} 
in circular constellation multiphase shift keying (MPSK) system, M2 = {8, 16} in the 
square constellation multi-level quadrature amplitude modulation (MQAM) system. It is 
assumed that the transmitter uses constant symbol period Ts and ideal value is combined 
to obtain M = {2, 4, 8, 16} , and the length of each time slot Ts = 1

B , where B is the band-
width of the received signal.

(1) State space: since the receiver obtains the CSI information of the feedback link, 
including channel gain, multi-path, noise and other information, we define the state of 
each time slot as St = {s1, s2, s3, . . . }.

(2) Action space: in the OFDM underwater acoustic communication system model, 
since the transmitter automatically adjusts and selects the modulation scheme accord-
ing to only the current feedback state in each time slot, the action of each time slot is 
defined as At = {a1, a2, a3, . . . } , where the modulation mode ai adopted for the ith time 
slot is selected from the given constellation M system.

(7)y
(
i, j
)
=

√
S • h

(
i, j
)
• a

(
i, j
)
+

√
N • n

(
i, j
)
,

(8)

SN̂RML =
ŜML

N̂ML

=

[
1
J

∑J−1
j Re

{
y
(
i, j
)
• ĥ∗

(
i, j
)
• a∗

(
i, j
)}]2

1
J

∑J−1
j

∣∣y
(
i, j
)∣∣2 −

[
1
J
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{
y
(
i, j
)
• ĥ∗

(
i, j
)
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(
i, j
)}]2 ,



Page 9 of 23Cui et al. EURASIP Journal on Advances in Signal Processing          (2023) 2023:1 	

(3) Immediate reward function: each time slot obtains the timely reward function 
Rt = {r1, r2, r3, . . . } based upon the feedback, and it includes reward and punishment. 
The reward function is directly proportional to the number of data bits successfully 
transmitted, and related to the system throughput. The punishment function is only 
related to the BER.

A complete MDP consists of four tuples. Given the values of the initial states and 
actions, the probability of the occurrence of s′ ∈ S and r ∈ R at time t can be obtained 
p
(
s′, r|s, a

)
= Pr

{
St = s′,Rt = r|St−1 = s,At−1 = a

}
 . However, in our adaptive modula-

tion scheme in an underwater channel environment, the selected probability distribu-
tion of each s and a cannot be obtained, so it is defined as MDP triple < S,A,R >.

3.2 � Value calculation

We are considering designing an adaptive transmission system based on SNR 
γt . If the average data rate is maximized only under the fixed target BER, then 
k(γt) can be set to equallog2Mt , which can meet the general adaptive M-nary modula-
tion. The accurate BER is obtained through the actual transmission of the system. We 
send specific data and feedback on the bit error in each time slot and compare the pro-
portion of the number of bits incorrectly accepted by the receiver in the total transmis-
sion bits.

Considering various expenditure loads in the communication system, we calculate the 
total data rate so that the coding rate r is constant. Calculated according to the number 
of bits per second per Hertz, the spectral efficiency is:

where σ is the bit rate, σ = log2M, and M is the modulation order. Tb1 is the OFDM 
symbol length, and Tb1 = T + Tcp , Tcp is the length of the cyclic prefix, T  is the basic 
OFDM symbol interval, K  is the number of subcarriers, and the size of the symbol after 
FFT transformation and Kd is the number of data subcarriers.

Different from Shannon capacity, in the multi-level modulation system, we use the 
number of bits sent per unit time as the system throughput:

where Pcf  is related to the system BER ρ , and Pcf = 1− ρ.
The penalty � sets the reward to zero. If the BER requirements are not met, all reward 

values are set to 0. The calculation of the value function is defined as:

where c1, c2, c3 are constants, representing the weight of each parameter in value calcula-
tion. No signal will be transmitted if the penalty bit � of each action is set to zero in the 
tth time slot. It happens when the current environment state is not ideal. According to 
our automatic modulation strategy, even the modulation mode with the lowest order 
cannot meet the system requirements, so the optimal strategy is not to transmit.

(9)ψ = (r × σ)×
T

Tb1
×

Kd

K
,

(10)T = ψ ×max
[
Pcf × (r × σ)

]
,

(11)
{
r(s, a) = −c1 · ρ + c2 · ψ + c3 · T ,� = 0, ρ ≤ Pb
r(s, a) = 0,� = 1, ρ > Pb

,



Page 10 of 23Cui et al. EURASIP Journal on Advances in Signal Processing          (2023) 2023:1 

3.3 � Optimization problems

According to the feedback information of the feedback line, we set the optimization 
problem as:

where Mt = 1 is the action of not transmitting, and the transmitter remains in a static 
waiting state.

3.4 � The proposed adaptive modulation scheme based on DRL

In the traditional Q-learning algorithm, the Q value is stored in a table. The horizon-
tal axis of the two-dimensional table is the state, the vertical axis is the action, and the 
median value is the Q value of the action corresponding to each state. For the low-
dimensional state space, the Q table can be stored in all states, and the optimal action 
can be selected by directly querying the Q table. However, there is a large-scale and 
continuously changing state space for the time-varying underwater acoustic channel 
[25]. Deep Q-Network (DQN) is model-free, aiming to find the mapping relationship 
between the action state and the Q value. The temporal difference (TD) method com-
bines the Monte Carlo sampling method and the bootstrapping of the dynamic pro-
gramming method (using the value function of the subsequent state to estimate the 
current value function) so that it can be applied to the model-free algorithm and is 
updated in one step with faster speed. For the Q-learning method in which action is a 
discrete variable, Q∗(s, a) is approximated by a deep neural network. We still consider 
transforming the continuously changing state into the discrete state of each time slot. 
Because the neural network can automatically extract complex features, we do not 
quantify the CSI but keep the feature vector as the input.

3.4.1 � Model input

Usually, people take the combination of the channel frequency-domain response 
estimated by the receiver and the SNR of the equalized subcarrier as the input vec-
tor of the network. However, due to the sparsity of the underwater acoustic channel, 
we consider transforming the channel frequency-domain response estimated by the 
receiver into the time-domain impulse response. Through the storage method of a 
sparse matrix, we can effectively reduce the amount of data and denote the network 
input signal as x:

In order to reduce the dimension of the input data, n peaks of the time-domain 
impulse response are extracted in advance to keep the data input size consistent.

(12)

max
Mt

rt(st , at)

s.t.

{
Mt ∈ M = {1, 2, 4, 8, 16}, ∀t = 1, 2, . . . ,N

ρt ≤ Pb,t ,∀t = 1, 2, . . . ,N

,

(13)x =
[
hsparse SNR

]
,

(14)hsparse =
[

A1

τ1

A2

τ2

· · ·
. . .

An

τn

]
.
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As in Eq. (1), Ai and τi is the amplitude and relative delay corresponding to different 
paths. The network input and output relationship is shown in Fig. 4.

3.4.2 � Adaptive modulation algorithm based on deep reinforcement learning

The modification of Q-learning by DRL is mainly reflected in three aspects:

(1)	 DRL uses a depth neural network to approximate the value function;
(2)	 DRL uses experience replay to train the learning process of reinforcement learning;
(3)	 DRL independently sets up the target network to deal with the TD deviation in the 

time difference algorithm.

In DRL, the enhanced learning Q-learning algorithm and the SGD deep learning train-
ing are carried out synchronously. We used the powerful fitting ability of the neural net-
work to approximate the action-value function in Q learning, so Q(s, a) ≈ Q(s, a; θ) . The 
updated method is calculated as follows:

where TargetQ = r + γ maxa′ Q
(
s′, a′

)
, the loss function in the algorithm uses the mean 

square loss to update the parameters in the iteration: L(θ) = E
[(
TargetQ− Q(s, a)

)2] , 

with θ parameters representing the network, α as the learning rate, s′ and a′ as the state 
and action in the next iteration, respectively, and γ being the discount factor in the TD 
method.

In the learning phase of each time slot, we consider that passing ε − greedy strategy 
traverses all possible operations in each channel state. The greedy algorithm generates 
an optimal global solution through optimal local strategy, which is usually set ε as a con-
stant in a system. A number between 0 and 1 is randomly generated ξ:

The actions that maximize the Q value have a higher probability of occurrence, and 
the Q values corresponding to all possible actions can be learned. Therefore, we set the 
training state:

(15)Q(s, a) ← Q(s, a)+ α

[
r + γ max

a′
Q
(
s′, a′

)
− Q(s, a)

]
,

(16)
{
at = arg maxat Q(st , at), ξ < ε

at = rand(At), ξ ≥ ε
,

State mainNetwork

Q-value1

Q-value2

Q-value3

Q-value4
CSI data

Fig. 4  Through main network output, the Q values of all actions corresponding to a CSI state
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where Nepisode is the number of episodes that the system continues to cycle and N0 is a 
constant about episodes. ε will gradually decrease with the continuous training of the 
current event. If the environment changes rapidly, the value of ε needs to be increased 
to make the system more likely to train Q values corresponding to other actions in this 
state, which can maximize the reward of the selected action.

Each episode is carried out in each time slot for a period of time. In a certain period 
of time, the channel environment changes slowly. The agent judges whether the per-
formance meets the requirements and calculates the reward value and punishment by 
observing the average maximum throughput and the average BER corresponding of 
each modulation order. The penalty value � represents the negative value of reward. 
In the same network, the weight after learning a task may completely change when 
learning a new task because the optimization target values are different in the time-
varying underwater acoustic channel environment with significant differences. The 
objective function is the same, but the data sets are different. The old weights are 
easily damaged, so the batch random sampling method is adopted. We store 10,000 
groups of data. Each set of data contains the current environmental state informa-
tion, modulation mode and value score obtained. The agent samples 100 groups of 
data from the experience replay, learns all samples of the whole batch, calculates the 
average gradient, and then updates them. During the update, only the Q value corre-
sponding to the current modulation is updated, and others remain unchanged.

We consider the sample buffer with a sliding window mechanism. The sequence 
stored in the experience replay is [St ,At ,Rt , St+1] , the cache length is L = 1000 , and 
the initialization is empty. The learned state transition sequence is added every time. 
When it is completed, we delete the old sample at the top layer and then store the 
new sample.

(17)ε = max

(
0.01, 0.2− 0.1×

(
Nepisode

N0

))
,

Fig. 5  Algorithm flowchart of DQN
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There are two networks with precisely the same structure but different parameters in 
DQN. As shown in Fig. 5, the prediction of Q estimation network mainNet is the virtual 
training network. Each step updates parameter θ according to the samples collected by 
mini-Bach, while the prediction of Q reality network targetNet parameters was used some 
time ago. The weight of mainNet is copied to targetNet every certain number of iterations 
C. Q(s, a; θi) represents the output of the current network mainNet, which is used to eval-
uate the value function of the current state action pair; Q

(
s, a; θ−i

)
 indicates the output 

of targetNet. It mainly provides maxQ, which can solve the target. Therefore, when the 
agent acts on the environment, it can calculate Q according to the formula and update the 
parameters of mainNet according to the loss function. In order to prevent overestimation 
and make the Q value closer to its real value, our optimal action selection is based on the 
parameters of the Q network currently being updated. It completes an episode workout.

Specifically, the pseudo-code of using the DRL algorithm to find the best transmission 
strategy is shown in Algorithm 1.
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4 � Simulation results and discussion
In this section, we present numerical and experiment results to evaluate the perfor-
mance of our proposed DRL-based adaptive transmission modulation scheme. We 
compare its performance with the most commonly used fixed threshold method and 
RLMC [18] based on Q-learning in many different hydrological environment changes, 
in terms of BER, system throughput and a value function defined by this paper. Fast-
changing channel state estimation and feedback are considered. The improvement of 
the primary look-up table method is based on quantization, and the channel envi-
ronment has different SNR restrictions. The adaptive modulation schemes are BPSK, 
QPSK, 8-QAM and 16-QAM.

As shown in Fig. 6, the transmission system is divided into fixed time slots. In each 
time slot, dynamic changes will occur between the transmitter and receiver, including 
the change of hydrological environment and the random movement of equipment. The 
transmitter sends data information for channel estimation (including pilots and data 
packets). In each time slot, pilots are used for estimation and feedback, and the underly-
ing data packets are transmitted continuously.

4.1 � Simulation environment settings

In this paper, the channel simulation uses BELLHOP software to simulate the hydro-
logical environment. The simulation uses the sound velocity profile of the SWellEx-96 
experiment about 12  km away from the tip of Loma angle near San Diego, Califor-
nia, considering the acoustic characteristics of the sea surface, sound attenuation and 
absorption, and seafloor reflection loss. The sound velocity profile is shown in Fig. 7.

Firstly, we select the underwater acoustic channel scenario. Figure 8 shows the differ-
ent channel responses obtained during the gradual change of the distance between the 
transmitter and the receiver in one channel environment. Sd is the depth of transmitter, 
and Rd is the depth of receiver. The water depth is 200 m, the hydrophone is 50 m away 
from the sea surface, the transmitting transducer is 24 m away from the sea surface, and 
the distances between the five transmitting and receiving are 5.01 km, 5.02 km, 5.03 km, 
5.04 km and 5.05 km, respectively.

Fig. 6  Transmission process of each simulation
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The sound wave emitted by the sound source is disturbed by the background environ-
ment in the propagation process of the underwater acoustic channel, including marine 
dynamic noise, biological noise, traffic noise, industrial noise, seismic noise and under-
water noise. In addition, the location of sound source and receiver also leads to the com-
plexity and variability of marine environmental noise.

Since each time slot of the system feeds back a set of CSI information, we assume that 
the channel environment is unchanged during this time slot. We consider processing 
the channel impulse response information of each group of time slots. After estimation, 
we take 16 multi-path information with higher amplitude and store them in the sparse 
matrix. Based on this channel information, the estimated time-domain channel h and 
the estimated SNR are calculated to provide the current state for the adaptive modula-
tion scheme at the transmitter.

4.2 � BER analysis of fixed threshold algorithms

Table 1 shows the simulation parameters of OFDM system.
Under the given average channel environments, Fig.  9 gives four different modu-

lation modes transmission BER under the different SNRs. The modulation schemes 

Fig. 7  Simulation of sound velocity profile

Fig. 8  The impulse response of hydrophone at different receiving points (time-varying)
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are BPSK, QPSK, 8-QAM and 16-QAM. We define that the system requires the BER 
to be less than 0.01. Hence, the target SNR Pb is fixed. According to the transmis-
sion criteria we defined, the change of each of the modulation scheme is shown in 
Table  2. When the SNR is quite low (SNR ≤ 13  dB), the  lowest-order modulation 
mode BPSK cannot meet the BER of 0.01; therefore, it chooses not to transmit. When 
the SNR is not so low (13 dB < SNR ≤ 18 dB), the system selects QPSK as the modula-
tion scheme, and the bit rate is twice that of the BPSK system. When the SNR is not 
so high (18 dB < SNR ≤ 27.5 dB, the system selects 8-QAM as the modulation scheme,  
and the bit rate is twice higher than that of the BPSK system. When the SNR is high 
(SNR > 27.5 dB), the system selects 16-QAM as the modulation scheme, the data rate is 
four times higher than BPSK, and the BER performance remains < 0.01.

Table 1  Simulation parameters of the OFDM packet

Parameter Value

Bandwidth: B/Hz 8000

Center frequency /Hz 12,000

Number of subcarriers 1024

Pilot form Block

pilot length 256

Signal length 256 × 256 × 8

Cyclic prefix (CP) length/protection interval 400

Fig. 9  Simulation of different modulation modes of OFDM system in multi-path fading

Table 2  Modulation scheme in UNDERWATER acoustic channel

Transmission SNR(dB)

Model 1 (BPSK) 13 dB < SNR ≤ 18 dB

Model 2 (QPSK) 18 dB < SNR ≤ 24 dB

Model 3 (QAM-8) 24 dB < SNR ≤ 27.5 dB

Model 4 (QAM-16) SNR > 27.5 dB
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4.3 � Channel estimation and feedback

HFM signal can still obtain good energy accumulation under significant Doppler fre-
quency shift, and it has obvious ambiguity function. The ambiguity function of the HFM 
signal is the output of the matched filter, which has good autocorrelation and cross-cor-
relation [26]. We superimpose HFM signal as the training sequence on the data signal to 
estimate the channel’s frequency response, equalize the channel and eliminate the inter-
ference caused by signal superposition. As shown in Fig. 10, this method can correctly 
estimate the multi-path information of the channel with small side lobes.

4.4 � Training and learning based on DRL

We consider using 30 different channel environments, adding different noise changes, 
and each episode is trained k = 30 × 92 × 10 times. Table  3 shows the neural network 
parameters of our deep reinforcement learning method. During the test, we use different 
environments of SWelllEx-96 experiment with changing the position and noise of the 
transmitter and receiver and then compare the performance of the proposed adaptive 
modulation system based on DRL algorithm.

Figure 11 shows the performance of the DRL method when using the changed ε-greedy 
algorithm to select actions. The abscissa is several episodes, and the ordinate is the sum 
of earnings per episode. At the beginning of network training, in the first 30 episodes, 

Fig. 10  Impulse response: theoretical and estimated values

Table 3  System network parameters

Parameter Value

SNR 0–35 dB

Loss function MSE

Epoch 30 × 92 × 10

Train parameter epochs 100

Initial learning rate 0.01

Network training function traingdx

Optimizer Adam
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the income of each episode changes significantly. Because the value of ε in the greedy 
algorithm is relatively large, the network traverses all possible actions in the current state 
to prevent local optimization. Due to the time-varying channel, the state space of each 
episode process is not totally the same. However, DRL can quickly learn the relationship 
between state and Q(s, a) to update network parameter θ without taking up additional 
storage. After training for a while, the system converges quickly, proving the fitting abil-
ity of a neural network, which proves DRL has learned the optimal strategy. After the 
output converges to 235, because the greedy algorithm selects the action, it still exists 
after 100 episodes, though the value of ε is smaller than before. Therefore, there will be 
suboptimal situations when implementing this strategy, resulting in small fluctuations in 
return.

4.5 � The performance of our proposed adaptive scheme is compared

Figure 12 shows the 6 different environment modulation-order selection of the data set. 
When the SNR is quite low (SNR < 7 dB), the scheme selects modulation mode BPSK. 
When the SNR is high (SNR > 31  dB), the scheme selects 16-QAM as the modulation 

Fig. 11  Learning and training process of DRL

Fig. 12  The modulation mode serial number of SNR in some simulated environments
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scheme. In other cases, proposed adaptive scheme automatically adjusts the threshold to 
select the modulation mode.

As shown in Fig. 13, the BER of the proposed DRL-based AM scheme is compared in 
different channel environments. According to different SNRs, experiments show that the 
tabular method with fixed threshold and RLMC based on Q-learning cannot meet the 
requirements of BER < 0.01, and there is the possibility of non-compliance in some non-
ideal conditions as high as 0.02. Under the low signal-to-noise ratio (SNR < 7 dB), even 
if the BPSK with the lowest modulation order is adopted, it still causes dramatical bit 
error, and thus, continuous transmission is not considered. When SNR = 17 dB, 23 dB 
and 27 dB, the change of a certain state does not comply with the quantitative CSI of 
the table, resulting in the sudden change of BER, making the average BER close to 0.02, 
which does not meet the system transmission requirements defined by the paper. The 
RLMC method also shows great fluctuations, which cannot guarantee that the bit error 
rate is always less than 0.01 at SNR > 12 dB. The proposed method has no mutation of 
BER in the whole transmissible SNR range. It adapts to various channel states, maintains 
the average performance, and demonstrates better stability.

Figure  14 shows that in a time-varying marine environment, different under-
water acoustic environments generated under each signal-to-noise ratio under 
0  dB < SNR < 35  dB are tested. By calculating the convergence average BER, spectral 
efficiency, throughput and penalty value, the appropriate modulation mode is selected 
according to the system mechanism to display the average maximum system throughput 
obtained by the time-varying channel.

The proposed method shows better average performance in a variety of marine envi-
ronments. When the SNR is so low (SNR < 7  dB) and very large (SNR > 28  dB), it can 
maintain the same performance as the look-up table method and RLMC based on 
Q-learning. No matter what CSI, the SNR is very small, BPSK is selected as the modula-
tion mode; the SNR is large, 16-QAM modulation transmission with the highest modu-
lation order is selected, and the same reward can be obtained. In more general cases, as 
compared in Fig. 14:

Fig. 13  Average BER in simulated environments
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where R = I
B·Ts·Nf

 and Pcf = (1− Error)I , I = bps . B is the bandwidth of OFDM system. 

Ts is OFDM symbol length. Nf is number of OFDM symbols per frame.
Under the condition of signal-to-noise ratio 7  dB < SNR < 28  dB, the performance of 

the reward function value defined by us in defining the BER interval is shown according 
to Fig. 15. The reward mechanism of the adaptive modulation scheme proposed by us is 
calculated by the formula (11).

Comparing Figs. 14 and 15, it is found that in our OFDM underwater acoustic com-
munication system, the transmission conditions are met in a specific SNR range, and the 
system throughput performance is significantly improved.

Therefore, DRL based on neural networks is more suitable for the environment with 
underwater state changes. The tabular method quantifies the channel state and cannot 
maximize the system throughput. RLMC based on Q-learning. RLMC is not suitable 

(18)C = R · Pcf · log2 (1+ SNRdB),

Fig. 14  Average maximum throughput in simulated environments

Fig. 15  Average reward function value in simulated environments
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for continuously changing channel environment and cannot minimize the bit error rate 
only by using SNR as evaluation criterion. However, compared with the tabular method, 
RLMC has been able to effectively improve the communication throughput while ensur-
ing the bit error rate. However, the DRL method mapping state and Q-value relation-
ships are suitable for both the old and newly changed channel environments, which has 
stronger robustness.

In Figs. 16, 17 and 18, the three graphs compare the performance of the proposed 
adaptive modulation strategy based on DRL algorithm. As the experience updates 
every time slot, the BERs, maximum system throughput and reward function value 
converged to optimal values. In every time slot, we test the environmental changes 
of all 30 CSI between SNR ∈ [0 dB, 35 dB] . In Fig. 16, the target average BER for our 
OFDM systems is set to 10−2 , and the non-adaptive scheme should reduce the over-
all throughput. The average BER of the tabula method maintains a value of about 
0.0213. The proposed adaptive modulation strategy is just a little higher than the tar-
get. The BER decreased by 0.015. RLMC based on Q-learning is slightly higher than 
the method based on DRL. In Fig.  17, the average maximum system throughput of 

Fig. 16  Average BER of each time slot in simulated experiments

Fig. 17  Average maximum throughput of each time slot in simulated environments
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proposed method based on DRL increased by 4.8 × 10–5. More specifically, the DRL 
scheme begins to converge to a stable strategy after 25 time slots, and the conver-
gence speed increases by 37.5% compared to RLMC scheme.

5 � Conclusion
The underwater acoustic channel has a profound multi-path effect, Doppler effect and 
ocean noise compared with the wireless channel. The advantages of OFDM technology 
are that it can better adapt to the characteristics of apparent multi-path effect, low-fre-
quency band and narrow bandwidth of the underwater acoustic channel. In the large 
time-varying underwater acoustic channel environment, the neural network is more 
and more widely used. In this paper, based on the OFDM underwater acoustic commu-
nication system, we propose a DRL adaptive modulation scheme. In order to improve 
the communication service quality, to integrate the system bit error rate, and to maxi-
mize the system throughput, we define a reward function. The proposed strategy maps 
the state, and Q value correspondence through the neural network uses the underwa-
ter acoustic Doppler insensitive HFM signal as the pilot to estimate the channel state 
and automatically selects the modulation scheme according to the real-time feedback 
of the time slot link. Finally, we tested the model in 30 different channel environment 
change experiments. The simulation shows that the proposed DRL adaptive modulation 
scheme has relatively lower and more stable BER performance. It can maximize the sys-
tem throughput and improve the communication service quality and communication 
efficiency under the condition of meeting the transmission requirements.
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