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1  Introduction
With the development and deployment of the fifth-generation (5G) wireless commu-
nication system [1–3], IoV has emerged as one of the most important components in 
smart cities, which has attracted much attention from both the academy and industry. In 
the IoV systems, various sensors at the vehicle can collect travelling state data and make 
real-time decision through analyzing the data, which can effectively prevent the traffic 
collision and congestion [4, 5]. From this process, one can clearly find that the develop-
ment of IoV systems involves massive communication among the sensors, and massive 
computing to perform the analysis on the massive data [6–8]. Hence, some new com-
munication and computing techniques should be employed to develop the IoV systems.

To support the development of IoV systems, some new communication techniques 
should be developed. One of the promising communication techniques for the next-
generation communication is the multiple-input multiple-output (MIMO) [9, 10], where 
multiple antennas are equipped at the transmitter and receiver to provide plenty of 
spatial resources in order to increase the transmission data rate significantly [11–13]. 
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Another promising technique is the intelligent reflecting surface (IRS), which installs a 
lot of reflection units on the transmitter and receiver [3, 14]. In the IRS systems, the 
transmission phase, amplitude and frequency can be adjusted to enhance the sys-
tem performance significantly [15–17]. Moreover, the caching can be integrated into 
the wireless transmission system, which can help enlarge the dimension of the system 
resources [18]. In addition, resource allocation based on novel technologies can improve 
the system performance [19, 20]. In further, some intelligent algorithms, such as the 
channel state information (CSI) feedback [21], federated learning [22], and reinforce-
ment learning [23] can be applied to enhance the communication quality.

Besides the communication techniques, some new computing techniques should 
be developed to support the development of IoV systems. Cloud computing was pro-
posed to help compute the intensive computational tasks through offloading the tasks 
to the cloud server, which however, causes a heavy overload and a severe issue of infor-
mation leakage. Accordingly, mobile edge computing (MEC) has been proposed to set 
the computational access points (CAPs) nearby the users, which can effectively reduce 
the system latency and energy consumption [24, 25]. In this direction, the authors in 
[26] investigated the impact of outdated CSI on the performance of MEC networks, 
through analyzing the system outage probability by taking into account the latency and 
energy consumption. Moreover, the performance of MEC networks in eavesdropping 
environments was studied in [27], where the deep Q-network (DQN)-based intelligent 
algorithms was proposed to devise the offloading strategy. In further, for the training 
networks with a large number of parameters, the network parameters can be split to be 
computed on different nodes in the network [28]. However, these approaches require 
high overhead of space and time to obtain offloading strategy. Different from reinforce-
ment learning scheme, the analytical solutions have no exploration overhead, and can 
directly obtain the offloading strategy with the complexity of O(1). Moreover, to the best 
of our knowledge, there has been little work on the study of analytical methods to solve 
the offloading design for the MEC networks. In further, analytical method can provide 
theoretical basis for other offloading optimization schemes. It can help better under-
stand the offloading mechanism and the influence of each parameter on the system per-
formance. Therefore, the above views motivate the work in this paper. However, there 
are some difficulties in providing analytical solutions to offloading strategy. Specifically, 
when there are multiple CAPs and multiple users, it is difficult for us to devise an off-
loading strategy, taking into account the complexity from the increasing number of users 
and CAPs.

In this paper, we investigate how to analytically design an analytical offloading strategy 
for a multiuser MEC-based smart IoV, where there are multiple CAPs which can help 
compute tasks from the vehicular users. As it is difficult to derive an analytical offloading 
ratio for a general MEC-based IoV network, we turn to provide an analytical offloading 
scheme for some special MEC networks including one-to-one, one-to-two and two-to-
one cases.

For each case, we study the system performance by using the linear combina-
tion of latency and energy consumption, and derive the analytical offloading ratio 
through minimizing the system cost. Simulation results are finally presented to ver-
ify the proposed studies. In particular, the proposed analytical offloading scheme 
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can achieve the optimal performance of the BF scheme. The analytical results in 
this paper can serve as an important reference for the analytical offloading design 
for a general MEC-based IoV. The main contributions of this paper are summarized 
below.

•	 We investigate how to optimize the linear combination of latency and energy 
consumption by making offloading decision in vehicular MEC network. We the-
oretically analyze the system cost for one-to-one, one-to-two and two-to-one 
vehicular MEC system, which can serve as an important reference for later stud-
ies for a general vehicular MEC network.

•	 According to the analytical results for two-to-one and one-to-two cases, we 
propose an optimization based on the linear programming method, which can 
directly achieve the optimal offloading ratio at computational complexity O(1) . 
Moreover, compared to the learning-based methods, the proposed strategy can 
avoid the incentive computational cost.

•	 We also conduct simulations to verify the effectiveness of the proposed strategy. 
Specifically, both the simulated and theoretical results are provided and show the 
superiority of the proposed strategy over the learning-based solutions.

The rest of this paper is organized as follows. After the introduction, we will discuss 
the system model of MEC-based IoV network in Sec. II. Then, we give the optimiza-
tion problem in Sec. III, and provide the analytical solution for the offloading design 
in order to minimize the system latency and energy consumption. We further give 
some simulation results and discussions in Sec. IV, and finally conclude the work of 
this paper in Sec. V.

2 � System model
Figure 1 shows the system model of the vehicular MEC network, where there are M 
users denoted by M = {1, 2, . . . ,M} and N CAPs denoted by N = {1, 2, . . . ,N } . Users 
need to execute some computation-intensive and latency-sensitive tasks, which can 
be partitioned into several subtasks by some reasonable task partition method and 
then offloading to the CAPs for computing. Specifically, in our model, at the begin-
ning of each time slot, different users generate computational tasks, which can be 
partitioned into several subtasks. After that, the users offload some subtasks to the 
same CAP in parallel, where the users access the CAP through the some orthogonal 
spectrum resources. When the tasks of all users are completed, one time slot is used 
up. For user m ∈ M , it needs to offload its subtasks through wireless links character-
ized by the offloading decision αm , which can be written as

where αm,n ( n > 0 ) is offloading ratio from user m to CAP n, while αm,0 is local computa-
tional ratio for user m.

(1)αm = [αm,0,αm,1,αm,2, . . . ,αm,n],
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In the following subsections, we will firstly present the local computational model, 
the communication model and the offloading computational model, respectively. 
Then, we will discuss the optimization problem according to the proposed model.

2.1 � Local computational model

In the local computational model, let fm denote CPU cycles per second at the user m. 
Then, the local computational latency can be expressed by

where ω denotes the number of cycles required for the CPU to compute per bit of tasks 
and lm is the task size of user m. Thus, the local computational energy consumption for 
user m can be given by

where Plocal
m  is the local computational power for user m. In summary, the local compu-

tational energy consumption of M users can be summarized as

2.2 � Communication model

In the communication model, according to the Shannon theory, we can obtain the trans-
mission rate from user m to CAP n as [29–31]

(2)Tlocal
m =

αm,0lmω

fm
,

(3)Elocal
m = Tlocal

m Plocal
m ,

(4)Elocal =

M∑

m=1

Elocal
m .

Fig. 1  Task offloading in the vehicular MEC network
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where hm,n ∼ CN (0,β) is the channel parameter of the link between user m and CAP 
n, Wm,n is the communication bandwidth of user m allocated by CAP n, Ptrans

m  is trans-
mission power at user m, and σ 2 is the variance of the additive white Gaussian noise 
(AWGN) at CAP n, where the noise effect on the wireless transmission is detailed in the 
literature [32, 33]. Then, the latency of user m offloading some subtasks to CAP n can be 
given by

The associated energy consumption can be given by

In summary, the total transmission energy consumption of M users can be given by

2.3 � Offloading computational model

When the subtasks have been transmitted to the CAPs, they can be computed by the 
CAPs with a more powerful computational capability. The computational latency at CAP 
n can be given by

where Fm,n is the computational capability assigned by CAP n to user m.
Since the users perform the local computing and offloading in parallel, the system total 

latency is the maximum value among the latency executed at local and CAPs. Then, we 
can obtain the total latency for user m as,

In addition, each user uses its individual computational resource to calculate the tasks. 
And the offloading is implemented in parallel among M users, as each user employs an 
orthogonal spectrum resource for the wireless transmission. Hence, the total system 
latency can be given by,

Similarly, we can obtain the total system energy consumption as,

(5)Rm,n = Wm,n log2

(

1+

∣
∣hm,n

∣
∣2Ptrans

m

σ 2

)

,

(6)Ttrans
m,n =

αm,nlm

Rm,n
.

(7)Etrans
m,n = Ttrans

m,n Ptrans
m .

(8)Etrans =

M∑

m=1

N∑

n=1

Etrans
m,n .

(9)TCAP
m,n =

αm,nlmω

Fm,n
,

(10)Tm = max{Tlocal
m ,Ttrans

m,1 + TCAP
m,1 , . . . ,Ttrans

m,N + TCAP
m,N }.

(11)Ttotal = max{T1,T2,T3, . . . ,TM}.

(12)Etotal = Elocal + Etrans.
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Considering that both the latency and energy consumption have a significant impact on 
the system, we should optimize both the energy consumption and latency for the system. 
Therefore, we use a linear combination of Ttotal and Etotal to measure the system cost, 
given by

where � ∈ [0, 1] is a weight factor between the latency and energy consumption. We can 
get a flexible form of the system cost for the MEC system, by adjusting the value of � , 
according to the practical requirements.

2.4 � Problem formulation

As the offloading strategy can directly affect the system latency and energy consumption, 
we should take into account the offloading parameter {αm,n |1 ≤ m ≤ M, 0 ≤ n ≤ N } , 
and devise the optimization objective to minimize the system cost, given by

where constraint C1 represents that each user can partition its tasks and partially offload 
to the CAPs, and constraint C2 denotes that the sum of the offloading ratio of each user 
should be unity.

3 � Optimization of offloading strategy
For the offloading strategy in the MEC networks, many researchers have employed to 
use some intelligent algorithms, such as reinforcement learning, to obtain a feasible off-
loading decision. However, these approaches require a large number of iterations in the 
training and cause a heavy overhead. Therefore, in this paper, we intend to provide an 
offloading strategy that can directly obtain the offloading ratio by using some analyti-
cal method, which can significantly reduce the computational complexity. However, it is 
generally difficult to obtain an analytical offloading strategy for a large scale MEC net-
work with M users and N CAPs. Hence, we turn to study some special cases to help deal 
with the tricky problem, which includes one user to one CAP case (called one-to-one), 
two users to one CAP case (called two-to-one), and one user to two CAPs case (called 
one-to-two). Specifically, for the one-to-one case, we will get the optimal offloading ratio 
by deriving the objective function. For the two-to-one and one-to-two cases, based on 
the characteristics of the max function in the latency formula, we will partition the ana-
lytical domain into several regions, and then use the linear programming (LP) method to 
find the local optimal offloading solution in each feasible region. The three special cases 
are detailed one by one in the following.

(13)� = �Ttotal + (1− �)Etotal ,

(14)

min
{αm,n}

� = �Ttotal + (1− �)Etotal

s.t. C1 : αm,n ∈ [0, 1], ∀m ∈ M, ∀n ∈ N ,

C2 :

N∑

n=0

αm,n = 1,
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3.1 � One‑to‑one

In the one-to-one case, the single user accesses and offloads its task to the sin-
gle CAP. Consequently, the offloading ratio is α1 = [α1,0,α1,1] , where we can see that 
α1,0 = 1− α1,1 . Thus, we can rewrite the system cost for the one-to-one case with 
respect to α1,1 only, given by

In order to minimize the system cost �1 and obtain the optimal offloading ratio for the 
one-to-one case, we consider three cases, which are � = 1 , � = 0 , and 0 < � < 1 , for (15).

3.1.1 � � = 1

When � = 1 , the system cost of the linear combination of latency and energy consump-
tion degenerates into latency only. In this case, minimizing the linear combination is 
equivalent to minimizing the latency. The system cost can be given by

From (16), we can see that l1(1−α1,1)ω
f1

 decreases with the increase of α1,1 , while 
l1α1,1
R1,1

+
l1α1,1ω
F1,1

 increases with the increase of α1,1 . In order to facilitate the analysis, we 
remove the max operation in (16) and convert �1(α1,1) into

 where γ1 = l1
A

A+ B+ C
 , A =

ω

f1
 , B =

1

R1,1
 , and C =

ω

F1,1
 . From (17), we can obtain the 

optimal offloading ratio of a∗1,1 as,

3.1.2 � � = 0

When � = 0 , the system cost of the linear combination of latency and energy consump-
tion degenerates into energy consumption only. In this case, minimizing the linear com-
bination is equivalent to minimizing the energy consumption. The system cost can be 
given by

(15)

�1(α1,1) = �Ttotal(α1,1)+ (1− �)Etotal(α1,1)

= �max

{

l1
(
1− α1,1

)
ω

f1
,
l1α1,1

R1,1
+

l1α1,1ω

F1,1

}

+ (1− �)

[

l1
(
1− α1,1

)
ω

f1
Plocal
1 +

l1α1,1

R1,1
Ptrans
1,1

]

.

(16)

�1(α1,1) = Ttotal(α1,1)

= max

{

l1
(
1− α1,1

)
ω

f1
,
l1α1,1

R1,1
+

l1α1,1ω

F1,1

}

.

(17)�1(α1,1) =







l1
�
1− α1,1

�
ω

f1
, α1,1 ≤ γ1,

l1α1,1

R1,1
+

l1α1,1ω

F1,1
, α1,1 > γ1,

(18)α∗
1,1 = γ1.
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We can see that (19) is a linear function with α1,1 . So, we can get the optimal offloading 
ratio by comparing P

local
1 ω

f1
 and P

trans
1,1

R1,1
 , given by

3.1.3 � 0 < � < 1

When 0 < � < 1 , the system cost is the linear combination of latency and energy con-
sumption. In this case, we have to consider both energy consumption and latency and 
we can find the optimal offloading ratio by studying the monotonicity of the system 
cost. Specifically, the case 0 < � < 1 is the combination of � = 0 and � = 1 , and from the 
above analysis, we can see that the system cost of the case � = 1 is a piecewise function, 
while the system cost of the case � = 0 is a monotonic function. Consequently, the sys-
tem cost of the case 1 < � < 1 is also a piecewise function, which is given by

 Then, to study the monotonicity of the system cost, we take the derivative of (21) with 
respect to a1,1 that is given by

 where

Hence, we can analyze the optimal offloading ratio as

(19)�1(α1,1) = Etotal(α1,1) = l1

[

(1− α1,1)
Plocal
1 ω

f1
+ α1,1

Ptrans
1,1

R1,1

]

.

(20)α∗
1,1 =







1,
Plocal
1 ω

f1
≥

Ptrans
1,1

R1,1
,

0,
Plocal
1 ω

f1
<

Ptrans
1,1

R1,1
.

(21)�1(α1,1) =







�Tlocal
1 + (1− �)Etotal , α1,1 ≤ γ1,

�(Ttrans
1,1 + TCAP

1 )+ (1− �)Etotal , α1,1 > γ1.

(22)�1
′(α1,1) =







l1

�

−
�ω

f1
+ (�− 1)

Plocal
1 ω

f1
+ (1− �)

Ptrans
1,1

R1,1

�

� �� �

J1

, α1,1 < γ1,

l1

�

�

�
1

R1,1
+

ω

F1,1

�

+ (1− �)

�

Ptrans
1,1

R1,1
−

Plocal
1 ω

f1

��

� �� �

J2

, α1,1 > γ1,

(23)

J1 = l1

[

−
�ω

f1
+ (�− 1)

Plocal
1 ω

f1
+ (1− �)

Ptrans
1,1

R1,1

]

,

J2 = l1

[

�

(
1

R1,1
+

ω

F1,1

)

+ (1− �)

(

Ptrans
1,1

R1,1
−

Plocal
1 ω

f1

)]

.
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3.2 � Two‑to‑one

In the two-to-one case, two users can access and offload their tasks to the sin-
gle CAP at each time slot. Consequently, offloading ratios of user 1 and user 2 are 
α1 = [α1,0,α1,1] and α2 = [α2,0,α2,1] . We can simplify the system cost and rewrite it 
with respect to α1,1 ∈ [0, 1] and α2,1 ∈ [0, 1] by using α1,0 = 1− α1,1 and α2,0 = 1− α2,1 , 
given by

 For convenience, we use the following notation,

Then, the system cost can be rewritten into

As (30) includes some max operations, it is hard to perform to analysis. To remove the 
max operation, we convert (30) into a piecewise function in

 where Y1 =
t1A

t1A + t1B
 and Y2 =

t2A

t2A + t2B
 . Therefore, the domain of α1,1 and α2,1 can be 

partitioned into four regions, as shown in Fig. 2a.

(24)α∗
1,1 =







1, J1 ≤ 0, J2 ≤ 0,
γ1, J1 ≤ 0, J2 > 0,
0, J1 > 0, J2 > 0.

(25)�2

(
α1,1,α2,1

)
= �Ttotal

(
α1,1,α2,1

)
+ (1− �)Etotal

(
α1,1,α2,1

)
.

(26)t1A =
l1ω

f1
, t1B = l1

(
1

R1,1
+

ω

F1,1

)

,

(27)t2A =
l2ω

f2
, t2B = l2

(
1

R2,1
+

ω

F2,1

)

,

(28)E1A =
l1P

local
1 ω

f1
, E1B =

Ptrans
1,1 l1

R1,1
,

(29)E2A =
l2P

local
2 ω

f2
, E2B =

Ptrans
2,1 l2

R2,1
.

(30)

�2(α1,1α2,1) = �max
{
max

{
(1− α1,1)t1A,α1,1t1B

}
, max

{
(1− α2,1)t2A,α2,1t2B

}}

+
1

(1− �)
[(1− α1,1)E1A + α1,1E1B + (1− α2,1)E2A + α2,1E2B].

(31)

�2(α1,1,α2,1) =







�max
�
(1− α1,1)t1A, (1− α2,1)t2A)

�
+

1

(1− �)
Etotal , α1,1 < Y1,α2,1 < Y2,

�max
�
(1− α1,1)t1A,α2,1t2B

�
+

1

(1− �)
Etotal , α1,1 < Y1,α2,1 ≥ Y2,

�max
�
α1,1t1B, (1− α2,1)t2A

�
+

1

(1− �)
Etotal , α1,1 ≥ Y1,α2,1 < Y2,

�max
�
α1,1t1B,α2,1t2B

�
+

1

(1− �)
Etotal , α1,1 ≥ Y1,α2,1 ≥ Y2,
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Without lose of generality, we then analyze the case of α1,1 < Y1 and α2,1 < Y2 . In 
this case, the system cost is given by

To remove the max operation in (32), we convert it into a piecewise function in

 Then, we further partition the region into two parts as shown in Fig. 2b. For the part 
with α1,1 < Y1 , α2,1 < 1−

(1− α1,1)t2A

t1A
 , and α2,1 < Y2 , the system cost can be expressed 

as

Then, the corresponding problem optimization can be written as

(32)�2(α1,1,α2,1) = �max
{
(1− α1,1)t1A, (1− α2,1)t2A)

}
+

1

(1− �)
Etotal .

(33)

�2(α1,1,α2,1) =







�(1− α1,1)t1A +
1

(1− �)
Etotal , α1,1 < Y1,α2,1 ∈

�

1−
(1− α1,1)t2A

t1A
,Y2

�

,

�(1− α2,1)t2A +
1

(1− �)
Etotal , α1,1 < Y1,α2,1 < 1−

(1− α1,1)t2A

t1A
,α2,1 < Y2.

(34)�2(α1,1,α1,2) = �(1− α2,1)t2A + (1− �)Etotal(α1,1,α1,2)

(35)= �t2A + (1− �)(E1A + E2A)+ [(1− �)(E2B − E2A)− �t2A]α2,1

(36)+ (1− �)(E1B − E1A)α1,1.

Fig. 2  Domain partition of the two-to-one case
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We can observe that (37) is a linear programming problem and thus it can be solved by 
using some linear programming methods. Specifically, for non-integer linear program-
ming, if the optimal solution exists, the optimal solution will be falling at the point of 
intersection. So, we only need to collect all points of intersection in this part and com-
pare the associated costs to find the local optimal offloading decision. We can perform a 
similar operation for the other parts and get the global optimal offloading decision.

3.3 � One‑to‑two

In the one-to-two case, the single user can access and offload its task to the two CAPs 
at each time slot. Consequently, the user offloading ratio is α1 = [α1,0,α1,1,α1,2] . We 
can simplify the system cost and rewrite it with respect to α1,1 + α1,2 ≤ 1 by using 
α1,0 = 1− α1,1 − α1,2 , given by

For convenience, we use the following notations,

Then, the system cost can be rewritten as

As (42) includes max operation, it is hard to perform the analysis. To remove the max 
operation, we convert (42) into a piecewise function in

(37)

min
{α1,1,α2,1}

�2(α1,1,α1,2)− �t2A − (1− �)(E1A + E2A)

= [(1− �)(E2B − E2A)− �t2A]α2,1

+ (1− �)(E1B − E1A)α1,1

s.t. C1 : α1,1 < Y1,

C2 : α2,1 < 1−
(1− α1,1)t2A

t1A
,α2,1 < Y2,

C3 : α1,1 ≥ 0,α2,1 ≥ 0.

(38)�3

(
α1,1,α1,2

)
= �Ttotal

(
α1,1,α1,2

)
+ (1− �)Etotal

(
α1,1,α1,2

)
.

(39)t0A =
l1ω

f1
, E0A =

l1P
local
1 ω

f1
,

(40)t1A =l1

(
1

R1,1
+

ω

F1,1

)

, E1A =
l1P

trans
1,1

R1,1
,

(41)t2A =l1

(
1

R1,2
+

ω

F1,2

)

, E2A =
l1P

trans
1,2

R1,1
.

(42)
�3(α1,1,α1,2) = �max

{
t0A(1− α1,1 − α1,2), t1Aα1,1, t2Aα1,2

}

+ (1− �)E0A(1− α1,1 − α1,2)

+ (1− �)E1Aα1,1 + (1− �)E2Aα1,2.
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Consequently, the domain can be partitioned into three regions, as shown in Fig. 3a.
Without loss of generality, we then analyze the case of α1,2 < 1−

t0A + t1A

t0A
α1,1 and 

α1,2 <
t0A

t0A + t2A
(1− α1,1) . In this case, the system cost becomes,

The corresponding part is shown in Fig. 3b. Then, the corresponding problem optimiza-
tion can be written as

We can observe that (45) is also a linear programming problem and thus it can be effec-
tively solved by using some linear programming methods. Specifically, for the non-
integer linear programming, if the optimal solution exists, the optimal solution will be 
falling at the point of intersection. Consequently, we only need to collect all points of 

(43)

�3(α1,1,α1,2) =







�t0A(1− α1,1 − α1,2)+ (1− �)Etotal
, α1,2 ≤ 1−

(t0A + t1A)α1,1

t0A
,α1,2 ≤

t0A(1− α1,1)

t0A + t2A
,

�t1Aα1,1 + (1− �)Etotal
, α1,2 ≤

t1A

t2A
α1,1,α1,2 > 1−

t0A + t1A

t0A
α1,1,

�t2Aα1,2 + (1− �)Etotal
, α1,2 >

t1A

t2A
α1,1,α1,2 >

t0A(1− α1,1)

t0A + t2A
.

(44)
�3(α1,1,α1,2) = �t0A(1− α1,1 − α1,2)+ (1− �)Etotal

= �t0A + (1− �)E0A + [(1− �)(E1A − E0A)− �t0A]α1,1

+ [(1− �)(E2A − E0A)− �t0A]α1,2.

(45)

min
{α1,1,α1,2}

�3(α1,1,α1,2)− �t0A − (1− �)E0A

= [(1− �)(E1A − E0A)− �t0A]α1,1 + [(1− �)(E2A − E0A)− �t0A]α1,2

s.t. C1 : α1,2 < 1−
t0A + t1A

t0A
α1,1,

C2 : α1,2 <
t0A

t0A + t2A
(1− α1,1),

C3 : α1,1 + α1,2 ≤ 1,

C4 : α1,1 ≥ 0,α1,2 ≥ 0.

Fig. 3  Domain partition of the one-to-two case
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intersection in this region and compare the associated system costs to find the local 
optimal offloading decision. We can perform a similar operation for the other regions 
and finally get the global optimal offloading decision.

4 � Simulation
In this section, we will demonstrate some simulations to verify the effectiveness of the 
proposed analytical method for the three special cases including one-to-one, two-to-
one, and one-to-two cases. In the following, we will firstly introduce the environment 
setup of these simulations. Then, we will give some related discussions, based on the 
simulations.

4.1 � Environment setup

The local computational capabilities of the two users are set to f1 = 3× 108 cyc/s and 
f2 = 2.2× 108 cyc/s, respectively, and the computational capabilities at the two CAPs 
are set to F1 = 16× 108 cyc/s and F2 = 13× 108 cyc/s, respectively. In addition, the task 
sizes of the two users are set to l1 = 60 Mb and l2 = 120Mb, respectively, and the vari-
ance of the AWGN is set to 0.01. Moreover, the wireless bandwidth for the two CAPs 
is set to 5 MHz, and the local computational powers of the two users are set to P1 = 2 
W and P2 = 3 W, respectively. In further, we simulate the experiments on the Python 
platform.

4.2 � Simulation results and discussions

Figure 4 demonstrates the impact of the weight factor � on the system cost of the pro-
posed analytical method for the one-to-one case, where the wireless bandwidth is set to 
5MHz, the task size of user1 is set to 60Mb, the computational capability of CAP1 is set 
to 16× 108 cyc/s, the computational capability of user1 is set to 3× 108 cyc/s, and the 
weight factor � varies from 0.0 to 1.0. For comparison, we also provide the system cost of 
the BF approach in solving the offloading strategy. From this figure, we can find that for 

Fig. 4  System cost of the analytical method and BF versus the weight factor � for the one-to-one case
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various values of the weight factor � , the proposed analytical method matches well with 
the BF approach. As the BF approach gives the optimal offloading ratio for each � , the 
proposed analytical method can calculate the optimal offloading ratio for a wide range 
of � . Moreover, for the special cases that the system only considers the energy consump-
tion or the latency, i.e., � = 0 and � = 1 , both the proposed analytical method and BF 
approach can effectively reduce the system cost to about 2.2 and 7.5.

Figure 5 illustrates the impact of the wireless bandwidth on the system cost of differ-
ent offloading schemes for the one-to-one case, where the weight factor � is 0.5, the task 
size of user1 is 60Mb, the computational capability of CAP1 is 16× 108 cyc/s, the com-
putational capability of user1 is 3× 108 cyc/s and the wireless bandwidth varies from 2 
MHz to 9MHz. Besides the proposed analytical method and BF approach, we also study 

Fig. 5  System cost versus the wireless bandwidth with � = 0.5 for the one-to-one case

Fig. 6  System cost of the analytical method and BF versus weight factor � for the two-to-one case
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the system cost of the All-CAP offloading scheme and the All-Local offloading scheme, 
where the All-CAP offloading scheme and the All-Local offloading scheme indicate 
that all the tasks are computed at the CAP and local, respectively. We can find from 
Fig. 5 that the analytical method and the BF approach outperform the All-CAP offload-
ing scheme and the All-Local offloading scheme, indicating that the proposed analytical 
method can effectively exploit the bandwidth resources to obtain an offloading strategy 
similar to the BF approach. Moreover, we can observe that for various values of the wire-
less bandwidth, the system costs of the analytical method and BF are almost the same, 
which further validates the effectiveness of the proposed analytical method. In fur-
ther, the system cost of the All-CAP offloading scheme, BF approach and our analytical 
method is reduced when the wireless bandwidth increases, while the system cost of the 
All-Local offloading scheme remains unchanged for various wireless bandwidth settings. 
This is because that the transmission rate increases with a larger bandwidth, which can 
result in a reduction in both transmission latency and transmission energy consumption, 
while the All-Local offloading scheme does not involve any data transmission.

Figure  6 shows the system cost of the proposed analytical method versus the 
weight factor � varying from 0.0 to 1.0 for the two-to-one case, where the task size 
of the two users is set to l1 = 60 Mb and l2 = 120 Mb, the wireless bandwidth is set 
to W1,1 = 5 MHz and W2,1 = 5 MHz, and the computational capability of the CAP is 
set to F1,1 = 7× 108cyc/s and F2,1 = 9× 108 cyc/s, and the computational capabili-
ties of the two users are set to f1 = 3× 108 cyc/s and f2 = 2.2× 108 cyc/s. To dem-
onstrate the correctness of our proposed analytical method, we use the BF approach 
for comparison. As shown in Fig. 6, we can find that for different values of the weight 
factor � , the performance of our proposed analytical method is very close to that of 
the BF approach, which validates the correctness of the proposed analytical method. 
Moreover, we can see that when � ∈ [0, 0.3] , the system cost of the BF method and 
the proposed analytical method increases with a larger � , since the latency plays a 
more important role than the energy consumption. In contrast, when � ∈ (0.3, 1] , the 

Fig. 7  System cost versus the wireless bandwidth with � = 0.5 for the two-to-one case
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system cost of BF method and the proposed analytical method decreases with a larger 
� , since the energy consumption plays a more important role than the latency.

Figure 7 performs the comparison of four offloading schemes with � = 0.5 for the 
two-to-one case, where the wireless bandwidth varies from 2 MHz to 9MHz, the task 
sizes of the two users are set to l1 = 60 Mb and l2 = 120 Mb, the wireless bandwidth 
is set to W1,1 = 5 MHz and W2,1 = 5 MHz, the computational capability of the CAP is 
set to F1,1 = 7× 108cyc/s and F2,1 = 9× 108 cyc/s, and the computational capabilities 
of the two users are set to f1 = 3× 108 cyc/s and f2 = 2.2× 108 cyc/s. Figure 7 shows 
that the system cost of All-CAP, analytical method and BF gradually decreases as the 
wireless bandwidth increases, as the transmission rate of the users become larger, 
resulting in a reduced system cost. In contrast, the system cost of the All-Local off-
loading scheme remains unchanged across different bandwidths. Moreover, the per-
formance of the analytical method is better than that of All-CAP and All-local, which 
indicates the superiority of analytical method. In further, the analytical method and 
BF have almost the same cost for various values of the wireless bandwidth, indicating 
that the proposed analytical method can find the optimal offloading strategy.

Figure 8 illustrates the system cost of the proposed analytical method and BF versus 
the weight factor � varying from 0.0 to 1.0 for the one-to-two case, where the task 
size of the user is set to l1 = 60 Mb, the wireless bandwidth is set to W1,1 = 5 MHz, 
the computational capability of the CAP is set to F1,1 = 7× 108 cyc/s, and the local 
computational capability is set to f1 = 3× 108 cyc/s. We can see from Fig. 8 that for 
various values of � , the system cost of the analytical method and BF matches well. 
This also indicates that the performance of the analytical method is similar to that of 
the BF. In addition, we can find that when � = 0.2 , the system cost of the BF approach 
and the proposed analytical method is higher than that with other values of � , indicat-
ing that the linear combination of latency and energy consumption at this point will 
dramatically affect the system performance.

Figure  9 depicts the system cost of four offloading strategies versus the wireless 
bandwidth with � = 0.5 for the one-to-two case, where the bandwidth varies from 2 

Fig. 8  System cost of the analytical method and BF versus weight factor � for the one-to-two case
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MHz to 9MHz, the task size of the user is set to l1 = 60 Mb, the computational capa-
bility of the CAP is set to F1,1 = 7× 108 cyc/s, and the local computational capability 
is set to f1 = 3× 108 cyc/s. By observing Fig. 9, we can find that the system cost of the 
All-CAP offloading scheme, the analytical method, and the BF approach decreases 
with a larger bandwidth, while the system cost of the All-Local remains unchanged. 
This is because that the transmission rate of the All-CAP offloading scheme, the ana-
lytical method, and the BF approach is significantly affected by the wireless band-
width, while All-Local performs the calculation locally, and it is not affected by the 
wireless resources. In addition, as the bandwidth increases, the downward trends of 
All-CAP, analytical method, and BF all decrease. This indicates that the improvement 
is gradually becoming saturated. Most importantly, it is evident from Fig. 9 that the 
analytical method and BF are consistently lowest among the four offloading strate-
gies, which further illustrates the effectiveness of the proposed analytical method. 
Moreover, the system cost of proposed analytical method is similar to that of the BF 
approach, indicating that the performance of the proposed analytical method can 
achieve the optimal performance of the BF approach.

5 � Conclusion
In this paper, we investigated how to analytically design an analytical offloading strat-
egy for a multiuser vehicular MEC network, where there were multiple CAPs which 
could help compute tasks from the users. As it is difficult to derive an analytical off-
loading ratio for a general vehicular MEC network, we turned to provide an analytical 
offloading scheme for some special vehicular MEC networks including one-to-one, 
two-to-one and one-to-two cases. For each case, we studied the system performance 
by using the linear combination of latency and energy consumption, and derived the 
analytical offloading ratio through minimizing the system cost. Simulation results 
were finally presented to verify the proposed studies. In particular, the proposed 
analytical offloading scheme can achieve the optimal performance of the BF scheme. 

Fig. 9  System cost versus the wireless bandwidth with � = 0.5 for the one-to-two case
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The analytical results in this paper can serve as an important reference for the ana-
lytical offloading design for a general vehicular MEC network. Moreover, analysis of 
the more general MEC network can serve more application scenarios. Motivated by 
this, we will discussed the analytical method for a more general MEC network in the 
future works.
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